Publisher: Advanced Electromagnetics   (Total: 1 journals)   [Sort by number of followers]

Showing 1 - 1 of 1 Journals sorted alphabetically
Advanced Electromagnetics     Open Access   (Followers: 21, SJR: 0.154, CiteScore: 1)
Similar Journals
Journal Cover
Advanced Electromagnetics
Journal Prestige (SJR): 0.154
Citation Impact (citeScore): 1
Number of Followers: 21  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2119-0275
Published by Advanced Electromagnetics Homepage  [1 journal]
  • Multi-Band Polarization Insensitive Ultra-Thin THz Metamaterial Absorber
           for Imaging and EMI Shielding Applications

    • Authors: G. Saxena; Y. Khanna, Y. K. Awasthi, P. Jain
      Abstract: this article, a multi-band polarization-insensitive metamaterial absorber is designed for THz imaging and EMI shielding. A unique oval-shaped structure with three circular ring-shaped resonators is proposed with a unit cell dimension of36×36×19.6μm3. The absorbance of the proposed multiband MMA is 98.57%, 90%and 99.85% at 5.58, 7.98-8.84, 11.45THz frequency respectively. Return loss is nearly the same for the changing incident and polarization angle. Therefore, this metamaterial absorber with a wide range of polarization insensitivity is found and it is also suitable for quantum RADAR Imaging, energy harvesting, and optoelectronic devices.
      PubDate: Fri, 12 Nov 2021 00:00:00 +010
  • CSRR-DGS Bandpass Filter Based on Half Mode Substrate Integrated Waveguide
           for X-Band Applications

    • Authors: B. Fellah; N. Cherif, M. Abri, H. Badaoui
      Abstract: In this paper, a half mode substrate integrated waveguide (HMSIW) bandpass filter using defected ground structure cells (DGS) is proposed. By using the periodic square CSRR resonant properties of DGS according to design requirement, an X-band band-pass filter is designed and analyzed to meet compact size, low insertion loss, and high rejection. The simulation results obtained by CST in X-band show that the proposed filter is characterized by a large transmitted bandwidth of about 1.38 GHz from 13.03 to 14.41 GHz. The higher simulated insertion loss is about −2.6 dB and the lower return loss is about −34 dB. The proposed filter size is 9.50 × 38.00 mm2 which make it a compact component. The structure is optimized using CST simulator. For the proposal validation, the simulation results is compared by HFSS. The simulation results are in good agreement for the   two simulator.
      PubDate: Thu, 11 Nov 2021 00:00:00 +010
  • Square Waveguide Polarizer with Diagonally Located Irises for Ka-Band
           Antenna Systems

    • Authors: S. Piltyay
      Abstract: This article presents the results of development and optimization of a new square waveguide polarizer with diagonally located square irises. The application of suggested geometrical modification of irises form and location instead of a standard wall-to-wall irises configuration allows to exclude 45-degree twists between wideband waveguide polarizer and orthomode transducer of a dual-polarized antenna feed system. In addition, a waveguide polarizer and polarization duplexer can be manufactured by milling technology as two single details, which makes the proposed engineering solution reliable, simple for simulation, development and application. Suggested new polarizer design was developed for the satellite operating Ka-band. It contains 12 irises, which are symmetrically located in the diagonal corners of a square waveguide. Obtained optimal polarization converter provides excellent matching and polarization performance. The maximum level of VSWR is less than 1.04 for both orthogonal polarizations. Values of cross-polarization discrimination are higher than 32 dB in the operating Ka-band. Developed square waveguide polarizer with diagonally located irises can be applied in modern wideband satellite antennas.
      PubDate: Tue, 26 Oct 2021 00:00:00 +020
  • Electromagnetic Simulation of New Tunable Guide Polarizers with Diaphragms
           and Pins

