Publisher: AIP   (Total: 27 journals)   [Sort alphabetically]

Showing 1 - 27 of 27 Journals sorted by number of followers
Physics Today     Hybrid Journal   (Followers: 78, SJR: 0.66, CiteScore: 1)
J. of Applied Physics     Hybrid Journal   (Followers: 69, SJR: 0.739, CiteScore: 2)
American J. of Physics     Full-text available via subscription   (Followers: 58, SJR: 0.456, CiteScore: 1)
Physics of Fluids     Hybrid Journal   (Followers: 46, SJR: 1.19, CiteScore: 3)
Applied Physics Letters     Hybrid Journal   (Followers: 44, SJR: 1.382, CiteScore: 3)
J. of Chemical Physics     Hybrid Journal   (Followers: 36, SJR: 1.252, CiteScore: 2)
J. of Mathematical Physics     Hybrid Journal   (Followers: 25, SJR: 0.644, CiteScore: 1)
Review of Scientific Instruments     Hybrid Journal   (Followers: 20, SJR: 0.585, CiteScore: 1)
J. of Laser Applications     Full-text available via subscription   (Followers: 14, SJR: 0.741, CiteScore: 2)
APL Materials     Open Access   (Followers: 12, SJR: 1.63, CiteScore: 4)
J. of Renewable and Sustainable Energy     Hybrid Journal   (Followers: 11, SJR: 0.44, CiteScore: 1)
Applied Physics Reviews     Hybrid Journal   (Followers: 11, SJR: 4.156, CiteScore: 12)
Physics of Plasmas     Hybrid Journal   (Followers: 10, SJR: 0.576, CiteScore: 1)
Acoustics Today     Hybrid Journal   (Followers: 9)
Biomicrofluidics     Open Access   (Followers: 7, SJR: 0.592, CiteScore: 2)
AIP Advances     Open Access   (Followers: 7, SJR: 0.472, CiteScore: 1)
Low Temperature Physics     Hybrid Journal   (Followers: 6, SJR: 0.264, CiteScore: 1)
Structural Dynamics     Open Access   (Followers: 6, SJR: 1.625, CiteScore: 4)
J. of Physical and Chemical Reference Data     Hybrid Journal   (Followers: 4, SJR: 1.046, CiteScore: 3)
Chaos : An Interdisciplinary J. of Nonlinear Science     Hybrid Journal   (Followers: 3, SJR: 0.716, CiteScore: 2)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 2)
Biointerphases     Open Access   (Followers: 1, SJR: 0.558, CiteScore: 2)
Chinese J. of Chemical Physics     Hybrid Journal   (Followers: 1, SJR: 0.24, CiteScore: 1)
Surface Science Spectra     Hybrid Journal   (Followers: 1, SJR: 0.416, CiteScore: 1)
Scilight     Full-text available via subscription  
APL Bioengineering     Open Access  
APL Photonics     Open Access  
Similar Journals
Journal Cover
Structural Dynamics
Journal Prestige (SJR): 1.625
Citation Impact (citeScore): 4
Number of Followers: 6  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2329-7778
Published by AIP Homepage  [27 journals]
  • A narrow bandwidth extreme ultra-violet light source for time- and
           angle-resolved photoemission spectroscopy

    • Authors: Qinda Guo, Maciej Dendzik, Antonija Grubišić-Čabo, Magnus H. Berntsen, Cong Li, Wanyu Chen, Bharti Matta, Ulrich Starke, Björn Hessmo, Jonas Weissenrieder, Oscar Tjernberg
      Abstract: Structural Dynamics, Volume 9, Issue 2, March 2022.
      Here, we present a high repetition rate, narrow bandwidth, extreme ultraviolet photon source for time- and angle-resolved photoemission spectroscopy. The narrow bandwidth pulses [math] meV for photon energies [math] eV are generated through high harmonic generation using ultra-violet drive pulses with relatively long pulse lengths (461 fs). The high harmonic generation setup employs an annular drive beam in tight focusing geometry at a repetition rate of 250 kHz. Photon energy selection is provided by a series of selectable multilayer bandpass mirrors and thin film filters, thus avoiding any time broadening introduced by single grating monochromators. A two stage optical-parametric amplifier provides 
      Citation: Structural Dynamics
      PubDate: 2022-04-28T02:58:44Z
      DOI: 10.1063/4.0000149
       
  • Basic studies toward ultrafast soft x-ray photoelectron diffraction; its
           application to probing local structure in iodobenzene molecules

