for Journals by Title or ISSN
for Articles by Keywords
help
Followed Journals
Journal you Follow: 0
 
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Journals are published.
Already have an account? Sign In to see the journals you follow.
Journal Cover
Journal of Molecular Medicine
Journal Prestige (SJR): 2.177
Citation Impact (citeScore): 5
Number of Followers: 11  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-1440 - ISSN (Online) 0946-2716
Published by Springer-Verlag Homepage  [2350 journals]
  • Untangling the thread of life spun by αKlotho
    • Authors: Edward R. Smith
      Pages: 857 - 859
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1671-4
      Issue No: Vol. 96, No. 9 (2018)
       
  • Bispecific therapeutic aptamers for targeted therapy of cancer: a review
           on cellular perspective
    • Authors: Somayeh Vandghanooni; Morteza Eskandani; Jaleh Barar; Yadollah Omidi
      Pages: 885 - 902
      Abstract: Abstract Aptamers (Aps), as short single-strand nucleic acids, can bind to their corresponding molecular targets with the high affinity and specificity. In comparison with the monoclonal antibodies (mAbs) and peptides, unique physicochemical and biological characteristics of Aps make them excellent targeting agents for different types of cancer molecular markers (CMMs). Much attention has been paid to the Ap-based multifunctional chimeric and therapeutic systems, which provide promising outcomes in the targeted therapy of various formidable diseases, including malignancies. In the Ap-based chimeric systems, a targeting Ap is conjugated to another therapeutic molecule (e.g., siRNA/miRNA, Ap, toxins, chemotherapeutic agents, DNAzyme/ribozymes) with a capability of binding to a specific cell surface receptor at the desired target site. Having been engineered as multifunctional nanosystems (NSs), Ap-based hybrid scaffolds can be used to concurrently target multiple markers/pathways in cancerous cells, causing drastic inhibitory effects on the growth and the progression of tumor cells. Multi/bispecific Aps composed of two/more Aps provide a versatile tool for the optimal and active targeting of cell surface receptor(s) with markedly high affinity and avidity. Targeting the optimum activity of key receptors and dominant signaling pathways in the activation of immunity, the multi/bispecific Ap-based therapeutics can also be used to enhance the antitumor activity of the immune system. Further, the bispecific systems can be designed to induce cytotoxicity in a heterogeneous population of cancer cells with different CMMs. In this review, we provide some important insights into the construction and applications of the Ap-based chimeric NSs and discuss the multifunctional Ap chimera and their effects on the signaling pathways in cancer.
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1669-y
      Issue No: Vol. 96, No. 9 (2018)
       
  • Autophagy blockade sensitizes human head and neck squamous cell carcinoma
           towards CYT997 through enhancing excessively high reactive oxygen
           species-induced apoptosis
    • Authors: Lixia Gao; Xiangdong Zhao; Liwei Lang; Chloe Shay; W. Andrew Yeudall; Yong Teng
      Pages: 929 - 938
      Abstract: The functional relationship between apoptosis and autophagy in anticancer drug treatment is extremely complex, and the molecular machinery is obscure. This study aims to investigate the efficacy of CYT997, a novel microtubule-disrupting agent, in head and neck squamous cell carcinomas (HNSCCs) and complete the autophagy-apoptosis puzzle involved in drug action. We report here that CYT997 exhibits anticancer activity by triggering oxidative stress-associated apoptosis in HNSCC cells. Interestingly, upregulation of autophagy by mTOR-dependent pathways appears to have a cytoprotective role in preventing apoptosis by inhibiting CYT997-induced excessively high levels of reactive oxygen species (ROS). Blockade of autophagy by ATG7 depletion or addition of autophagy inhibitor hydroxychloroquine (HCQ) sensitizes HNSCC cells to CYT997 as evidenced by enhanced ROS-associated apoptosis. Moreover, HCQ exhibits a good synergism with CYT997 on induction of apoptosis in HNSCC xenografts without cytotoxicity, suggesting combined treatment of CYT997 with autophagy inhibitors would increase the anticancer efficacy of CYT997. These findings unveil the importance of ROS in crosstalk between autophagy and apoptosis in CYT997 treatment, raising concerns that genetic or pharmacologic blockade of autophagy should be considered in the design of new therapeutics for HNSCC. Key messages • CYT997 exhibits anticancer activity by induction of ROS-associated apoptosis. • mTOR-dependent cytoprotective autophagy prevents CYT997-induced apoptosis. • Blockade of autophagy augments CYT997 efficacy by enhanced ROS-associated apoptosis. • Combination of autophagy inhibitors with CYT997 is more effective against HNSCC.
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1670-5
      Issue No: Vol. 96, No. 9 (2018)
       
  • MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular
           apoptotic cell death
    • Authors: Dan Jiao; Huan Zhang; Ziping Jiang; Wenlin Huang; Zhuo Liu; Zhaohui Wang; Yonggang Wang; Hao Wu
      Pages: 939 - 949
      Abstract: Testicular apoptotic cell death (TACD) contributes to diabetes mellitus (DM)-induced male infertility. MicroRNA-34a (miR-34a) is a pro-apoptotic RNA that targets sirtuin 1 (SIRT1) which provides protection against complications of (DM). However, the specific role of miR-34a in (DM)-induced TACD is unknown. MiR-34a targets Sirt1 mRNA, resulting in apoptosis. However, whether or not SIRT1 is a major target of miR-34a in (DM)-induced TACD is unclear. The present study aimed to define the role of miR-34a/SIRT1 in (DM)-induced TACD. C57BL/6 male mice were induced to (DM) by streptozotocin, for a period of 24 weeks. The expression of miR-34a and Sirt1 as well as apoptotic cell death was determined in the testes of the non-diabetic, diabetic, and the miR-34a-specific inhibitor (miR-34a-I)-treated diabetic mice. In addition, the novel SIRT1 activator SRT2104 was delivered to the mice to determine the role of SIRT1 in DM-induced TACD. The diabetic mice developed remarkable testicular oxidative stress, endoplasmic reticulum stress, and apoptotic cell death, the effects of which were significantly and similarly attenuated by both miR-34a-I and SRT2104. Mechanistically, the DM-induced testicular elevation of miR-34a and the decrease in SIRT1 protein were markedly prevented by both miR-34a-I and SRT2104, to a similar extent. The present study demonstrates a critical role of miR-34a/SIRT1 in DM-induced TACD, providing miR-34a inhibition and SIRT1 activation as novel strategies in clinical management of DM-induced male infertility. Key messages MiR-34a mediates diabetes-induced TACD via inhibition of SIRT1. The novel SIRT1 activator SRT2104 attenuates diabetes-induced TACD. MiR-34a inhibition activates SIRT1 and prevents diabetes-induced TACD.
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1667-0
      Issue No: Vol. 96, No. 9 (2018)
       
  • Activation of histamine H 4 receptor suppresses the proliferation and
           invasion of esophageal squamous cell carcinoma via both metabolism and
           non-metabolism signaling pathways
    • Authors: Gong-Hao He; Jia-Qi Ding; Xin Zhang; Wen-Mang Xu; Xiao-Qian Lin; Mei-Jin Huang; Ju Feng; Ping Wang; Wen-Ke Cai
      Pages: 951 - 964
      Abstract: Although dysregulation of histamine H4 receptor (H4R) has widely and frequently been documented in digestive carcinomas and correlates with the malignancy and proliferation of these tumors, the existence of H4R and its pathophysiological function in esophageal squamous cell carcinoma (ESCC) remains unknown. In our present study, we explored the expression and function of H4R in human ESCC samples and cell lines. H4R was overexpressed in poorly differentiated ESCC samples and cell lines and correlated with the median survival of ESCC patients. H4R activation not only significantly blocked cell proliferation, cell cycle, and invasion but also inhibited the growth of TE-2 xenografts and increased the survival of xenograft-bearing mice. According to the mechanistic experiments, both metabolism (acetyl-coenzyme A synthetase 2 (ACSS2))- and non-metabolism (mitogen-activated protein kinase (MAPK))-related pathways were involved in the effect of H4R activation on suppressing tumor proliferation and invasion. Based on these findings, H4R was overexpressed in esophageal cancer and exerted antitumor effects on ESCC proliferation and invasion, suggesting that H4R may be a novel potential target of therapies for ESCC. Key messages The function of H4R in ESCC and the underlying mechanisms were investigated. H4R expression was correlated with ESCC cell differentiation and patients’ survival. Both metabolism (ACSS2) and non-metabolism (MAPK)-related pathways were involved. This study provided new insight into the relationship between H4R and ESCC. H4R may be a novel potential therapeutic target for ESCC.
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1676-z
      Issue No: Vol. 96, No. 9 (2018)
       
  • Therapeutic potential of staphylococcal superantigen-like protein 7 for
           complement-mediated hemolysis
    • Authors: Yan Li; Fiona Clow; John D. Fraser; Feng Lin
      Pages: 965 - 974
      Abstract: Previous studies have demonstrated that staphylococcal superantigen-like protein 7 (SSL7), a protein produced by Staphylococcus aureus, potently inhibits the formation of the complement membrane attack complex by binding to complement component 5 (C5). However, because of the predicted immunogenicity of SSL7 as a foreign protein in humans, its potential as a new complement inhibitor for treating complement-mediated diseases is uncertain. In this study, we found that administration of SSL7 significantly prevented complement-mediated hemolysis and reduced hemoglobinuria in a mouse model of complement-mediated intravascular hemolysis. Interestingly, although repetitive administrations of SSL7 elicited anti-SSL7 antibody production, administration of SSL7 at a dose of 2 μg/mouse was still able to significantly attenuate complement-mediated intravascular hemolysis in vivo in the presence of the antibodies. In addition, even though anti-SSL7 antibodies were detectable in normal human donors, these antibodies did not significantly reduce the complement inhibitory activity of SSL7 in in vitro assays. Finally, inoculation of SSL7 in the anterior chamber of the eye suppressed the production of SSL7-reactive antibodies after repetitive SSL7 administration. These results suggest that SSL7 could be developed as an economical alternative to the existing C5-targeted drug, eculizumab, especially for controlling acute complement activation in catastrophic conditions such as drug-induced immune hemolytic anemia and ABO-incompatible erythrocyte transfusions. These data also suggest that approaches such as anterior chamber-associated immune deviation could be employed to establish an antigen-specific immune tolerance for long-term SSL7 administration. Key messages • SSL7 functions in the presence of anti-SSL7 antibodies both in vitro and in vivo. • SSL7 has the potential to be developed as a new and economical complement inhibitor for treating complement-mediated hemolysis.
      PubDate: 2018-09-01
      DOI: 10.1007/s00109-018-1678-x
      Issue No: Vol. 96, No. 9 (2018)
       