    • Authors: S. Piltyay; A. Bulashenko, V. Shuliak, O. Bulashenko
      Abstract: In this article we present the results of mathematical simulation, development and optimization of a waveguide polarizer with a diaphragm and pins. A mathematical model was developed using the proposed approach on the example of a waveguide polarizer with one diaphragm and two pins. The diaphragm and pins were modeled as inductive or capacitive elements for two types of linear polarization of the fundamental modes. The applied model uses a wave scattering matrix. The total matrix of a polarizer was obtained using wave matrices of transmission of individual elements of the device structure. Using the elements of the common S-parameters the electromagnetic characteristics of the device, which is considered, were obtained. To check the performance of the developed mathematical model, it was simulated in a software using the finite element technique in the frequency domain. The designed structure of the polarizer is adjustable due to mechanical change in the length of the pins. The developed waveguide polarizer with one diaphragm and two pins provides a reflection coefficient of less than 0.36 and a transmission coefficient of more than 0.93 for two types of polarizations. Therefore, a new theoretical method was developed in the article for analysis of scattering matrix elements of a waveguide polarizer with diaphragms and pins. It can also be used for the development of new tunable waveguide polarizers, filters and other components with diaphragms and pins.
      PubDate: Tue, 26 Oct 2021 00:00:00 +020
  • Compact Broadband Microstrip Triangular Antennas Fed By Folded Triangular
           Patch for Wireless Applications

    • Authors: H. Malekpoor; M. Shahraki
      Abstract: This study presents two new designs of reduced size broadband microstrip patch antennas for ultra-wideband (UWB) operation. A folded triangular patch’s feeding technique, V-shaped slot, half V-shaped slot and shorting pins are employed to design the suggested antennas. The shorting pins are applied at the edge of structures to miniaturize the size of the patches. The suggested design with the V-shaped slot provides the measured impedance bandwidth (S11˂-10 dB) of 3.91-12 GHz (101.7%) for broadband application. In the suggested design with the V-shaped slot, the wide bandwidth with an acceptable size reduction is achieved. By introducing a suggested half design with the half V-shaped slot, the impedance bandwidth of the proposed half structure is improved from 4 to 17.22 GHz. The half design includes a measured impedance bandwidth of 124.6% with reduced size of more than 93% compared to the corresponding full design and an enhanced measured bandwidth of 23%. The obtained radiation and impedance results show that the suggested designs are applicable for wideband operation. Besides, the effects of some basic concepts and surface currents on the suggested structures are investigated to explain their broadband performance.
      PubDate: Sat, 16 Oct 2021 00:00:00 +020
  • Exploring microwave absorption by non-periodic metasurfaces

    • Authors: J. K. Hamilton; I. R. Hooper, C. R. Lawrence
      Abstract: In recent years there has been a large body of work investigating periodic metasurface microwave absorbers. However, surprisingly few investigations have focused on the absorption performance of similar non-periodic designs. In this work, the electromagnetic response of a large area (310 mm x 310 mm) microwave absorber that lacks a global periodicity is experimentally studied. The top metallic layer of the ultra-thin (0.3 mm) absorber is structured with rectangular patches given by a procedurally generated non-periodic pattern, known as the toothpick sequence. The specular reflectivity of both p-polarised and s-polarised incident radiation shows coupling to an additional low frequency mode when compared to a standard square patch periodic absorber. To further explore the coupling efficiency of such non-periodic absorbers, finite element models were used to investigate the influence of increasing sample size.
      PubDate: Thu, 14 Oct 2021 00:00:00 +020
  • Summation of Powers in Open Resonator with Slotted Coupling Elements

