Publisher: Geological Society of America   (Total: 4 journals)   [Sort by number of followers]

Showing 1 - 4 of 4 Journals sorted alphabetically
Bulletin of the Geological Society of America     Hybrid Journal   (Followers: 34, SJR: 2.329, CiteScore: 4)
Geology     Full-text available via subscription   (Followers: 56, SJR: 3.114, CiteScore: 4)
Geosphere     Open Access   (Followers: 2, SJR: 1.752, CiteScore: 3)
Lithosphere     Open Access   (Followers: 2, SJR: 1.892, CiteScore: 3)
Similar Journals
Journal Cover
Geosphere
Journal Prestige (SJR): 1.752
Citation Impact (citeScore): 3
Number of Followers: 2  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1553-040X - ISSN (Online) 1553-040X
Published by Geological Society of America Homepage  [4 journals]
  • NOTICE OF WITHDRAWAL: Stratigraphy of the Eocene–Oligocene Titus Canyon
           Formation, Death Valley, California, and Eocene extensional tectonism in
           the Basin and Range

    • Authors: Midttun N; Niemi NA, Gallina B.
      Abstract: At the request of the authors, Geosphere withdraws “Stratigraphy of the Eocene–Oligocene Titus Canyon Formation, Death Valley, California, and Eocene extensional tectonism in the Basin and Range,” by Nikolas Midttun, Nathan A. Niemi, and Bianca Gallina (https://doi.org/10.1130/GES02363.1). Permissions issues regarding some of the compiled data require that the authors revise the paper.
      PubDate: Fri, 01 Apr 2022 00:00:00 GMT
       
  • Insights into the geometry and evolution of the southern San Andreas fault
           from geophysical data, southern California

    • Authors: Langenheim VE; Fuis GS.
      Abstract: AbstractTwo new joint gravity-magnetic models in northern Coachella Valley provide additional evidence for a steep northeast dip of the Mission Creek strand of the southern San Andreas fault (southern California, USA). Gravity modeling indicates a steep northeast dip of the Banning fault in the upper 1–2 km in northern Coachella Valley. The Mission Creek strand and its continuation to the southeast (Coachella segment) coincide with the northeastern margin of a Cenozoic basin and are marked by prominent gravity and magnetic gradients that are consistent with these strands of the San Andreas fault having accommodated >160 km of right-lateral and 1–5 km of vertical displacement. These anomalies are best fit by a moderate to steep northeast dip. Such a geometry is further supported by seismicity, reflectivity, geodesy, and boundary-element modeling. We explore the possibility that these fault strands forming the margin of Coachella Valley were originally near vertical and have rotated into their present orientation by underplating of a localized high-velocity, lower-crustal prong within the Peninsular Ranges batholith. Reconstructions of San Andreas fault offset suggest that this crystalline body was translated into the San Gorgonio Pass area at the time of major fault reorganization at 1.1–1.3 Ma.
      PubDate: Thu, 10 Mar 2022 00:00:00 GMT
       
  • Geologic map of central Panamint Range, California, USA

    • Authors: Andrew JE.
      Abstract: AbstractThis detailed geologic map and supplemental digital data set11 examine and demonstrate the complex deformational history and reactivation relationships of the Panamint Range (California, USA), from active transtension of the Walker Lane belt, Miocene extension of the Basin and Range, to multiple Mesozoic events related to subduction, and Neoproterozoic extension. This collection of map data focuses on the geometry, kinematics, and relative timing of deformation to understand the deformation history and effects of structural reactivation. A minor portion of this geologic mapping data was presented in the analysis and figures of Andrew and Walker (2009).The Neogene extension and subsequent dextral transtension deformation has created a complex network of faults via partial reactivation of Mesozoic and Neoproterozoic structures. Structural data show oblique normal slip overprinting earlier normal slip along the western range flank fault of the western Panamint Range. Jurassic and Cretaceous deformation is localized along the western range on the Goldbug fault. The hanging wall of this fault preserves migmatitic fabrics and intense deformation due to Jurassic contraction. The Goldbug fault places Paleoproterozoic to Mesoproterozoic rocks over Neoproterozoic rocks. The Jurassic contraction has top-to-the-northeast relative transport and the more discrete Cretaceous thrust faulting has top-to-the-east transport. A set of Late Cretaceous plutonic rocks and mylonitic gneisses derived from them, occur along the Goldbug fault and demonstrate the reactivated nature of this fault in the Late Cretaceous. New data for the Butte Valley fault show that this fault cuts Late Jurassic plutonic rocks and has normal slip. The Butte Valley fault ends northward at the linked sinistral slip Warm Spring Canyon fault, which was previously interpreted to be an intrusive contact. A previously unrecognized rim syncline structure occurs along the boundary of the Late Jurassic Manly Peak quartz monzonite. Neoproterozoic deformation is difficult to discern due to the overprinting deformations. Numerous Neoproterozoic deformation-related mass wasting deposits can be seen within this formation, including a set of conspicuous allochthonous deposits and clasts of older Beck Spring Dolomite that appear to be frozen in the process of breaking away from intact, normal thickness beds in the Surprise–Happy Canyons divide.This detailed geologic mapping and collection of structural data for the rocks in the central Panamint Range were created using digital in-the-field geographic information systems software running on a field-hardened laptop computer combined with an earlier set of field data that were digitized into the digital georeferenced database. This map is a simplification of detailed geologic mapping data collected at 1:2000–1:6000 scales and reduced to 1:20000 scale. Structural data include kinematic and relative timing of deformation information.
      PubDate: Thu, 10 Mar 2022 00:00:00 GMT
       
  • Geologic map of southern Panamint Valley, southern Panamint Range, and
           central Slate Range, California, USA

