Authors:Saman Hosseinpour Abstract: Biointerphases, Volume 17, Issue 3, May 2022. This Tutorial aims to provide a concise yet practical guideline for different scenarios that one may face in a sum frequency generation (SFG) spectroscopy laboratory, especially when it comes to sample alignment. The effort is made to reconstruct the real and often challenging sample alignment conditions for a broad range of liquid or solid samples interfacing solid, liquid, or gas phases, with a pedagogical approach. Both newcomer operators of an SFG setup without a strong experience in nonlinear spectroscopy and the more experienced SFG users can utilize the approaches that are provided in this Tutorial for an easier and more reliable sample alignment in their SFG laboratories. Citation: Biointerphases PubDate: 2022-05-12T11:36:12Z DOI: 10.1116/6.0001851
Authors:Zhan Chen Abstract: Biointerphases, Volume 17, Issue 3, May 2022. This paper summarizes the early research results on studying proteins and peptides at interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG studies in the C—H stretching frequency region to examine the protein side-chain behavior and in the amide I frequency region to investigate the orientation and conformation of interfacial peptides/proteins are presented. The early chiral SFG research and SFG isotope labeling studies on interfacial peptides/proteins are also discussed. These early SFG studies demonstrate the feasibility of using SFG to elucidate interfacial molecular structures of peptides and proteins in situ, which built a foundation for later SFG investigations on peptides and proteins at interfaces. Citation: Biointerphases PubDate: 2022-05-06T11:32:19Z DOI: 10.1116/6.0001859
Authors:Paul M. Dietrich, Marit Kjærvik, Elizabeth A. Willneff, Wolfgang E. S. Unger Abstract: Biointerphases, Volume 17, Issue 3, May 2022. Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. Citation: Biointerphases PubDate: 2022-05-04T12:23:28Z DOI: 10.1116/6.0001812
Authors:Andrew P. Carpenter, Joe E. Baio Abstract: Biointerphases, Volume 17, Issue 3, May 2022. Vibrational sum-frequency generation (VSFG) spectroscopy is a method capable of measuring chemical structure and dynamics within the interfacial region between two bulk phases. At the core of every experimental system is a laser source that influences the experimental capabilities of the VSFG spectrometer. In this article, we discuss the differences between VSFG spectrometers built with picosecond and broadband laser sources as it will impact everything from material costs, experimental build time, experimental capabilities, and more. A focus is placed on the accessibility of the two different SFG systems to newcomers in the SFG field and provides a resource for laboratories considering incorporating VSFG spectroscopy into their research programs. This Tutorial provides a model decision tree to aid newcomers when determining whether the picosecond or femtosecond laser system is sufficient for their research program and navigates through it for a few specific scenarios. Citation: Biointerphases PubDate: 2022-05-04T12:23:25Z DOI: 10.1116/6.0001844
Authors:Jinsheng Hua, Hui Yang, Xiufang Li, Jiahui Xiao, Shunshun Zhou, Renchuan You, Likun Ma Abstract: Biointerphases, Volume 17, Issue 3, May 2022. In situ release of nitric oxide (NO) has been suggested to be a potential functionalization strategy for blood-contacting implants. In this study, the NO generation capability catalyzed by the copper ion-incorporated silk fibroin (SF) films in the presence of S-nitroso-N-acetyl-dl-penicillamine (SNAP) is demonstrated. Cu(II) is effectively bound to the surface of the SF film based on metal–protein coordination. The x-ray photoelectron spectroscopy results indicate that copper ions may exist on the surface of the SF film in the form of Cu(II)/Cu(I) coexistence. The degradation behavior showed that the bound copper ions on the surface of the SF films can maintain a slow release in phosphate-buffered saline (PBS) or collagenase IA solution for 7 days. There was no significant difference in the release of copper ions between PBS degradation and enzyme degradation. The loading of copper ions significantly improved the release of NO from SNAP through catalysis. Based on the biological effects of copper ions and the ability to catalyze the release of NO from S-nitrosothiols, copper ion loading provides an option for the construction of bioactive SF biomaterials. Citation: Biointerphases PubDate: 2022-05-02T12:00:21Z DOI: 10.1116/6.0001690