    • Authors: I. Kuzmichev; B. I. Muzychishin, A. Y. Popkov
      Abstract: The paper analyzes the summation of the powers of two sources in a hemispherical open resonator (OR) during its tuning. The first higher axially asymmetric TEM10q oscillation mode is excited in the resonator. A circuit with an E- tee waveguide is proposed, which makes it possible to research the summation of the powers using a Gunn diode. Studies of the conducting part of the millimeter range have been undertaken. It is shown that the coefficient of powers summation of two sources in the OR using slot coupling elements does not exceed 72%. The use of one H- polarized diffraction grating, which is in the resonator, does not lead to a significant increase in the summation coefficient when moving it. This is due to the excitation of the first type of TEM10q oscillations in the resonator.
      PubDate: Thu, 14 Oct 2021 00:00:00 +020
  • Comparative Analysis of Compact Satellite Polarizers Based on a Guide with

    • Authors: S. Piltyay; A. Bulashenko, I. Fesyuk, O. Bulashenko
      Abstract: In this article we carry out the comparative analysis of new compact satellite polarisers based on a square guide with diaphragms. The main electromagnetic parameters of the developed microwave guide devices with various amount of diaphragms were obtained within the satellite frequency interval from 10.7 GHz to 12.75 GHz. Waveguide polarization converters with different amount of diaphragms from 2 to 5 have been designed and optimized. The main parameters of the presented polarizer were calculated applying the numerical method of finite integration in the frequency domain. Optimization of the electromagnetic parameters of the developed waveguide devices was carried out using the software CST Microwave Studio. As a result, sizes of the device designs have been optimized for the provision of improved polarization and phase parameters. The performed analysis showed that a waveguide polarizer with five diaphragms has the best electromagnetic parameters. The developed compact polarizer with five diaphragms based on a square guide provides a minimum deviation of the output phase difference from 90 degrees and high level of isolation between linear polarization over the entire operating frequency range. Presented in the article compact waveguide polarization converters can be applied in satellite systems, which require efficient polarization separation of signals.
      PubDate: Sat, 31 Jul 2021 00:00:00 +020
  • On the Effects of Balun on Small Antennas Performance for Animal Health-
           Monitoring and Tracking

    • Authors: A. Alemaryeen; S. Noghanian
      Abstract: This paper presents the performance evaluation of a sleeve Balun integration in the design of a flexible loop antenna for wildlife health monitoring and tracking applications. To verify the design concept, an experimental antenna is designed, fabricated, and measured in free-space and muscle mimicking phantom. Moreover, investigations are carried out for wearable and implanted antennas in planar and conformal arrangements. In free-space, the antenna is operating within the industrial, scientific, and medical ISM 5.8 GHz band. Balun integration in the antenna design efficiently chokes the currents excited on the outer surface of the feeding cable and provides a good impedance match between antenna and feed line, as demonstrated by simulation and measurement results. On the other hand, in phantom, the antenna has a wide bandwidth characteristic that covers the most used frequency bands for in-body devices. Balun integration, in this case, showed a negligible effect on antenna’s matching properties for two studied implantation depths; 2.5 cm and 5 cm.  The proposed study offers a promising guideline in the design and realization of wearable and implanted antennas.
      PubDate: Sat, 31 Jul 2021 00:00:00 +020
  • A Compact High Gain Printed Antenna with Frequency Selective Surface for
           5G Wideband Applications

    • Authors: A. Kapoor; R. Mishra, P. Kumar
      Abstract: In this article, a frequency selective surface (FSS) based compact wideband printed antenna radiator with improved gain and directivity is proposed for sub-6 GHz 5G wireless networking applications. Due to their inherent property of possessing spatial filtering characteristics, FSSs are attracting the interest of researchers. An approach for increasing the gain and the directivity by integrating a band pass FSS on a compact built patch antenna radiator is proposed here. The architecture equations for designing the band pass FSS using double square loop geometry are defined. The printed patch antenna radiator (PAR) and a double square loop frequency selective surface (DSLFSS) are designed and integrated. The simulation results are verified using the results from the measuring setup. The output response is giving a fractional bandwith of 19.14% with 5.5 dBi gain and 6.2 dBi of directivity and thus makes it the good choice for 5G applications.
      PubDate: Sat, 31 Jul 2021 00:00:00 +020
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-