    • Authors: Andrew JE.
      Abstract: AbstractThis detailed geologic map and supplemental digital data set11 examine and demonstrate the complex deformational history and reactivation relationships of the southern Panamint Valley area (California, USA), from active transtension of the Walker Lane belt, Miocene extension of the Basin and Range, multiple Mesozoic events related to subduction, and Neoproterozoic extension. This collection of map data focuses on the geometry, kinematics, and relative timing of deformation to understand the deformation history and effects of structural reactivation. Andrew and Walker (2009) used these geologic mapping data to palinspastically restore the Fish Canyon area of the Slate Range to overlapping the western Panamint Range at Goler Wash.Neogene extension and subsequent dextral transtension has created a complex network of faults via partial reactivation of Mesozoic and Neoproterozoic structures and has separated the Slate Range from the Panamint Range. The Neogene fault system changes from south to north from dextral strike-slip along the southern Panamint Valley fault to oblique normal slip along the Emigrant fault at a triple junction with the sinistral-oblique normal Manly Pass fault. The Mesozoic deformation history is different in the two ranges across Panamint Valley. The Slate Range was the hanging wall to Jurassic and Cretaceous contractional deformation; this same deformation in the Panamint Range to the east was localized along the western range flank with the majority of the Panamint Range thus being in the footwall to Mesozoic contraction. The western Panamint Range preserves migmatitic fabrics and deformation due to Jurassic contraction and plutonism. The Goldbug fault, along the western Panamint Range, places Paleoproterozoic to Mesoproterozoic rocks over Neoproterozoic to Cretaceous rocks. Jurassic contraction has top-to-the-northeast relative transport and the more discrete Cretaceous thrust faulting in the Panamint Range has top-to-the-east transport. The Butte Valley fault, previously recognized farther north of the map area in the Panamint Range, cuts Late Jurassic rocks and structures. Neoproterozoic to Cambrian sedimentary rocks with top-to-the-northeast contractional deformation occur as relative down-dropped block exposed east of the Butte Valley fault. The Butte Valley fault continues southward and is then deflected by Late Cretaceous thrust faulting on the Goldbug fault. Neoproterozoic deformation is more difficult to discern but is hypothesized to relate to abundant olistostromes mapped within the Kingston Peak Formation in the Panamint Range (i.e., Prave, 1999).This detailed geologic mapping and collection of structural data for the rocks in the southern Panamint Valley area were created using digital in-the-field geographic information systems software running on a field-hardened laptop computer. This map is a simplification of detailed geologic mapping data collected at 1:6000 scales and reduced to 1:20000 scale. Structural data includes kinematic and relative timing of deformation information.
      PubDate: Thu, 10 Mar 2022 00:00:00 GMT
       
  • Geologic map of Slate Range Crossing area, California, USA

    • Authors: Andrew JE.
      Abstract: AbstractThis detailed geologic map and supplemental digital data set11 examine and demonstrate the complex Neogene–Quaternary deformation in the Slate Range Crossing area (California, USA) of the active dextral transtension of the Death Valley region and Walker Lane belt. This map integrates the late Cenozoic structures and geologic units with the Mesozoic geologic units and deformation as a data set to examine the controls on reactivation of older structures. These geologic data were collected to study pre-, syn-, and post-kinematic rocks to examine the deformation history of the area and to find palinspastic markers to examine the late Cenozoic fault displacement and displacement history across Panamint Valley to the east, as reported in Andrew and Walker (2009).The study focused on defining the Miocene and Pliocene rocks and deposits and examining lateral changes and depositional sources of clasts. There are two different volcanic-sedimentary sequences in this area. A Miocene section contains mafic to felsic volcanic units, numerous debris-flow to laharic deposits, and several associated conglomerates and breccias containing exotic clasts. The exotic clasts are matched to rocks in the Panamint Range on the east side of Panamint Valley as reported in Andrew and Walker (2009) as displacement vectors for palinspastic reconstructions. These Miocene strata ubiquitously dip eastward 20–40º. A younger volcanic-sedimentary sequence contains relatively thin mafic lava flows and associated locally derived, coarse-grained mass wasting deposits. These younger basaltic lavas generally have gentle dipping lava flow features and foliation. Numerous faults cut the different age deposits allowing a chronology of Neogene to Quaternary faulting; additionally, there are numerous fabrics associated with Jurassic contraction and Cretaceous(') dextral shear. The area near Slate Range Crossing has a conspicuous zone of earthquake foci; this study found that some of this seismic activity coincides with a zone of southwest-striking, moderately dipping to the north, sinistral-oblique normal faults, which cut across the northernmost Slate Range. These faults form a structural boundary between the Argus and Slate Ranges and link the fault networks in Panamint Valley with those in Searles Valley. This mapping and structural data demonstrate the two-stage Neogene fault history of the Walker Lane belt deformation in this area and show that regional tilting of rocks occurred after ca. 13 Ma and before ca. 4 Ma; this eastward down-tilting appears to be a discrete event and may mark the change from extension to transtension.This detailed geologic mapping and collection of structural data for the rocks in the eastern Argus and northern Slate Ranges and Panamint Valley were created using digital in-the-field geographic information systems software running on a field-hardened laptop computer. This map is a simplification of detailed geologic mapping data collected at 1:6000 scale and reduced to 1:20000 scale. Structural data includes kinematic and relative timing of deformation information.
      PubDate: Thu, 10 Mar 2022 00:00:00 GMT
       
  • Spatial skill predicts success on sequence stratigraphic interpretation

    • Authors: Kreager BZ; LaDue ND, Shipley TF, et al.
      Abstract: AbstractSequence stratigraphic interpretation and three-dimensional spatial and spatiotemporal skills are considered important for the petroleum industry. However, little is known about the relationship between the two. This study begins to fill this gap by testing whether spatial skills predict success on a sequence stratigraphic interpretation task. Students in this study (N = 78) were enrolled in undergraduate or graduate stratigraphy-focused courses at three U.S. state universities. Students completed (1) a sequence stratigraphic interpretation task with a sequence stratigraphic diagram and Wheeler diagram and (2) two spatial skills tests. Findings of simple linear regressions show that both disembedding (extracting or finding a pattern among other features, which is typically assessed by the hidden-figures test) and mental folding and unfolding (as assessed by the surface development test) are predictive of student success on the full sequence stratigraphic interpretation task. A nested regression, entering mental folding as the initial variable and disembedding as the secondary variable, showed that mental folding and unfolding accounted for almost all of the variance accounted for by disembedding in the simple regression. This may reflect the need to employ disembedding for the test of mental folding. Because the test of disembedding and the test of mental folding and unfolding were correlated, the distinct role of disembedding in stratigraphy remains unclear. However, the results clearly show that mental folding and unfolding is related to student success in sequence stratigraphic interpretation. Future studies should characterize how students utilize these skills, try to determine the causal direction of this effect, and identify good practices for supporting students in the classroom.
      PubDate: Fri, 25 Feb 2022 00:00:00 GMT
       
  • A robust age model for the Cryogenian Pocatello Formation of southeastern
           Idaho (northwestern USA) from tandem in situ and isotope dilution U-Pb
           dating of volcanic tuffs and epiclastic detrital zircons

    • Authors: Isakson VH; Schmitz MD, Dehler CM, et al.
      Abstract: AbstractTandem in situ and isotope dilution U-Pb analysis of zircons from pyroclastic volcanic rocks and both glacial and non-glacial sedimentary strata of the Pocatello Formation (Idaho, northwestern USA) provides new age constraints on Cryogenian glaciation in the North American Cordillera. Two dacitic tuffs sampled within glacigenic strata of the lower diamictite interval of the Scout Mountain Member yield high-precision chemical abrasion isotope dilution U-Pb zircon eruption and depositional ages of 696.43 ± 0.21 and 695.17 ± 0.20 Ma. When supplemented by a new high-precision detrital zircon maximum depositional age of ≤670 Ma for shoreface and offshore sandstones unconformably overlying the lower diamictite, these data are consistent with correlation of the lower diamictite to the early Cryogenian (ca. 717–660 Ma) Sturtian glaciation. These 670–675 Ma zircons persist in beds above the upper diamictite and cap dolostone units, up to and including a purported “reworked fallout tuff,” which we instead conclude provides only a maximum depositional age of ≤673 Ma from epiclastic volcanic detritus. Rare detrital zircons as young as 658 Ma provide a maximum depositional age for the upper diamictite and overlying cap dolostone units. This new geochronological framework supports litho- and chemostratigraphic correlations of the lower and upper diamictite intervals of the Scout Mountain Member of the Pocatello Formation with the Sturtian (716–660 Ma) and Marinoan (≤650–635 Ma) low-latitude glaciations, respectively. The Pocatello Formation thus contains a more complete record of Cryogenian glaciations than previously postulated.
      PubDate: Fri, 18 Feb 2022 00:00:00 GMT
       
