Publisher: Scientific Research Publishing   (Total: 230 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Showing 1 - 200 of 243 Journals sorted alphabetically
Advances in Aerospace Science and Technology     Open Access   (Followers: 16)
Advances in Alzheimer's Disease     Open Access   (Followers: 8)
Advances in Anthropology     Open Access   (Followers: 19)
Advances in Applied Sociology     Open Access   (Followers: 17)
Advances in Biological Chemistry     Open Access   (Followers: 9)
Advances in Bioscience and Biotechnology     Open Access   (Followers: 21)
Advances in Breast Cancer Research     Open Access   (Followers: 18)
Advances in Chemical Engineering and Science     Open Access   (Followers: 112)
Advances in Computed Tomography     Open Access   (Followers: 2)
Advances in Entomology     Open Access   (Followers: 3)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Historical Studies     Open Access   (Followers: 10)
Advances in Infectious Diseases     Open Access   (Followers: 9)
Advances in Internet of Things     Open Access   (Followers: 18)
Advances in J.ism and Communication     Open Access   (Followers: 27)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 6)
Advances in Literary Study     Open Access   (Followers: 1)
Advances in Lung Cancer     Open Access   (Followers: 11)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 33)
Advances in Microbiology     Open Access   (Followers: 24)
Advances in Molecular Imaging     Open Access   (Followers: 1)
Advances in Nanoparticles     Open Access   (Followers: 17)
Advances in Parkinson's Disease     Open Access   (Followers: 2)
Advances in Physical Education     Open Access   (Followers: 13)
Advances in Pure Mathematics     Open Access   (Followers: 9)
Advances in Remote Sensing     Open Access   (Followers: 53)
Advances in Reproductive Sciences     Open Access   (Followers: 1)
Advances in Sexual Medicine     Open Access   (Followers: 3)
Agricultural Sciences     Open Access   (Followers: 5)
American J. of Analytical Chemistry     Open Access   (Followers: 27)
American J. of Climate Change     Open Access   (Followers: 41)
American J. of Computational Mathematics     Open Access   (Followers: 4)
American J. of Industrial and Business Management     Open Access   (Followers: 25)
American J. of Molecular Biology     Open Access   (Followers: 4)
American J. of Operations Research     Open Access   (Followers: 6)
American J. of Plant Sciences     Open Access   (Followers: 20)
Applied Mathematics     Open Access   (Followers: 6)
Archaeological Discovery     Open Access   (Followers: 4)
Art and Design Review     Open Access   (Followers: 13)
Atmospheric and Climate Sciences     Open Access   (Followers: 34)
Beijing Law Review     Open Access   (Followers: 4)
Case Reports in Clinical Medicine     Open Access   (Followers: 3)
CellBio     Open Access  
Chinese Medicine     Open Access   (Followers: 3)
Chinese Studies     Open Access   (Followers: 4)
Circuits and Systems     Open Access   (Followers: 16)
Communications and Network     Open Access   (Followers: 13)
Computational Chemistry     Open Access   (Followers: 3)
Computational Molecular Bioscience     Open Access   (Followers: 1)
Computational Water, Energy, and Environmental Engineering     Open Access   (Followers: 5)
Creative Education     Open Access   (Followers: 14)
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
Current Urban Studies     Open Access   (Followers: 15)
Detection     Open Access   (Followers: 3)
E-Health Telecommunication Systems and Networks     Open Access   (Followers: 3)
Energy and Power Engineering     Open Access   (Followers: 23)
Engineering     Open Access   (Followers: 2)
Food and Nutrition Sciences     Open Access   (Followers: 24)
Forensic Medicine and Anatomy Research     Open Access   (Followers: 7)
Geomaterials     Open Access   (Followers: 2)
Graphene     Open Access   (Followers: 7)
Green and Sustainable Chemistry     Open Access   (Followers: 4)
Health     Open Access   (Followers: 4)
iBusiness     Open Access   (Followers: 2)
InfraMatics     Open Access  
Intelligent Control and Automation     Open Access   (Followers: 6)
Intelligent Information Management     Open Access   (Followers: 7)
Intl. J. of Analytical Mass Spectrometry and Chromatography     Open Access   (Followers: 7)
Intl. J. of Astronomy and Astrophysics     Open Access   (Followers: 32)
Intl. J. of Clean Coal and Energy     Open Access   (Followers: 2)
Intl. J. of Clinical Medicine     Open Access   (Followers: 2)
Intl. J. of Communications, Network and System Sciences     Open Access   (Followers: 9)
Intl. J. of Geosciences     Open Access   (Followers: 10)
Intl. J. of Intelligence Science     Open Access   (Followers: 3)
Intl. J. of Internet and Distributed Systems     Open Access   (Followers: 2)
Intl. J. of Medical Physics, Clinical Engineering and Radiation Oncology     Open Access   (Followers: 11)
Intl. J. of Modern Nonlinear Theory and Application     Open Access   (Followers: 2)
Intl. J. of Nonferrous Metallurgy     Open Access   (Followers: 5)
Intl. J. of Organic Chemistry     Open Access   (Followers: 9)
Intl. J. of Otolaryngology and Head & Neck Surgery     Open Access   (Followers: 5)
J. of Agricultural Chemistry and Environment     Open Access   (Followers: 3)
J. of Analytical Sciences, Methods and Instrumentation     Open Access   (Followers: 5)
J. of Applied Mathematics and Physics     Open Access   (Followers: 9)
J. of Behavioral and Brain Science     Open Access   (Followers: 7)
J. of Biomaterials and Nanobiotechnology     Open Access   (Followers: 6)
J. of Biomedical Science and Engineering     Open Access   (Followers: 1)
J. of Biophysical Chemistry     Open Access   (Followers: 3)
J. of Biosciences and Medicines     Open Access  
J. of Building Construction and Planning Research     Open Access   (Followers: 10)
J. of Cancer Therapy     Open Access   (Followers: 1)
J. of Computer and Communications     Open Access   (Followers: 1)
J. of Cosmetics, Dermatological Sciences and Applications     Open Access   (Followers: 2)
J. of Crystallization Process and Technology     Open Access   (Followers: 7)
J. of Data Analysis and Information Processing     Open Access   (Followers: 2)
J. of Diabetes Mellitus     Open Access   (Followers: 5)
J. of Electromagnetic Analysis and Applications     Open Access   (Followers: 5)
J. of Electronics Cooling and Thermal Control     Open Access   (Followers: 9)
J. of Encapsulation and Adsorption Sciences     Open Access   (Followers: 1)
J. of Environmental Protection     Open Access   (Followers: 1)