    • Authors: T. Teramoto, S. Minemoto, T. Majima, T. Mizuno, J. H. Mun, A. Yagishita, P. Decleva, S. Tsuru
      Abstract: Structural Dynamics, Volume 9, Issue 2, March 2022.
      Ultrafast x-ray photoelectron diffraction (UXPD) for free molecules has a promising potential to probe the local structures of the molecules in an element-specific fashion. Our UXPD scheme consists of three steps: (1) near-infrared laser (NIR) with ns pulse duration aligns sample molecules, (2) ultra-violet laser with fs pulse duration pumps the aligned molecules, and (3) soft x-ray free-electron laser (SXFEL) with fs pulse duration probes the molecules by measuring x-ray photoelectron diffraction (XPD) profiles. Employing steps of (1) and (3), we have measured I 3d XPD profiles from ground state iodobenzene aligned by the NIR laser with the SXFEL. Then, we have intensively calculated I 3d XPD profiles with density functional theory, taking degrees of alignments of the molecules into account, to extract a distance between C and I atoms in iodobenzene from the experimental I 3d XPD profiles. Although we have failed to determine the distance from the comparison between the experimental and theoretical results, we have succeeded in concluding that the degeneracies of the initial state eliminate the sensitivity on molecular structure in the I 3d XPD profiles. Thus, the observation of fine structures in the XPD profiles could be expected, if a nondegenerate molecular orbital is selected for a probe of UXPD. Finally, we have summarized our criteria to perform UXPD successfully: (1) to use SXFEL, (2) to prepare sample molecules with the degree of alignment higher than 0.8, and (3) to select a photoemission process from a nondegenerate inner-shell orbital of sample molecules.
      Citation: Structural Dynamics
      PubDate: 2022-04-27T12:44:23Z
      DOI: 10.1063/4.0000141
       
  • A kiloelectron-volt ultrafast electron micro-diffraction apparatus using
           low emittance semiconductor photocathodes

    • Authors: W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C. Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V. Bazarov, J. M. Maxson
      Abstract: Structural Dynamics, Volume 9, Issue 2, March 2022.
      We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be [math]. To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.
      Citation: Structural Dynamics
      PubDate: 2022-03-18T11:46:23Z
      DOI: 10.1063/4.0000138
       
  • Observation of photo-induced plasmon–phonon coupling in PbTe via
           ultrafast x-ray scattering

    • Authors: M. P. Jiang, S. Fahy, A. Hauber, É. D. Murray, I. Savić, C. Bray, J. N. Clark, T. Henighan, M. Kozina, A. M. Lindenberg, P. Zalden, M. Chollet, J. M. Glownia, M. C. Hoffmann, T. Sato, D. Zhu, O. Delaire, A. F. May, B. C. Sales, R. Merlin, M. Trigo, D. A. Reis
      Abstract: Structural Dynamics, Volume 9, Issue 2, March 2022.
      We report the observation of photo-induced plasmon–phonon coupled modes in the group IV–VI semiconductor PbTe using ultrafast x-ray diffuse scattering at the Linac Coherent Light Source. We measure the near-zone-center excited-state dispersion of the heavily screened longitudinal optical (LO) phonon branch as extracted from differential changes in x-ray diffuse scattering intensity following above bandgap photoexcitation. We suggest that upon photoexcitation, the LO phonon-plasmon coupled (LOPC) modes themselves become coupled to longitudinal acoustic modes that drive electron band shifts via acoustic deformation potentials and possibly to low-energy single-particle excitations within the plasma and that these couplings give rise to displacement-correlations that oscillate in time with a period given effectively by the heavily screened LOPC frequency.
      Citation: Structural Dynamics
      PubDate: 2022-03-14T05:19:28Z
      DOI: 10.1063/4.0000133
       
  • Underdamped longitudinal soft modes in ionic crystallites—lattice and
           charge motions observed by ultrafast x-ray diffraction

    • Authors: Isabel Gonzalez-Vallejo, Azize Koç, Klaus Reimann, Michael Woerner, Thomas Elsaesser
      Abstract: Structural Dynamics, Volume 9, Issue 2, March 2022.
      Soft modes in crystals are lattice vibrations with frequencies that decrease and eventually vanish as the temperature approaches a critical point, e.g., a structural change due to a phase transition. In ionic para- or ferroelectric materials, the frequency decrease is connected with a diverging electric susceptibility and, for infrared active modes, a strong increase in oscillator strength. The traditional picture describes soft modes as overdamped transverse optical phonons of a hybrid vibrational-electronic character. In this context, potassium dihydrogen phosphate (KH2PO4, KDP) has been studied for decades as a prototypical material with, however, inconclusive results regarding the soft modes in its para- and ferroelectric phase. There are conflicting assignments of soft-mode frequencies and damping parameters. We report the first observation of a longitudinal underdamped soft mode in paraelectric KDP. Upon impulsive femtosecond Raman excitation of coherent low-frequency phonons in the electronic ground state of KDP crystallites, transient powder diffraction patterns are recorded with femtosecond hard x-ray pulses. Electron density maps derived from the x-ray data reveal oscillatory charge relocations over interatomic distances, much larger than the sub-picometer nuclear displacements, a direct hallmark of soft-mode behavior. The strongly underdamped character of the soft mode manifests in charge oscillations persisting for more than 10 ps. The soft-mode frequency decreases from 0.55 THz at T = 295 K to 0.39 THz at T = 175 K. An analysis of the Raman excitation conditions in crystallites and the weak damping demonstrate a longitudinal character. Our results extend soft-mode physics well beyond the traditional picture and pave the way for an atomic-level characterization of soft modes.
      Citation: Structural Dynamics
      PubDate: 2022-03-08T05:27:43Z
      DOI: 10.1063/4.0000143
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.235.176.80
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-