  • ERRATUM: Jurassic–Cenozoic tectonics of the Pequop Mountains, NE Nevada,
           in the North American Cordillera hinterland

    • Authors: Zuza AV; Henry CD, Dee S, et al.
      Abstract: ORIGINAL ARTICLE: 2021, v. 17, no. 6, p. 2078–2122, https://doi.org/10.1130/GES02307.1. First published 27 October 2021.
      PubDate: Fri, 18 Feb 2022 00:00:00 GMT
       
  • Geologic and geomorphic evidence for multi-phase history of strands of the
           San Andreas fault through the San Gorgonio Pass structural knot, southern
           California

    • Authors: Kendrick KJ; Matti JC, Barth NC.
      Abstract: AbstractThe San Gorgonio Pass region of southern California is a locus of extensive Quaternary deformation within a multi-strand section of the San Andreas fault zone. The geomorphology of the San Gorgonio Pass region reflects the complicated history of geologic events in the formation of this structurally complex region. We define fault-bounded blocks in San Gorgonio Pass and focus on two that are characterized by extensive crystalline bedrock outcrops with similar bedrock lithologies. These two blocks are separated by the San Bernardino strand of the San Andreas fault. Morphometric variables, including local relief, slope, slope distribution, and surface roughness, consistently demonstrate distinctions between the bedrock upland regions of the two blocks. Geologic observations of the region highlight differences in Quaternary units within the two blocks, reflective of the differing surficial processes active in each block. Within the Kitching Peak block, the morphology highlights a lineament that we informally name the Lion Canyon lineament. This boundary more clearly differentiates the two regions, as compared to the mapped San Bernardino strand, and may represent the previously active strand or bounding structure in this section. The distinction in morphology and surficial processes leads to our interpretation that the Kitching Peak and Pisgah Peak blocks have experienced different uplift histories. This further leads to the conclusion that the San Bernardino strand, broadly defined, has been integrated, at some point in the past, with the Banning strand, allowing for through-going rupture along the fault system. This connectivity may have occurred along the Burro Flats section of the San Bernardino strand or the Lion Canyon lineament. The fault connection along the mapped trace of the San Bernardino strand is not currently evident at the surface, however, suggesting that the integration has been disrupted. We propose this is due to intervals of N-S compression in the region, manifest as slip along the San Gorgonio Pass fault zone and other regional faults. We present evidence for lateral displacement along the San Bernardino and Banning strands of the San Andreas fault, discuss the implications of these displacements, and propose a sequence of fault activity, including multiple phases of activity along the San Bernardino and Banning strand pathway to account for the structural complexity and lack of surficial fault continuity.
      PubDate: Fri, 18 Feb 2022 00:00:00 GMT
       
  • Detrital zircon provenance of the Cretaceous–Neogene East Coast Basin
           reveals changing tectonic conditions and drainage reorganization along the
           Pacific margin of Zealandia

    • Authors: Gooley JT; Nieminski NM.
      Abstract: AbstractThe Upper Cretaceous–Pliocene strata of New Zealand record ~100 m.y. of Zealandia's evolution, including development of the Hikurangi convergent margin and Alpine transform plate boundary. A comprehensive, new detrital zircon U-Pb data set (8315 analyses from 61 samples) was generated along a ~700 km transect of the East Coast Basin of New Zealand. Age distributions were analyzed and interpreted in terms of published data available for Cambrian–Cretaceous igneous and metasedimentary source terranes using a Monte Carlo mixture modeling approach. Results indicate a widespread Early Cretaceous transition in sediment source from the Gondwana interior to the Median Batholith magmatic arc prior to Late Cretaceous rifting from Antarctica. Submergence of Zealandia during a Late Cretaceous–Paleogene drift phase led to major drainage reorganization and the influx of Eastern Province sediment to the East Coast Basin. A long-lived sediment conduit that transported extraregional Western Province detritus to the south-central East Coast Basin may have developed along a structural precursor to the Alpine Fault. Marked Neogene increase of Upper Jurassic–Lower Cretaceous Torlesse Composite Terrane sediment to the central East Coast Basin resulted from exhumation of the Axial Ranges, convergence along the Hikurangi subduction margin, and concurrent development of the Alpine Fault. Concurrent influx of contemporaneous Neogene zircon in the northern East Coast Basin indicated the onset of subduction-related volcanism of the Northland–Coromandel Volcanic Arc. Middle Miocene–Pliocene exhumation and dextral translation of the Nelson region along the Alpine Fault resulted in the eastward routing of Western Province sediment to the central East Coast Basin. Finally, topography developed across the plate boundary and ultimately partitioned continental drainage of Zealandia, such that sediment from the Murihiku, Caples, and Rakaia Terranes in the Otago region was routed to the southern extent of the East Coast Basin. These results illuminate the evolution of the Zealandia continental drainage divide in response to the initiation of the Pacific-Australian plate boundary and demonstrate the power of mixture modeling and large data sets for deciphering sediment routing in dynamic tectonic environments.
      PubDate: Thu, 17 Feb 2022 00:00:00 GMT
       
  • The “Nazas Arc” is a continental rift province: Implications for
           Mesozoic tectonic reconstructions of the southwest Cordillera, U.S. and
           Mexico