J. of Financial Risk Management     Open Access   (Followers: 7)
J. of Flow Control, Measurement & Visualization     Open Access   (Followers: 1)
J. of Geographic Information System     Open Access   (Followers: 6)
J. of Geoscience and Environment Protection     Open Access  
J. of High Energy Physics, Gravitation and Cosmology     Open Access   (Followers: 4)
J. of Human Resource and Sustainability Studies     Open Access   (Followers: 1)
J. of Immune Based Therapies, Vaccines and Antimicrobials     Open Access   (Followers: 2)
J. of Information Security     Open Access   (Followers: 11)
J. of Intelligent Learning Systems and Applications     Open Access   (Followers: 4)
J. of Materials Science and Chemical Engineering     Open Access   (Followers: 1)
J. of Mathematical Finance     Open Access   (Followers: 7)
J. of Minerals and Materials Characterization and Engineering     Open Access   (Followers: 3)
J. of Modern Physics     Open Access   (Followers: 8)
J. of Power and Energy Engineering     Open Access   (Followers: 2)
J. of Quantum Information Science     Open Access   (Followers: 4)
J. of Sensor Technology     Open Access   (Followers: 3)
J. of Service Science and Management     Open Access  
J. of Signal and Information Processing     Open Access   (Followers: 9)
J. of Software Engineering and Applications     Open Access   (Followers: 12)
J. of Surface Engineered Materials and Advanced Technology     Open Access   (Followers: 3)
J. of Sustainable Bioenergy Systems     Full-text available via subscription  
J. of Transportation Technologies     Open Access   (Followers: 13)
J. of Tuberculosis Research     Open Access   (Followers: 1)
J. of Water Resource and Protection     Open Access   (Followers: 6)
Low Carbon Economy     Open Access   (Followers: 4)
Materials Sciences and Applications     Open Access   (Followers: 2)
Microscopy Research     Open Access   (Followers: 2)
Modeling and Numerical Simulation of Material Science     Open Access   (Followers: 14)
Modern Chemotherapy     Open Access  
Modern Economy     Open Access   (Followers: 3)
Modern Instrumentation     Open Access   (Followers: 58)
Modern Mechanical Engineering     Open Access   (Followers: 66)
Modern Plastic Surgery     Open Access   (Followers: 6)
Modern Research in Catalysis     Open Access  
Modern Research in Inflammation     Open Access  
Natural Resources     Open Access  
Natural Science     Open Access   (Followers: 8)
Neuroscience & Medicine     Open Access   (Followers: 2)
New J. of Glass and Ceramics     Open Access   (Followers: 6)
Occupational Diseases and Environmental Medicine     Open Access   (Followers: 3)
Open J. of Accounting     Open Access   (Followers: 2)
Open J. of Acoustics     Open Access   (Followers: 23)
Open J. of Air Pollution     Open Access   (Followers: 4)
Open J. of Anesthesiology     Open Access   (Followers: 9)
Open J. of Animal Sciences     Open Access   (Followers: 4)
Open J. of Antennas and Propagation     Open Access   (Followers: 10)
Open J. of Apoptosis     Open Access  
Open J. of Applied Biosensor     Open Access  
Open J. of Applied Sciences     Open Access  
Open J. of Biophysics     Open Access  
Open J. of Blood Diseases     Open Access  
Open J. of Business and Management     Open Access   (Followers: 3)
Open J. of Cell Biology     Open Access   (Followers: 1)
Open J. of Civil Engineering     Open Access   (Followers: 7)
Open J. of Clinical Diagnostics     Open Access   (Followers: 1)
Open J. of Composite Materials     Open Access   (Followers: 21)
Open J. of Depression     Open Access   (Followers: 2)
Open J. of Discrete Mathematics     Open Access   (Followers: 3)
Open J. of Earthquake Research     Open Access   (Followers: 3)
Open J. of Ecology     Open Access   (Followers: 8)
Open J. of Emergency Medicine     Open Access   (Followers: 2)
Open J. of Endocrine and Metabolic Diseases     Open Access   (Followers: 1)
Open J. of Energy Efficiency     Open Access   (Followers: 1)
Open J. of Epidemiology     Open Access   (Followers: 2)
Open J. of Fluid Dynamics     Open Access   (Followers: 35)
Open J. of Forestry     Open Access   (Followers: 1)
Open J. of Gastroenterology     Open Access   (Followers: 1)
Open J. of Genetics     Open Access  
Open J. of Geology     Open Access   (Followers: 14)
Open J. of Immunology     Open Access   (Followers: 4)
Open J. of Inorganic Chemistry     Open Access   (Followers: 1)
Open J. of Inorganic Non-metallic Materials     Open Access   (Followers: 2)
Open J. of Internal Medicine     Open Access  
Open J. of Leadership     Open Access   (Followers: 18)
Open J. of Marine Science     Open Access   (Followers: 6)
Open J. of Medical Imaging     Open Access   (Followers: 2)
Open J. of Medical Microbiology     Open Access   (Followers: 4)
Open J. of Medical Psychology     Open Access  
Open J. of Medicinal Chemistry     Open Access   (Followers: 4)
Open J. of Metal     Open Access   (Followers: 1)
Open J. of Microphysics     Open Access  
Open J. of Modelling and Simulation     Open Access   (Followers: 2)
Open J. of Modern Hydrology     Open Access   (Followers: 5)
Open J. of Modern Linguistics     Open Access   (Followers: 5)
Open J. of Modern Neurosurgery     Open Access   (Followers: 2)
Open J. of Molecular and Integrative Physiology     Open Access  
Open J. of Nephrology     Open Access   (Followers: 4)
Open J. of Nursing     Open Access   (Followers: 4)
Open J. of Obstetrics and Gynecology     Open Access   (Followers: 5)
Open J. of Ophthalmology     Open Access   (Followers: 3)
Open J. of Optimization     Open Access  
Open J. of Organ Transplant Surgery     Open Access   (Followers: 1)
Open J. of Organic Polymer Materials     Open Access   (Followers: 1)
Open J. of Orthopedics     Open Access   (Followers: 3)
Open J. of Pathology     Open Access   (Followers: 2)
Open J. of Pediatrics     Open Access   (Followers: 4)
Open J. of Philosophy     Open Access   (Followers: 11)
Open J. of Physical Chemistry     Open Access  
Open J. of Political Science     Open Access   (Followers: 5)
Open J. of Polymer Chemistry     Open Access   (Followers: 13)
Open J. of Preventive Medicine     Open Access  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Open Journal of Modelling and Simulation
Number of Followers: 2  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2327-4018 - ISSN (Online) 2327-4026
Published by Scientific Research Publishing Homepage  [230 journals]
  • Actor-Critic Traction Control Based on Reinforcement Learning with
           Open-Loop Training

    • Abstract: The use of actor-critic algorithms can improve the controllers currently implemented in automotive applications. This method combines reinforcement learning (RL) and neural networks to achieve the possibility of controlling nonlinear systems with real-time capabilities. Actor-critic algorithms were already applied with success in different controllers including autonomous driving, antilock braking system (ABS), and electronic stability control (ESC). However, in the current researches, virtual environments are implemented for the training process instead of using real plants to obtain the datasets. This limitation is given by trial and error methods implemented for the training process, which generates considerable risks in case the controller directly acts on the real plant. In this way, the present research proposes and evaluates an open-loop training process, which permits the data acquisition without the control interaction and an open-loop training of the neural networks. The performance of the trained controllers is evaluated by a design of experiments (DOE) to understand how it is affected by the generated dataset. The results present a successful application of open-loop training architecture. The controller can maintain the slip ratio under adequate levels during maneuvers on different floors, including grounds that are not applied during the training process. The actor neural network is also able to identify the different floors and change the acceleration profile according to the characteristics of each ground.
      PubDate: Tue, 07 Dec 2021 05:20:01 +000
       
  • A Classical LTE Cellular System Simulator for Computer Network Education

    • Abstract: The proposal of LTE in the standardization of cellular network systems has received considerable attention in the research domain, and most subscribers widely use it. Despite the enormous acceptance of the system, academia as an industry is usually disadvantaged in training students due to the cost implication in setting up a prototype. In bridging this gap, simulators are traditionally developed as a testbed to aid students appreciate how these systems work. Although there are several simulators available on the market, these simulators are quite expensive to acquire while others come with license restrictions. In this study, a classical LTE cellular system simulator is proposed as a testbed to aid the education of computer networks at college. The proposed simulator is an extension of the functionality of LTE-Sim frameworks. Usability testing of the proposed study reveals that the system is much easier to simulate the various scenarios in wireless communication.
      PubDate: Mon, 15 Nov 2021 08:50:02 +000
       
  • A Modified Fully Convolutional Network for Crack Damage Identification
           Compared with Conventional Methods

    • Abstract: Large-scale structural health monitoring and damage detection of concealed underwater structures are always the urgent and state-of-art problems to be solved in the field of civil engineering. With the development of artificial intelligence especially the combination of deep learning and computer vision, greater advantages have been brought to the concrete crack detection based on convolutional neural network (CNN) over the traditional methods. However, these machine learning (ML) methods still have some defects, such as it being inaccurate or not strong, having poor generalization ability, or the accuracy still needs to be improved, and the running speed is slow. In this article, a modified fully convolutional network (FCN) with more robustness and more effectiveness is proposed, which makes it convenient and low cost for long-term structural monitoring and inspection compared with other methods. Meanwhile, to improve the accuracy of recognition and prediction, innovations were conducted in this study as follows. Moreover, differed from the common simple deconvolution, it also includes a subpixel convolution layer, which can greatly reduce the sampling time. Then, the proposed method was verified its practicability with the overall recognition accuracy reaching up to 97.92% and 12% efficiency improvement.
      PubDate: Wed, 10 Nov 2021 10:35:01 +000
       