    • Authors: Busby CJ; Centeno-García EE.
      Abstract: AbstractWe reject the notion of a Jurassic continental arc in eastern Mexico, termed the “Nazas arc,” on geologic grounds. Instead, we propose that the Jurassic continental arc of the SW Cordilleran U.S. and northern Sonora, Mexico, passed southward into the oceanic realm and is represented by Jurassic arc volcanic and plutonic rocks that fringed the Mexican paleo-Pacific margin, which are currently found in the western Peninsular Ranges of southern California, USA, and Baja California, the Vizcaino Peninsula of Baja California, and western mainland Mexico. To show this, we present a summary of the geologic features of a continental arc, using the geology of the southern end of the Jurassic continental arc, in southern Arizona and northern Sonora. These features include multi-kilometer–thick sections of volcanic rock; large volcanic centers, including silicic calderas; major eruptive units that can be correlated for distances of 100 km or more; abundant, large plutonic suites; and continuity of these features for distances of hundreds of kilometers along the length of the continental arc. Then we show that the “Nazas arc” consists of scattered, small continental rift basins with thin (meters to tens of meters thick) volcanic sections at the base of clastic sections that are hundreds of meters thick. Plutonic rocks are entirely absent from the “Nazas arc,” despite the fact that post-Jurassic tectonic events should have exposed them if they existed. This paper also presents a tabulation of all published U-Pb zircon dates in the Jurassic continental arc of southern Arizona, USA, and northern Sonora (Table 1A), and in the “Nazas arc” of eastern Mexico (Table 1B), with ages, methods, the rock type dated, and notes on geologic relations. We use this to detail the abundance of thick, laterally extensive volcanic sections and large plutonic suites in a continental arc (the Jurassic arc of southern Arizona–northern Sonora), which contrasts sharply with the “Nazas arc.”The term “Nazas arc” has been in widespread usage for volcanic rocks in eastern Mexico for decades in many dozens of papers, and it is portrayed as a 2000-km-long, 250-km-wide belt that extends from Sonora through eastern Mexico to Chiapas. It has been misunderstood to form a subduction-related silicic large igneous province (SLIP), and it has been proposed that the Gulf of Mexico formed as a backarc basin behind the “Nazas arc.” The “Nazas arc” model also requires an east-dipping subduction zone under Mexico, and a separate west-dipping subduction zone under the oceanic arc rocks of western Mexico, which those models portray as an exotic arc, despite the presence of abundant detrital zircon from the Mexican margin. We urge workers to abandon the term “Nazas arc” and replace it with “Nazas rift province,” which represents continental rift basins formed during the breakup of Pangea.
      PubDate: Thu, 17 Feb 2022 00:00:00 GMT
       
  • Impact of bending-related faulting and oceanic-plate topography on slab
           hydration and intermediate-depth seismicity

    • Authors: Geersen J; Sippl C, Harmon N.
      Abstract: AbstractIt is commonly assumed that intermediate-depth seismicity is in some way linked to dehydration reactions inside subducting oceanic plates. Although there is growing evidence that the hydration state of an oceanic plate is controlled by its structure and degree of faulting, we do not have a quantitative understanding of this relationship. Double seismic zones offer the possibility of investigating changes in oceanic-plate hydration not only along strike but also with depth beneath the slab surface. To quantify the impact of oceanic-plate structure and faulting on slab hydration and intermediate-depth seismicity, with a focus on the genesis of double seismic zones, we correlate high-resolution earthquake catalogs and seafloor maps of ship-based bathymetry for the northern Chilean and Japan Trench subduction zones. The correlations show only a weak influence of oceanic-plate structure and faulting on seismicity on the upper plane of the double seismic zone, which may imply that hydration is limited by slow reaction kinetics at low temperatures 5–7 km below the seafloor and by the finite amount of exposed wall rock in the outer-rise region. These factors seem to limit hydration even if abundant water is available. Seismicity in the lower plane is, in contrast, substantially enhanced where deformation of the oceanic plate is high and distributed across intersecting faults. This likely leads to an increase in the volume of damaged wall rock around the faults, thereby promoting the circulation of water to mantle depths where serpentinization is faster due to elevated temperatures. Increased lower-plane seismicity around subducting oceanic features such as seamounts or fracture zones may also be caused by enhanced faulting around these features. Our results provide a possible explanation for the globally observed presence of rather homogeneous upper-plane seismicity in double seismic zones as well as for the commonly patchy and inhomogeneous distribution of lower-plane seismicity.
      PubDate: Thu, 17 Feb 2022 00:00:00 GMT
       
  • A new geological map of the Lau Basin (southwestern Pacific Ocean) reveals
           crustal growth processes in arc-backarc systems

    • Authors: Stewart MS; Hannington MD, Emberley J, et al.
      Abstract: AbstractA 1:1,000,000-scale lithostratigraphic assemblage map of the Lau Basin (southwestern Pacific Ocean) has been created using remote predictive mapping (RPM) techniques developed by geological surveys on land. Formation-level geological units were identified in training sets at scales of 1:100,000–1:200,000 in different parts of the basin and then extrapolated to the areas where geological data are sparse. The final compilation is presented together with a quantitative analysis of assemblage-level crustal growth based on area-age relationships of the assigned units. The data sets used to develop mapping criteria and an internally consistent legend for the compilation included high-resolution ship-based multibeam, satellite- and ship-based gravity, magnetics, seafloor imaging, and sampling data. The correlation of units was informed by published geochronological information and kinematic models of basin opening. The map covers >1,000,000 km2 of the Lau-Tonga arc-backarc system, subdivided into nine assemblage types: forearc crust (9% by area), crust of the active volcanic arc (7%), backarc rifts and spreading centers (20%), transitional arc-backarc crust (13%), relict arc crust (38%), relict backarc crust (8%), and undivided arc-backarc assemblages (<5%), plus oceanic assemblages, intraplate volcanoes, and carbonate platforms. Major differences in the proportions of assemblage types compared to other intraoceanic subduction systems (e.g., Mariana backarc, North Fiji Basin) underscore the complex geological makeup of the Lau Basin. Backarc crust formed and is forming simultaneously at 12 different locations in the basin in response to widely distributed extension, and this is considered to be a dominant pattern of crustal accretion in large arc-backarc systems. Accelerated basin opening and a microplate breakout north of the Peggy Ridge has been accommodated by seven different spreading centers. The result is an intricate mosaic of small intact assemblages in the north of the basin, compared to fewer and larger assemblages in the south. Although the oldest rocks are Eocene (~40 m.y. old basement of the Lau and Tonga Ridges), half of the backarc crust in the map area formed within the last 3 m.y. and therefore represents some of the fastest growing crust on Earth, associated with prolific magmatic and hydrothermal activity. These observations provide important clues to the geological evolution and makeup of ancient backarc basins and to processes of crustal growth that ultimately lead to the emergence of continents.
      PubDate: Fri, 11 Feb 2022 00:00:00 GMT
       
  • The formation of high-Sr/Y plutons in cordilleran-arc crust by crystal
           accumulation and melt loss