  • New Robust Part-Based Model with Affine Transformations for Facial
           Landmark Localization and Detection in Big Data

    • Abstract: In this paper, we developed a new robust part-based model for facial landmark localization and detection via affine transformation. In contrast to the existing works, the new algorithm incorporates affine transformations with the robust regression to tackle the potential effects of outliers and heavy sparse noises, occlusions and illuminations. As such, the distorted or misaligned objects can be rectified by affine transformations and the patterns of occlusions and outliers can be explicitly separated from the true underlying objects in big data. Moreover, the search of the optimal parameters and affine transformations is cast as a constrained optimization programming. To mitigate the computations, a new set of equations is derived to update the parameters involved and the affine transformations iteratively in a round-robin manner. Our way to update the parameters compared to the state of the art of the works is relatively better, as we employ a fast alternating direction method for multiplier (ADMM) algorithm that solves the parameters separately. Simulations show that the proposed method outperforms the state-of-the-art works on facial landmark localization and detection on the COFW, HELEN, and LFPW datasets.
      PubDate: Wed, 03 Nov 2021 11:35:01 +000
       
  • Digital Modeling of Heat Transfer during the Baking Process

    • Abstract: Numerical modeling and analysis of the baking process are challenging biochemical processes occurring in bread. These changes result from mass engineering tasks, usually characterized by the complex chain of chemical, physical, and heat transfer processes impacting the baking at the same time primarily caused by a variation of two dominating factors: (i) the heat and (ii) the internal moisture content at different temperatures and during the time’s process. This study presents an analysis of the 1-D computational fluid dynamics model for simultaneous heat transfer within a cylindrical bread sample. The numerical simulations were performed using the finite difference model (FDM) and the finite element model (FEM). In the first case, the proposed numerical model considered radiation and convection during sample heating and described the sample’s simultaneous heat, water, and vapor diffusion mechanisms. The calculations indicated that the FDM was susceptible to the time step; consequently, the range of 10 s and 100 s yielded the only relevant results. In the second case, the FEM was used to describe the phenomena of transportation during baking. Results obtained by the FEM showed a large temperature gradient near the surface. The study showed the presence of some critical cases that are considered the most influential on the stages of bread production. The first critical value is the time when the baking temperature reaches 100° C. The second critical value is the time when the liquid water content in the baking medium reaches its peak. The boundary conditions were examined and illustrated by figures in the center and the surface of the bread.
      PubDate: Mon, 18 Oct 2021 05:50:01 +000
       
  • Novel Nonlinear Control and Optimization Strategies for Hybrid Renewable
           Energy Conversion System

    • Abstract: This article deals with a hybrid renewable energy conversion system (HRECS) interconnected to the three-phase grid in association with their power conversion components, i.e., AC/DC rectifier and DC/AC inverter. The HRECS is built around a permanent magnet synchronous wind turbine generator and a photovoltaic energy conversion system. Comparing to traditional control methods, a new multiobjective control strategy is developed to enhance system performances. This makes it possible to account in addition to optimal turbine speed regulation and PV-MPPT and three other important control objectives such as DC-link voltage regulation and the injected reactive power in the grid. To achieve these objectives, a novel control strategy is developed, based on a nonlinear model of the whole “converters-generators” association. The robustness and the stability analysis of the system have been proved using the Lyapunov theory and precisely the backstepping control and the sliding mode control. The performances of the proposed controllers are formally analyzed with respect to standard control solutions illustrated through simulation.
      PubDate: Mon, 04 Oct 2021 10:35:01 +000
       
  • Crashworthy Examination of a Newly Proposed Impact Attenuator Design:
           Experimental Testing and Numerical Analysis

    • Abstract: The impact attenuator is a safety vehicle system designed to absorb the kinetic energy from a collision that is converted into deformation and ensures the deceleration level acting on the human body remains low. In this paper, we propose that the impact attenuator be fabricated with used cans, which are easy to obtain. Compared to fabricating cylinders through machining and other production processes using new material, the application of used cans may reduce production costs by approximately IDR 500,000 (USD 34.50) for one attenuator structure, while the attenuator still meets the weight criterion, i.e., it has to be light to improve acceleration and fuel efficiency. As a type of metal waste product, food cans are often fabricated from aluminum and other metal alloys. These products are widely used in our lives; if they are not recycled, they can potentially pollute the environment as waste. Given these problems and considering the use of environmentally friendly materials, lightweight used cans were chosen as materials for the proposed impact attenuator design. In the initial study, the verification and validation tests of the impact attenuator shell and used cans show good agreement between the numerical and experimental impact tests. The proposed impact attenuator design under the predetermined parameters showed that used cans of aluminum 6063 series can be recommended as an alternative material in this system.
      PubDate: Fri, 24 Sep 2021 07:05:02 +000
       
  • Soil-Structure Interaction of Flexible Temporary Trench Box: Parametric
           Studies Using 3D FE Modelling

    • Abstract: This paper presents the results of two parametric finite-element studies that were carried out using the PLAXIS-3D finite element (FE) computer code. The following objectives and corresponding parameters were considered: (i) to evaluate the soil pressure on the steel trench box shield; the parameters studied were related to soil type and material, and the study considered till, dry sand, wet sand, and sensitive clay soil; (ii) to assess the effect of trench box material and geometry on earth pressure; the parameters studied were related to trench box material (steel versus aluminum) as well as geometry (plate thickness and strut diameter). These studies included simulation of two steel (or aluminum) trench box shields stacked upon each other to cover the total 6 m (20 ft) deep trench. A Mohr-Coulomb (MC) constitutive material model was chosen for FE analysis (FEA). The FEA results were compared to empirical apparent earth pressure diagrams for a sensitive clay. Comparisons showed that the parameters related to the soil and the trench box have a significant influence on earth pressures.
      PubDate: Tue, 21 Sep 2021 07:35:01 +000
       
  • Experimental Estimation of the Heat Transfer Coefficient of an Unglazed
           Solar Plate for Unsteady Humid Outdoor Condition

    • Abstract: This research presents a study on the heat transfer coefficient for an unglazed solar plate collector in an unsteady humid outdoor environment. The purpose for undertaking this research is to investigate the correlation between the heat transfer coefficient and air speed and also verify whether heat transfer from unglazed solar thermal collectors under outdoor conditions can be experimentally determined using a particular mathematical relationship for different locations. In estimating the heat transfer coefficient for an unglazed solar plate in an unsteady humid outdoor condition, an experiment was held using an outdoor setup that measured temperatures, wind speeds, and solar radiations from 11:00 A.M. to 2:00 P.M. The solar plate collector was placed on a flat bed of height 2.2 m and a collection area of 0743 m2. An average temperature of 45°C was recorded for a mild steel plate collector which was initially exposed to an ambient temperature which ranges from 25°C to 32°C. The interfacial temperature between the plate and an asbestos board ranges from 42°C to 52°C, and that of the asbestos and a plywood is 40°C to 46°C. The specific heat capacity of the mild steel plate and the asbestos board used for the construction of the experimental setup are 25.00 kJ/kg and 950.00 kJ/kg, respectively, while the thermal conductivity of these materials is 0.46 W/m·K and 0.25 W/m·K, respectively. The novelty of this work is the use of such a study to generate empirical equations for Ghana and to produce representative equations for determining the heat transfer coefficient for solar plate collectors in unsteady humid outdoor conditions in West Africa. This work is expected to contribute data alongside similar works done for different areas to help propose empirical equations for estimating global and not site-specific heat transfer coefficients.
      PubDate: Mon, 13 Sep 2021 10:35:02 +000
       
  • Effect of Experimental Blocking on the Suppression of Spatial Dependence
           Potentially Attributable to Physicochemical Properties of Soils

    • Abstract: One of the basic principles of experimental design is blocking, which is an important factor in the treatment of the systematic spatial variability that can be found in the edaphic properties where agricultural experiments are conducted. Blocking has a mitigating or suppressing effect on the spatial dependence in the residuals of a model, something desirable in standard linear modeling, specifically in design models. Some computer programs yield a value associated with the blocking effect in the analysis of variance table that in many cases has been incorrectly used to discard it, and although it may improve some properties of the analysis, it may affect the independence assumption required in several models. Therefore, the present research recommends the use of the statistic associated with the corrected blocking efficiency to show the role of blocking in modeling with the incorporation of an additional advantage rarely considered related to the suppression or mitigation of spatial dependence. With the use of the Moran index, the spatial dependence of the residuals was studied in a simple factorial design in a completely randomized and blocking field layout, which evidenced the advantages of blocking in the mitigation or suppression of the spatial dependence despite the apparently little or no importance it seems to show in the analysis of variance table.
      PubDate: Mon, 06 Sep 2021 13:50:01 +000
       
  • Biobjective Scheduling for Joint Parallel Machines with Sequence-Dependent
           Setup by Taking Pareto-Based Approach

    • Abstract: Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.
      PubDate: Mon, 30 Aug 2021 11:20:01 +000
       
  • Modelling and Simulation for Concrete Durability: Mechanism and Prediction

    • PubDate: Mon, 16 Aug 2021 10:50:01 +000
       
  • Formation of Residual Bubbles in Diesel Engine Nozzle and Their Influence
           on Initial Jet

    • Abstract: The method of combining experiment and numerical simulation was used to study the cavitation and gas backflow phenomena during nozzle off-flow stage and the influence of residual bubbles on the initial jet in the near field. An equal-size optical nozzle based on acrylic material is designed, and the injection process of the fuel nozzle is photographed using high-speed photography technology. Establish a cavitation mathematical model to analyze the details of internal flow and initial jet. The results show that after the needle valve starts to close, cavitation occurs in the orifice and the sac in sequence, and the amount of cavitation in the sac is large. The collapse of cloud of cavitation bubbles will cause the outside air to flow back into the nozzle. The volume of the backflow air is slightly larger than the total volume of cloud of cavitation bubbles. The study found that the initial position of the residual bubbles has a significant effect on the initial atomization shape. When the residual bubble was in the front of the orifice, the initial tip was formed at the front of jet, and then, it stretched into a thin ligament due to vortex ring motion around the jet.
      PubDate: Thu, 12 Aug 2021 11:05:10 +000
       
  • Comparison of Methods for Assessing the Assimilation Capacity of the
           Kazakhstani Sector of the Ili River

    • Abstract: A mixed inverse problem for determining the biochemical oxygen demand of water () and the rate of biochemical oxygen consumption (), which are important indicators of water quality, has been formulated and numerically solved based on real experimental data. The inverse problem is reduced to the optimization problem consisting in minimization of the deviation of the calculated values from the experimental data, which is solved numerically using the Nelder–Mead method (zero order) and the gradient method (first order). A number of examples of processing both model experimental data and field experimental data provided by hydrological stations monitoring pollutants in the Kazakhstani part of the Ili River basin are presented. A mathematical model that adequately describes the processes in the river system has been constructed.
      PubDate: Fri, 06 Aug 2021 07:50:11 +000
       