    • Authors: Brackman AJ; Schwartz JJ.
      Abstract: AbstractBulk-rock data are commonly used in geochemical studies as a proxy for melt compositions in order to understand the evolution of crustal melts. However, processes of crystal accumulation and melt migration out of deep-crustal, crystal-rich mush zones to shallower storage regions raise questions about how faithfully bulk-rock compositions in plutons approximate melt compositions. This problem is particularly acute in the lower crust of arcs, where melt reservoirs are subject to periodic melt extraction that leaves behind a cumulate residue. Here, we examine bulk-rock data from the perspective of high-Sr/Y plutonic rocks in the lower crust of a well-exposed Early Cretaceous cordilleran-arc system in Fiordland, New Zealand. We test the validity of using high-Sr/Y bulk-rock compositions as proxies for melts by comparing bulk-rock compositions to melts modeled from >100 major- and trace-element analyses of 23 magmatic clinopyroxene grains from the same samples. The sampling locations of the igneous clinopyroxenes and encompassing bulk rocks are distributed across ~550 km2 of exhumed lower crust and are representative of Mesozoic lower-crustal arc rocks in the Median batholith.We confirm that bulk-rock data have characteristics of high-Sr/Y plutons (Sr/Y >50, Na2O >3.5 wt%, Sr >1000 ppm, and Y <20 ppm), features that have been previously interpreted to indicate the presence of garnet as a residual or fractionating phase. In contrast to bulk rocks, igneous clinopyroxenes have low Sr (<100 ppm), high Y (25–100 ppm), and low molar Mg# [100 × Mg/(Mg + Fe)] values (60–70), which are consistent with derivation from fractionated, low-Sr/Y melts. Chondrite-normalized rare-earth-element patterns and Sm/Yb values in clinopyroxenes also show little to no evidence for involvement of garnet in the source or in differentiation processes. Fe-Mg partitioning relationships indicate that clinopyroxenes are not in equilibrium with their encompassing bulk rocks but could have been in equilibrium with melt compositions determined from chemometry of coexisting igneous hornblendes. Moho-depth calculations based on bulk-rock Sr/Y values also yield Moho depths (average = 69 km) that are inconsistent with Moho depths based on bulk-rock Ce/Y, contact aureole studies, Al-in-hornblende crystallization pressures, and our modeled clinopyroxene crystallization pressures. These data indicate that most Mesozoic high-Sr/Y bulk rocks in the lower crust of Fiordland are cumulates formed by plagioclase + amphibole + clinopyroxene accumulation and interstitial melt loss from crystal-rich mush zones. Our data do not support widespread fractionation of igneous garnet nor partial melting of a garnet-bearing source in the petrogenesis of these melts. We speculate that melt extraction and the production of voluminous cumulates in the lower crust were aided by unusually high heat flow and high magma addition rates associated with an Early Cretaceous arc flareup. We conclude that bulk-rock compositions are poor proxies for melt compositions in the lower crust of the Median batholith, and geochemical modeling of these high-Sr/Y bulk rocks would overemphasize the role of garnet in their petrogenesis.
      PubDate: Fri, 11 Feb 2022 00:00:00 GMT
       
  • Linking exhumation, paleo-relief, and rift formation to magmatic processes
           in the western Snake River Plain, Idaho, using apatite (U-Th)/He
           thermochronology

    • Authors: Wetzel KF; Stanley JR.
      Abstract: AbstractThe western Snake River Plain (WSRP) in southwest Idaho has been characterized as an intracontinental rift basin but differs markedly in topography and style from other Cordilleran extensional structures and structurally from the down-warped lava plain of the eastern Snake River Plain. To investigate mechanisms driving extension and topographic evolution, we sampled granitoid bedrock from Cretaceous and Eocene-aged plutons from the mountainous flanks of the WSRP to detail their exhumation history with apatite (U-Th)/He (AHe) thermochronometry. AHe cooling dates from seventeen samples range from 7.9 ± 1.4 Ma to 55 ± 10 Ma. Most cooling dates from Cretaceous plutons adjacent to the WSRP are Eocene, while Eocene intrusions from within the Middle Fork Boise River canyon ~35 km NE of the WSRP yield Miocene cooling dates. The AHe dates provide evidence of exhumation of the Idaho batholith during the Eocene, supporting a high relief landscape at that time, followed by decreasing relief. The Miocene AHe dates show rapid cooling along the Middle Fork Boise River that we take to indicate focused river incision due to base level fall in the WSRP. Eocene AHe dates limit magnitudes of exhumation and extension on the flanks of the WSRP during Miocene rift formation. This suggests extension was accommodated by magmatic intrusions and intrabasin faults rather than basin-bounding faults. We favor a model where WSRP extension was related to Columbia River Flood Basalt eruption and enhanced by later eruption of the Bruneau-Jarbidge and Twin Falls volcanic fields, explaining the apparent difference with other Cordilleran extensional structures.
      PubDate: Fri, 11 Feb 2022 00:00:00 GMT
       
  • Numerical modeling of subduction: State of the art and future directions

    • Authors: Gerya T.
      Abstract: AbstractDuring the past five decades, numerical modeling of subduction, one of the most challenging and captivating geodynamic processes, remained in the core of geodynamic research. Remarkable progress has been made in terms of both in-depth understanding of different aspects of subduction dynamics and deciphering the diverse and ever-growing array of subduction zone observations. However, numerous key questions concerning subduction remain unanswered defining the frontier of modern Earth Science research. This review of the past decade comprises numerical modeling studies focused on 12 key open topics: Subduction initiationSubduction terminationSlab deformation, dynamics, and evolution in the mantle4D dynamics of subduction zonesThermal regimes and pressure-temperature (P-T) paths of subducted rocksFluid and melt processes in subduction zonesGeochemical transport, magmatism, and crustal growthTopography and landscape evolutionSubduction-induced seismicityPrecambrian subduction and plate tectonicsExtra-terrestrial subductionInfluence of plate tectonics for life evolution.Future progress will require conceptual and technical progress in subduction modeling as well as crucial inputs from other disciplines (rheology, phase petrology, seismic tomography, geochemistry, numerical theory, geomorphology, ecology, planetology, astronomy, etc.). As in the past, the multi-physics character of subduction-related processes ensures that numerical modeling will remain one of the key quantitative tools for integration of natural observations, developing and testing new hypotheses, and developing an in-depth understanding of subduction. The review concludes with summarizing key results and outlining 12 future directions in subduction and plate tectonics modeling that will target unresolved issues discussed in the review.
      PubDate: Wed, 09 Feb 2022 00:00:00 GMT
       
  • Latest Triassic–Early Jurassic Stikine–Yukon-Tanana terrane collision
           and the onset of accretion in the Canadian Cordillera: Insights from
           Hazelton Group detrital zircon provenance and arc–back-arc configuration
           