  • Prediction Model of the Mechanical Behavior of a Fuel Cell Stack under
           Strengthened Road Vibrating Conditions

    • Abstract: In this paper, a data-oriented model has been presented by nonlinear autoregressive exogenous model (NARX) neural network, which aims at predicting the mechanical behavior of a fuel cell stack for vehicle under the real-life operational conditions. A 300-hour vibration test with reproduction of SVP road spectrum was completed on a Multi-Axial Simulation Table. At the same time, data acquisition of drive displacement and acceleration response on stack was carried out in every 50 hours. All data collected were used to train and evaluate the model based on NARX. Result shows that the prediction model built is of good precision and consistent with the actual situation.
      PubDate: Wed, 04 Aug 2021 10:05:06 +000
       
  • Heat Transfer Potentiality and Flow Behavior in a Square Duct Fitted with
           Double-Inclined Baffles: A Numerical Analysis

    • Abstract: Numerical analysis of heat transfer mechanisms and flow topologies for the heat exchanger square channel (HESC) installed with the double-inclined baffles (DIB) is reported. The main objective of the present research is to study the influences of DIB height to duct height (), DIB distance to duct height (), and flow attack angle () on the flow topologies, heat transfer features, and thermal performances. The Reynolds numbers (based on the entry HESC around 100–2000) are analyzed for the present problem. The numerical models of the HESC installed with the DIB are solved with finite volume method (commercial code). The simulated results of the HESC installed with the DIB are reported in forms of flow topologies and heat transfer characteristics. The Nusselt numbers (Nu), friction factors (), and thermal enhancement factors (TEF) of the HESC placed with the DIB are offered. As the numerical results, it is seen that the DIB produces the vortex streams and impinging streams in all cases. The vortex streams and impinging streams disturb the thermal boundary layer on the HESC walls that is a key motive for the growth of heat transfer rate. The best TEF of the HESC installed with the DIB is about 3.87 at ,,, and . Additionally, the TEF contours, which help to design the HESC inserted with the DIB, are performed.
      PubDate: Thu, 15 Jul 2021 10:35:01 +000
       
  • Outage Analysis in SWIPT-Based Decode-and-Forward Relay Networks with
           Partial Relay Selection

    • Abstract: This work studies the SWIPT-based half-duplex (HD) decode-and-forward (DF) relay network, wherein the relay user can scavenge power from the source’s radio-frequency (RF) signals and then utilize it to convey the information to the destination. Specifically, two SWIPT-based relaying schemes, termed static power splitting- (SPS-) based relaying (SPSR) and optimal dynamic power splitting- (DPS-) based relaying (ODPSR), are proposed to investigate the benefits of each one fully. Based on the above discussions, the relaying system’s performance for outage probability (OP) is studied. Concretely, we derive the analytical expressions for both SPSR and DPSR methods. Finally, the numerical simulations are executed to corroborate the analysis and simulation results.
      PubDate: Mon, 28 Jun 2021 05:35:02 +000
       
  • Deployment of On-Orbit Service Vehicles Using a Fuzzy Adaptive Particle
           Swarm Optimization Algorithm

    • Abstract: On the basis that satellites given fixed count and orbit elements can be served in bounded time when an on-orbit serving mission order is set at any uncertain time in a given time interval, the deployment of on-orbit service vehicle (OSV) serving satellites becomes a complex multiple nested optimization problem, and the essence of deployment is to determine the count and orbit elements of OSVs. In consideration of the characteristics of this deployment problem, we propose a fuzzy adaptive particle swarm optimization (FAPSO) algorithm to solve this problem. First, on the basis of double pulse rendezvous hypothesis, a transfer optimization model of a single OSV serving multiple satellites is established based on genetic algorithm (GA), and this is used to compute the indexes of the subsequent two optimization models. Second, an assignment optimization model of OSVs is established based on the discrete particle swarm optimization (DPSO) algorithm, laying the foundation of the next optimization model. Finally, the FAPSO algorithm, which improves the performance of PSO algorithm by adjusting the inertia weight, is proposed to solve the deployment problem of multiple OSVs. The simulation results demonstrate that all optimization models in this study are feasible, and the FAPSO algorithm, which has a better convergence result than that obtained using the other optimization algorithms, can effectively solve the deployment problem of OSVs.
      PubDate: Mon, 21 Jun 2021 05:35:01 +000
       
  • Improving Indoor Air Quality in Classrooms via Wind-Induced Natural
           Ventilation

    • Abstract: Student performance in classrooms is related to the indoor environmental quality. High air change rates are necessary to secure an acceptable level of indoor air quality and provide fresh air, which require large amounts of energy and technical installations. Mostly, mechanically supplied air is partially mixed with the return air. In warm climates, the capacity for natural ventilation is not fully exploited in modern buildings. During periods of acceptable outdoor temperatures, buildings need to adapt and employ available free renewable resources, such as wind. In this context, the building form, orientation, and envelope openings are crucial to enable an increased air change rate, user satisfaction, and energy savings. Owing to the difficulty of providing cross-ventilation in buildings with double-loaded corridors, single-sided ventilation is the most common approach. This study investigates the methods to improve the wind-driven air exchange of classrooms in warm climates, where naturally ventilated corridors help increase air movement. This study examines the potential of a set of alternatives within the context of a generic model regarding the pressure distribution, thermal sensation, air velocity, and air change rate. The study suggests that no single opening scenario can be applied to all façades at any time. Each façade requires special treatment. Decisions on natural ventilation need to be made during the early design stages for each façade. It was found that with the aid of low-tech modifications, remarkable increases in air change rates, in some cases up to 14.5 times that of the typical single-sided ventilation case, could be achieved.
      PubDate: Thu, 10 Jun 2021 06:35:01 +000
       
  • Applications of the Atmospheric Transport and Diffusion of LES Modeling to
           the Spread and Dissipation of COVID-19 Aerosol Particles inside and
           outside the Japan National Stadium (Tokyo Olympic Stadium)

    • Abstract: In this paper, we use an analysis function for gas diffusion known as the Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain (RIAM-COMPACT), which was developed for complex terrain, in Airflow Analyst software, and apply it to the spread and dissipation of a fluid layer (assuming the fluid layer contains COVID-19 particles). First, to verify the prediction accuracy of the gas diffusion using RIAM-COMPACT, comparisons with past wind tunnel test results conducted on simple and complex terrains are presented under neutral atmospheric stability. The results of the numerical simulations carried out in this study show good agreement with the wind tunnel experiments for both simple and complex terrains. Next, a model of the Japan National Stadium (Tokyo Olympic Stadium) was constructed using 3D detailed topographic Advanced World 3D Map (AW3D) data generated by combining high-resolution satellite images. We tried to reproduce the hypothetical spread and dissipation of the fluid layer (assuming the fluid layer contains COVID-19 particles) inside and outside of the Japan National Stadium using Airflow Analyst implemented with the RIAM-COMPACT analysis function for gas diffusion. We paid special attention to the effect of wind ventilation driven by natural wind. The numerical results under various scenarios show that ventilation driven by natural wind is very effective for the Japan National Stadium.
      PubDate: Wed, 09 Jun 2021 08:50:01 +000
       
  • A Paradox of the Average Waiting Time for the Case of a Single Bottleneck
           on the Commuters’ Route

    • Abstract: Average waiting time is considered as one of the basic performance indicators for a bottleneck zone on a route for commuter traffic. It turns out that the average waiting time in a queue remains paradoxically unchanged regardless of how fast the queue dissolves for a single bottleneck problem. In this study, the paradox is verified theoretically for the deterministic case with constant arrival and departure rates. Consistent results with the deterministic case have also been obtained by simulation runs for which vehicle interarrival time is a random variable. Results are tabulated for interarrival times which have uniform, triangular, normal, and exponential distributions along with a statistical verification of the average waiting time paradox.
      PubDate: Mon, 24 May 2021 12:20:01 +000
       
  • Design of a Dynamic Simulator for a Biped Robot

    • Abstract: Simulation is a virtual representation of a dynamic system. For the case of mechanical systems, the simulator is used to calculate the reaction forces between its base and the ground and other constraints. The intermittent nature of these forces and the mathematical inequalities that they must satisfy lead to models described by hybrid algebraic differential equations. In this paper, a simulator was developed for a seven degrees of freedom planar biped robot, which was modeled using the Euler-Lagrange formulation. This model allowed the design and implementation of a control strategy for balance management, and the monitoring of articular reference paths are tested in the simulator before proceeding to implementation on the actual prototype.
      PubDate: Tue, 04 May 2021 13:20:02 +000
       
  • Flow of the Bingham-Papanastasiou Regularized Material in a Channel in the
           Presence of Obstacles: Correlation between Hydrodynamic Forces and Spacing
           of Obstacles

    • Abstract: The numerical modeling and simulation for the stationary Bingham fluid flow around two confined circular cylinders with various gap ratios are studied. The singularity in the model’s apparent viscosity is dealt by Papanastasiou’s regularization. The model equations are discretized by adopting the methodology based on finite element method (FEM) by choosing a mixed higher order LBB-stable finite element pair. The direct solver PARADISO has been utilized to solve the linearized system of equations. Hydrodynamic forces represented by drag and lift coefficients are computed, and a correlation coefficient is calculated for the gap ratios and for several values of the Bingham number . Line graphs for horizontal and vertical velocities are drawn. Moreover, velocity and pressure profiles are plotted for pertinent values of the parameters. Plug and shear zones are revealed via velocity snapshots in the domain. Pressure is nonlinear in the vicinity of the obstacles and becomes linear downstream in the cylinders as expected in channel flows.
      PubDate: Wed, 28 Apr 2021 07:50:02 +000
       
  • Compressive Covariance Sensing-Based Power Spectrum Estimation of
           Real-Valued Signals Subject to Sub-Nyquist Sampling

    • Abstract: In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated -minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance.
      PubDate: Tue, 27 Apr 2021 10:35:01 +000
       
  • Optimization of AL6061-T6 Tube End Forming Process Using Response Surface
           Method

    • Abstract: Tube end closing is a metal forming process that replaces welding processes while closing tubes ends. It depends on deforming a rotating tube using a roller, and therefore, it is also called tube end spinning. The process involves many parameters like contact depth, roller inclination angle, roller diameter, mandrel curvature, and tube rotational speed. This study develops a finite element model (FE-model) for this process and validates it through experimental results. The numerical and experimental results have shown minor deviation of 1.87%. The FE-model is then employed to carry out a statistical analysis based on the response surface method (RSM). The analysis of variance (ANOVA) and regression analysis have proved the accuracy of the obtained mathematical model. The contact depth has proved to have the most significant effect in the process responses, while the roller diameter has the least effect. Finally, an optimization analysis is carried out to select the finest conditions for the process.
      PubDate: Mon, 12 Apr 2021 05:20:01 +000
       