    • Authors: Nelson JL; van Straaten B, Friedman R.
      Abstract: AbstractThe Hazelton Group is a Rhaetian–Bajocian (uppermost Triassic–Middle Jurassic) volcano-sedimentary sequence that represents both the last pre-accretionary arc volcanic cycle of Stikinia and its early synaccretionary aftermath. Hazelton magmatism of central Stikinia succeeded the Late Triassic (mainly Carnian–Norian) Stuhini arc, which ceased activity as a result of end-on collision with the pericratonic Yukon-Tanana terrane. The Hazelton volcanic belt lies to the south along strike with the coeval Whitehorse trough, the synorogenic clastic basin that developed on top of the Stikinia–Yukon-Tanana collision zone. Whereas the sources of voluminous clastic sediments in the Whitehorse trough were its rapidly exhuming shoulders, the thin clastic intervals in the Hazelton Group in northwestern British Columbia were derived from local to subregional block uplifts that supplied mainly ca. 230–215 Ma zircons eroded from the plutonic roots of the Stuhini arc. Lesser components include late Paleozoic (ca. 350–330 Ma) zircons from Stikinia's basement and penecontemporaneous (ca. 205–172 Ma) zircons from Hazelton volcanic/subvolcanic sources. Reexamination of the four main volcanic fields that make up the lower Hazelton Group suggests that the main Hazelton volcanic belt formed a southward-convex magmatic arc from eastern Stikinia across the Skeena arch, including the Toodoggone and Telkwa belts, with the Spatsizi and Stewart-Iskut regions of northwestern British Columbia in its back-arc. The Whitehorse trough and Hazelton belt represent a collision zone to active arc pair. Southward advance of the arc and counterclockwise rotation of the Stikinia microplate contributed to closure against the Quesnellia arc and assembly of the inner Canadian Cordilleran terrane collage.
      PubDate: Tue, 08 Feb 2022 00:00:00 GMT
       
  • Neogene sedimentary record of the evolution of a translated strike-slip
           basin along the Denali fault system: Implications for timing of
           displacement, composite basin development, and regional tectonics of
           southern Alaska

    • Authors: Allen WK; Ridgway KD, Benowitz JA, et al.
      Abstract: AbstractAnalysis of the late Miocene to Holocene McCallum sedimentary basin, located along the south side of the eastern Denali fault system, provides a better understanding of strike-slip basin evolution, timing of displacement on the Denali fault, and tectonics of the southern Alaska convergent margin. Analysis of the McCallum basin utilizing measured stratigraphic sections, lithofacies analyses, and 40Ar/39Ar tephra ages documented a 564-m-thick, two-member stratigraphy. Fine-grained, lacustrine-dominated environments characterized deposition of the lower member, and coarse-grained, stream-dominated alluvial-fan environments characterized deposition of the upper member. The 40Ar/39Ar dating of tephras indicated that the lower member was deposited from 6.1 to 5.0 Ma, and the upper member was deposited from 5.0 to 3.8 Ma. Our stratigraphic analysis of the McCallum basin illuminates the development of a composite strike-slip basin, with the deposition of the lower member occurring along a transtensional fault section, and deposition of the upper member occurring along a transpressional fault section. This change in depositional and tectonic settings is interpreted to reflect ~79–90 km of transport of the basin along the Denali fault system based on Pleistocene–Holocene slip rates. Previous studies of the timing of Cenozoic displacement on the Denali fault system utilizing sedimentary records emphasized a Paleogene component; our findings, however, also require a significant Neogene component. Neogene strike-slip displacement and basin development along the Denali fault system were broadly coeval with development of high topography and related clastic wedges across southern Alaska in response to flat slab subduction of the Yakutat microplate.
      PubDate: Tue, 08 Feb 2022 00:00:00 GMT
       
  • Open AR-Sandbox: A haptic interface for geoscience education and outreach

    • Authors: Wellmann F; Virgo S, Escallon D, et al.
      Abstract: AbstractVirtual reality concepts have been widely adapted to teach geoscientific content, most notably in virtual field trips—with increased developments due to recent travel restrictions and challenges of field access. On the spectrum between real and fully virtual environments are also combinations of digital and real content in mixed-reality environments. In this category, augmented-reality (AR) sandboxes have been used as a valuable tool for science outreach and teaching due to their intuitive and haptic interaction-enhancing operation. Most of the common AR-sandboxes are limited to the visualization of topography with contour lines and colors, as well as water simulations on the digital terrain surface. We show here how we can get beyond this limitation, through an open-source implementation of an AR-sandbox system with a versatile interface written in the free and cross-platform programming language Python. This implementation allows for creative and novel applications in geosciences education and outreach in general. With a link to a 3-D geomodelling system, we show how we can display geologic subsurface information such as the outcropping lithology, creating an interactive geological map for structural geology classes. The relations of subsurface structures, topography, and outcrop can be explored in a playful and comprehensible way. Additional examples include the visualizations of geophysical fields and the propagation of seismic waves, as well as simulations of Earth surface processes. We further extended the functionality with ArUco-marker detection to enable more precise and flexible interaction with the projected content. In combination, with these developments, we aim to make AR-sandbox systems, with the additional dimension of haptic interactions, accessible to a wider range of geoscientific applications for education and outreach.
      PubDate: Tue, 08 Feb 2022 00:00:00 GMT
       
  • The Cenozoic evolution of the Intrarif (Rif, Morocco)

    • Authors: Martín-Martín M; Guerrera F, Maaté A, et al.
      Abstract: AbstractThis paper provides an understanding of the sedimentary-tectonic evolution of the Cenozoic strata of the El Habt and Ouezzane Tectonic Units (Intrarif, External Rif) in Morocco. New data provide information about the depositional architecture and enable a correlation of the evolution of the External Rif in Morocco with that of the Betic Cordillera in Spain and the Tunisian Tell, which provides new insights for hydrocarbon exploration in the region regarding possible source, reservoir, and seal rocks. The reconstructed Cenozoic succession was bio-chronologically defined, and the major unconformities and stratigraphic gaps were identified. The presence of these unconformities allowed three main stratigraphic sequences to be defined by age: Danian p.p., early Ypresian–early Bartonian p.p., and the early Rupelian–early Serravallian p.p. Three secondary stratigraphic sequences in the former upper main sequence were also defined by age: early Rupelian–late Chattian p.p., Burdigalianp.p., and the Langhian–Serravallian p.p. The depositional setting evolved from deep basin during the Late Cretaceous–Paleocene to external platform-slope during the Eocene–Miocene. The Cenozoic sandstones contain metamorphic and sedimentary rock fragments derived from a recycled orogen source area. The clay mineralogy in the Cenozoic strata consists of associations of Ill+(I–S) ± Sme, Ill+(I–S) ± Sme+Kln and Ill+(I–S) ± Sme+Kln+Chl. These associations indicate an initial unroofing in the Paleogene period, then in the Cretaceous period, and finally in the Late Jurassic period during the Eocene–Oligocene. This detritus was followed by variable amounts of a sedimentary mix of Paleogene to Late Jurassic terrains due to several phases of erosion and deposition partly related to syn-sedimentary tectonics during the Miocene. Equivalent features (similar types of sediments, tectofacies, gaps, and unroofing) were also recognized along the Betic Cordillera in Spain and Maghrebian Chain (Morocco and Tunisia) and interpreted as related to a pre-nappe tectonic activity of soft basement folding, which occurred during the Paleogene after the generalized tectonic inversion (from extension to compression) occurred in the Late Cretaceous. The Upper Cretaceous is considered to be the hydrocarbon source rock, while the fractured Eocene and the porous Oligo-Miocene suites are proposed as possible hydrocarbon reservoirs. The Cenozoic stratigraphic architecture and the nappe structure of the region could provide the necessary trap structures.
      PubDate: Tue, 08 Feb 2022 00:00:00 GMT
       
  • Quantitative mapping of dolomitization using close-range hyperspectral
           imaging: Kimmeridgian carbonate ramp, Alacón, NE Spain

    • Authors: Kurz TH; Miguel G, Dubucq D, et al.
      Abstract: AbstractGeological models from outcrop analogues are often utilized as a guide, or soft constraint, for distributing reservoir properties in subsurface models. In carbonate outcrops, combined sequence stratigraphic, sedimentological, and petrographic studies constrain the heterogeneity of geobodies and diagenetic processes, including dolomitization, at multiple scales. High-resolution digital outcrop modeling further aids geometric mapping, geobody definition, and statistical analysis, though its usefulness for detailed mineralogical and lithological mapping is limited. Hyperspectral imaging offers enhanced spectral resolution for mapping subtle mineralogical differences. In both outcrops and subsurface, differences in carbonate composition can provide key information for distributing porosity and permeability, yet this mapping is highly challenging in field studies due to access difficulties, visible material differences, and sampling resolution. Spectral analysis of limestone–dolomite ratios conducted in laboratory studies indicates theoretical measures for quantitative identification and mapping of dolomite degrees within carbonate rocks. In this study, close-range hyperspectral imaging is applied to outcrops of the Alacón Member, Barranco del Mortero, northeastern Spain, to identify exposed limestone–dolomite geobodies and to quantify the degree of dolomitization across outcrop faces. Hyperspectral imaging is supplemented with photogrammetric outcrop modeling, field spectroscopy, and laboratory sample analysis for empirical validation and uncertainty analysis. Hyperspectral mapping shows that earlier fieldwork utilizing visual inspection of difficult to access outcrop surfaces had overestimated the amount of dolomite in the outcrop. Results indicate that hyperspectral imaging identified dolomite bodies more accurately and reliably than conventional field methods and facilitates the mapping of dolomite contribution in areas modified by dedolomitization, where dolomite content changes by more than ~20%.
      PubDate: Fri, 04 Feb 2022 00:00:00 GMT
       
  • Differences between soil and air temperatures: Implications for geological
           reconstructions of past climate

    • Authors: Molnar P.
      Abstract: AbstractAmong quantities of interest in paleoclimate, the mean annual air temperature, Ta, directly over the surface looms prominently. Most geologic estimates of past temperatures from continental regions, however, quantify temperatures of the soil or other material below the surface, Ts, and in general Ta < Ts. Both theory and data from the FLUXNET2015 data set of surface energy balance indicate systematic dependences of temperature differences ΔT = Ts − Ta and also of Bowen ratios—ratios of sensible to latent heat fluxes from surface to the atmosphere—on the nature of the land-surface cover. In cold regions, with mean annual temperatures ≲5 °C, latent heat flux tends to be small, and values of ΔT can be large, 3–5 °C or larger. Over wet surfaces, latent heat fluxes dominate sensible heat fluxes, and values of both ΔT and Bowen ratios commonly are small. By contrast, over arid surfaces that provide only limited moisture to the overlying atmosphere, the opposite holds. Both theory and observation suggest the following, albeit approximate, mean annual values of ΔT: for wetlands, 1 °C; forests, 1 ± 1 °C; shrublands, 3–4 °C; savannas, 3.5 °C < ΔT < 5.5 °C; grasslands, 1 °C where wet to 3 °C where arid; and deserts, 4–6 °C. As geological tools for inferring past land-surface conditions improve, these approximate values of ΔT will allow geologic estimates of past mean annual surface temperatures, Ts, to be translated into estimates of past mean annual air temperatures, Ta.
      PubDate: Fri, 04 Feb 2022 00:00:00 GMT
       
  • Eocene dike orientations across the Washington Cascades in response to a
           major strike-slip faulting episode and ridge-trench interaction

    • Authors: Miller RB; Bryant KI, Doran B, et al.
      Abstract: AbstractThe northern Cascade Mountains in Washington (USA) preserve an exceptional shallow to mid-crustal record of Eocene transtension marked by dextral strike-slip faulting, intrusion of dike swarms and plutons, rapid non-marine sedimentation, and ductile flow and rapid cooling in parts of the North Cascades crystalline core. Transtension occurred during ridge-trench interaction with the formation of a slab window, and slab rollback and break-off occurred shortly after collision of the Siletzia oceanic plateau at ca. 50 Ma. Dike swarms intruded a ≥1250 km2 region between ca. 49.3 Ma and 44.9 Ma, and orientations of more than 1500 measured dikes coupled with geochronologic data provide important snapshots of the regional strain field. The mafic Teanaway dikes are the southernmost and most voluminous of the swarms. They strike NE (mean = 036°) and average ~15 m in thickness. To the north, rhyolitic to basaltic dikes overlap spatially with 49.3–46.5 Ma, mainly granodioritic plutons, but they typically predate the nearby plutons by ca. 500 k.y. The average orientations of five of the six dike domains range from 010° to 058°; W-NW–to NW–striking dikes characterize one domain and are found in lesser amounts in a few other domains. Overall, the mean strike for all Eocene dikes is 035°, and the average extension direction (305°–125°) is oblique to the strike (~320°) of the North Cascades orogen. Extension by diking reached ~45% in one >7-km-long transect through the Teanaway swarm and ranged from ~5% to locally ~79% in shorter transects across other swarms, which corresponds to a minimum of ~12 km of extension.The dominant NE-striking dikes are compatible with the dextral motion on the N- to NW-striking (~355–320°) regional strike-slip faults. Some of the W–NW- to NW-striking dikes were arguably influenced by pre-existing faults, shear fractures, and foliations, and potentially in one swarm where both NE- and lesser W-NW–striking dikes are present, by a switch in principal stress axes induced by dike emplacement. Alternatively, the W-NW–to NW-striking dikes may reflect a younger regional strain field, as ca. 49.3–47.5 Ma U-Pb zircon ages of the NE-striking dikes are older than those of the few dated W-NW–to NW-trending dikes. In one scenario, NE-striking dikes intruded during an interval when strain mainly reflected dextral strike-slip faulting, and the younger dikes record a switch to more arc-normal extension. Diking ended as magmatism migrated into a N-S–trending belt west of the North Cascades core that marks the initiation of the ancestral Cascade arc.
      PubDate: Thu, 03 Feb 2022 00:00:00 GMT
       
  • Magmatic evolution and architecture of an arc-related, rhyolitic caldera
           complex: The late Pleistocene to Holocene Cerro Blanco volcanic complex,
           southern Puna, Argentina