  • Cellular Automata Model for Mixed Traffic Flow with Lane Changing Behavior

    • Abstract: Indian cities are seen with predominantly mixed traffic plying on the streets. Modeling the mixed traffic involving vehicles characterised of different speed, length, and width is a challenging issue. Based on the finer cell system of cellular automata (CA) models, this paper proposes to evaluate the mixed traffic behavior with cars and motorcycles for intermediate lane width, which is more common in Indian cities. The maximum car flow is observed (even with the presence of motorcycles) in the results which is higher than the Na-Sch model for cars. This increase is mainly due to the changing behavior. The car flow decreases as the density of the motorcycle increases. Furthermore, the paper proposes to evaluate the effect of lane change behavior on the speed and flow of the traffic stream using the fundamental diagrams of speed flow density curves. The simulation result suggests that lane change probability has little effect on the speed and flow of the traffic stream.
      PubDate: Fri, 02 Apr 2021 05:50:01 +000
       
  • Model-Based Hardware-Software Codesign of ECT Digital Processing Unit

    • Abstract: Image reconstruction algorithm and its controller constitute the main modules of the electrical capacitance tomography (ECT) system; in order to achieve the trade-off between the attainable performance and the flexibility of the image reconstruction and control design of the ECT system, hardware-software codesign of a digital processing unit (DPU) targeting FPGA system-on-chip (SoC) is presented. Design and implementation of software and hardware components of the ECT-DPU and their integration and verification based on the model-based design (MBD) paradigm are proposed. The inner-product of large vectors constitutes the core of the majority of these ECT image reconstruction algorithms. Full parallel implementation of large vector multiplication on FPGA consumes a huge number of resources and incurs long combinational path delay. The proposed MBD of the ECT-DPU tackles this problem by crafting a parametric segmented parallel inner-product architecture so as to work as the shared hardware core unit for the parallel matrix multiplication in the image reconstruction and control of the ECT system. This allowed the parameterized core unit to be configured at system-level to tackle large matrices with the segment length working as a design degree of freedom. It allows the trade-off between performance and resource usage and determines the level of computation parallelism. Using MBD with the proposed segmented architecture, the system design can be flexibly tailored to the designer specifications to fulfill the required performance while meeting the resources constraint. In the linear-back projection image reconstruction algorithm, the segmentation scheme has exhibited high resource saving of 43% and 71% for a small degradation in a frame rate of 3% and 14%, respectively.
      PubDate: Wed, 31 Mar 2021 12:50:01 +000
       
  • Study on the Dynamic Response of Landslide Subjected to Earthquake by the
           Improved DDA Method

    • Abstract: Majiagou landslide, a major ancient landslide in Three Gorges Reservoir region, is located in the high earthquake area of southwest China. The 2013 Badong earthquake caused an obvious deformation of landslide monitored by the sliding inclinometer. A strong earthquake may induce the reactivation of ancient landslide. So, it is necessary to research the seismic dynamic response of Majiagou landslide. For this purpose, discontinuous deformation analysis (DDA), improved by introducing the artificial joint and viscous boundary, is applied in this study. The displacements at monitoring points caused by Badong earthquake are calculated and compared with the field data, verifying the numerical method and model. Further, a strong earthquake with the peak acceleration of 1 g is assumed to act on the landside, the initiation and evolution process of landslide is simulated, and the movement features of landslide are discussed. The dynamic failure of landslide and the local amplification of seismic wave can be embodied, indicating that the improved DDA provides an alternative approach for analyzing the seismic dynamic response of jointed rock.
      PubDate: Fri, 26 Mar 2021 12:05:01 +000
       
  • Modelling Sustainable Development Aspects within Inventory Supply
           Strategies

    • Abstract: Nowadays, inventory management is a tool that must be extended to cover all aspects of the supply chain (SC). One of these aspects is Sustainable Development (SD) which emphasizes the balance between economic well-being, natural resources, and society. As inventory involves the use of natural and economic resources, the integration of SD criteria is important for a more efficient and sustainable SC. In this work, the most important SD variables associated with inventory management were identified. These variables were integrated as cost elements within a nondeterministic inventory control model to include SD criteria within inventory supply strategies. Through the assessment of the proposed integrated model, it was determined that, although SD practices involve additional investments, specific practices such as reuse/recycling and government incentives can increase revenue and profits. This is important for the development of government and business strategies to perform sustainable practices.
      PubDate: Thu, 18 Mar 2021 12:35:00 +000
       
  • Numerical High-Order Model for the Nonlinear Elastic Computation of
           Helical Structures

    • Abstract: In this work, we propose a high-order algorithm based on the asymptotic numerical method (ANM) for the nonlinear elastic computation of helical structures without neglecting any nonlinear term. The nonlinearity considered in the following study will be a geometric type, and the kinematics adopted in this numerical modeling takes into account the hypotheses of Timoshenko and de Saint-Venant. The finite element used in the discretization of the middle line of this structure is curvilinear with twelve degrees of freedom. Using a simple example, we show the efficiency of the algorithm which was carried out in this context and which resides in the reduction of the number of inversions of the tangent matrix compared to the incremental iterative algorithm of Newton-Raphson.
      PubDate: Thu, 18 Mar 2021 11:50:02 +000
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.210.237.158
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-