    • Authors: de Silva SL; Roberge JJ, Bardelli LL, et al.
      Abstract: AbstractThrough the lens of bulk-rock and matrix glass geochemistry, we investigated the magmatic evolution and pre-eruptive architecture of the siliceous magma complex beneath the Cerro Blanco volcanic complex, a Crater Lake–type caldera complex in the southern Puna Plateau of the Central Andes of Argentina. The Cerro Blanco volcanic complex has been the site of two caldera-forming eruptions with volcanic explosivity index (VEI) 6+ that emplaced the ca. 54 ka Campo Piedra Pomez ignimbrite and the ca. 4.2 ka Cerro Blanco ignimbrite. As such, it is the most productive recent explosive volcano in the Central Andes. The most recent eruptions (younger than 4.2 ka) are dominantly postcaldera effusions of crystal-rich domes and associated small explosive pulses. Previous work has demonstrated that andesitic recharge of and mixing with rhyolitic magma occurred at the base of the magma complex, at ~10 km depth.New isotopic data (Sr, Nd, Pb, and O) confirm that the Cerro Blanco volcanic complex rhyolite suite is part of a regional southern Puna, arc-related ignimbrite group. The suite defines a tight group of consanguineous siliceous magmas that serves as a model for the evolution of arc-related, caldera-forming silicic magma systems in the region and elsewhere. These data indicate that the rhyolites originated through limited assimilation of and mixing with upper-crustal lithologies by regional basaltic andesite parent materials, followed by extensive fractional crystallization.Least squares models of major elements in tandem with Rayleigh fractionation models for trace elements reveal that the internal variations among the rhyolites through time can be derived by extensive fractionation of a quartz–two feldspar (granitic minimum) assemblage with limited assimilation. The rare earth element character of local volumes of melt in some samples of the Campo Piedra Pomez ignimbrite basal fallout requires significant fractionation of amphibole. The distinctive major- and trace-element characteristics of bulk rock and matrix of the Campo Piedra Pomez and Cerro Blanco tephras provide useful geochemical fingerprints to facilitate regional tephrochronology. Available data indicate that rhyolites from other neighborhood centers, such as Cueros de Purulla, share bulk chemical characteristics with the Campo Piedra Pomez ignimbrite rhyolites, but they appear to be isotopically distinct.Pre-eruptive storage and final equilibration of the rhyolitic melts were estimated from matrix glass compositions projected onto the haplogranitic system (quartz-albite-orthoclase-H2O) and using rhyolite-MELTS models. These revealed equilibration pressures between 360 and 60 MPa (~10–2 km depth) with lowest pressures in the Holocene eruptions. Model temperatures for the suite ranged from 695 to 790 °C.Integrated together, our results reveal that the Cerro Blanco volcanic complex is a steady-state (low-magmatic-flux), arc-related complex, standing in contrast to the flare-up (high-magmatic-flux) supervolcanoes that dominate the Neogene volcanic stratigraphy. The silicic magmas of the Cerro Blanco volcanic complex were derived more directly from mafic and intermediate precursors through extensive fractional crystallization, albeit with some mixing and assimilation of local basement. Geochemical models and pressure-temperature estimates indicate that significant volumes of remnant cumulates of felsic and intermediate composition should dominate the polybaric magma complex beneath the Cerro Blanco volcanic complex, which gradually shallowed through time. Evolution to the most silicic compositions and final equilibration of some of the postcaldera domes occurred during ascent and decompression at depths less than 2 km.Our work connotes an incrementally accumulated (over at least 54 k.y.), upper-crustal pluton beneath the Cerro Blanco volcanic complex between 2 and 10 km depth. The composition of this pluton is predicted to be dominantly granitic, with deeper parts being granodioritic to tonalitic. The progressive solidification and eventual contraction of the magma complex may account for the decades of deflation that has characterized Cerro Blanco. The presently active geothermal anomaly and hydrothermal springs indicate the Cerro Blanco volcanic complex remains potentially active.
      PubDate: Tue, 25 Jan 2022 00:00:00 GMT
       
  • Augmenting geological field mapping with real-time, 3-D digital outcrop
           scanning and modeling

    • Authors: Walter C; Faraj F, Fotopoulos G, et al.
      Abstract: AbstractHand scanners are compact, lightweight, and capable of generating 3-D digital models. Although they do not compare to conventional methods (terrestrial laser scanning and photogrammetry) in terms of coverage, resolution, and accuracy, they offer increased mobility, speed, and real-time processing capabilities in the field. This study investigates the use of hand scanners for real-time, 3-D digital outcrop modeling to augment geological field mapping campaigns and highlights the advantages and the limitations. The utility of incorporating hand scanners as an additional tool for augmenting geological mapping is assessed based on 41 outcrop scans from the Gould Lake area, which is located 20 km north of Kingston, Ontario, Canada. The 3-D digital outcrop models gathered included two distinct metamorphic lithologies (marble and quartzofeldspathic gneiss) measuring up to 2.5 m high × 7 m long with an average surface area of 18 m2. This average scan size would take less than 10 min to capture, result in ~18 million individual points per scan, and provide a spatial resolution of ~1 cm for outcrop features. Throughout the course of the investigation, the main benefit of capturing multiple 3-D digital outcrop models was the ability to integrate this real-time, in situ geospatial, and geologic information across multiple visualization scales. This utility and retention of outcrop-scale geospatial information was shown to enhance the understanding of multi-scale geological relationships.
      PubDate: Tue, 25 Jan 2022 00:00:00 GMT
       
  • Numerical models of Farallon plate subduction: Creating and removing a
           flat slab

    • Authors: Currie CA; Copeland P.
      Abstract: AbstractFlat-slab subduction has affected parts of North America, South America, and Asia over the past 250 m.y. In these areas, reconstructions show that the subducting plate became subhorizontal below the continent for ~5 to >30 m.y., followed by foundering of the slab and resumption of steep-angle subduction. Using two-dimensional numerical models, we examine the factors that control the development and removal of a flat slab. Models are based on the Late Cretaceous to Oligocene Farallon flat slab below the southwestern United States. We find that the primary control on subduction geometry is the oceanic plate density structure. Subduction of a buoyant oceanic plateau creates a flat-slab segment that moves inboard at approximately the rate of continental trenchward motion (4–5 cm/yr). Steepening is initiated with eclogitization of the oceanic plateau crust. Once the plateau density exceeds that of the mantle, the slab undergoes rollback through progressive trenchward-directed detachment from the continent at a rate of 2–10 cm/yr. Rollback is enhanced by: (1) weakening of the overlying continental mantle lithosphere, inferred to result from slab-derived hydrous fluids, and (2) a slowdown in plate velocities; the rate and amount of oceanic eclogitization are second-order effects. Conversely, rollback is hindered by a strong oceanic plate and interactions between the slab and high-viscosity lower mantle. For the ~2000-km-long Farallon slab, the Conjugate Shatskey Rise plateau must have remained buoyant for 20–30 m.y. after subduction. This was followed by rapid rollback caused by both plateau eclogitization and continental weakening, leaving an area of thinned and hydrated continental lithosphere.
      PubDate: Tue, 25 Jan 2022 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.231.247.88
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-