  • Low cleaved caspase-7 levels indicate unfavourable outcome across all
           breast cancers
    • Authors: Andreas U. Lindner; Federico Lucantoni; Damir Varešlija; Alexa Resler; Brona M. Murphy; William M. Gallagher; Arnold D. K. Hill; Leonie S. Young; Jochen H. M. Prehn
      Pages: 1025 - 1037
      Abstract: Elevated levels of the anti-apoptotic BCL2 protein associate with favourable outcome in breast cancer. We investigated whether executioner caspase activation downstream of mitochondrial apoptosis was associated with, or independent, of BCL2’s prognostic signature in breast cancer. Levels of pro- and anti-apoptotic BCL2 family proteins were quantified in triple negative breast cancer (TNBC) samples and utilised to calculate BCL2 profiles of 845 breast cancer patients. Biomarkers including single apoptosis proteins and network-enriched apoptosis system signatures were evaluated using uni- and multi-variate Cox-models. In both TNBC and non-TNBC breast cancer, the anti-apoptotic BCL2 protein was particularly abundant when compared to other solid tumours. High BCL2 protein levels were prognostic of favourable outcome across all breast cancers (HR 0.4, 95% CI 0.2–0.6, Wald p < 0.0001). Although BCL2 and cleaved caspase-7 levels were negatively correlated, levels of cleaved caspase-7 were also associated with favourable outcome (HR 0.4, 95% CI 0.3–0.7, Wald p = 0.001). A combination of low BCL2 and low cleaved caspase-7 protein levels was highly prognostic of unfavourable outcome across all breast cancers (HR 11.29, 95% CI 2.20–58.23, Wald p = 0.01). A combination of BCL2 and cleaved caspase-7 levels is a promising prognostic biomarker in breast cancer patients. Key message BCL2 levels are elevated in breast cancer where they are marker of good prognosis. BCL2 and active caspase levels correlate negatively; yet, active caspases indicate good outcome. Low BCL2 and low caspase-7 are highly prognostic of unfavourable outcome across all breast cancers. BCL2 levels indicate molecular subtype and tumour proliferation status in breast cancer.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1675-0
      Issue No: Vol. 96, No. 10 (2018)
       
  • Tumor necrosis factor (TNF) modulates synaptic plasticity in a
           concentration-dependent manner through intracellular calcium stores
    • Authors: Nicola Maggio; Andreas Vlachos
      Pages: 1039 - 1047
      Abstract: The role of inflammatory signaling pathways in synaptic plasticity has long been identified. Yet, it remains unclear how inflammatory cytokines assert their pleiotropic effects on neural plasticity. Moreover, the neuronal targets through which inflammatory cytokines assert their effects on plasticity remain not well-understood. In an attempt to learn more about the plasticity-modulating effects of the pro-inflammatory cytokine tumor necrosis factor (TNF), we used two-pathway long-term potentiation (LTP) experiments at Schaffer collateral-CA1 synapses to test for concentration-dependent effects of TNF on synaptic plasticity. We report that high concentrations of TNF (1 μg/mL) impair the ability of mouse CA1 pyramidal neurons to express synaptic plasticity without affecting baseline synaptic transmission and/or previously established LTP. Interestingly, 100 ng/mL of TNF has no apparent effect on LTP, while low concentrations (1 ng/mL) promote the ability of neurons to express LTP. These dose-dependent metaplastic effects of TNF are modulated by intracellular calcium stores: Pharmacological activation of intracellular calcium stores with ryanodine (10 μM) reverses the negative effects of TNF[high], and the plasticity-promoting effects of TNF[low] are blocked when intracellular calcium stores are depleted with thapsigargin (1 μM). Consistent with this result, TNF does not promote plasticity in synaptopodin-deficient preparations, which show deficits in neuronal calcium store-mediated synaptic plasticity. Thus, we propose that TNF mediates its pleiotropic effects on synaptic plasticity in a concentration-dependent manner through signaling pathways that are modulated by intracellular calcium stores and require the presence of synaptopodin. These results demonstrate that TNF can act as mediator of metaplasticity, which is of considerable relevance in the context of brain diseases associated with increased TNF levels and alterations in synaptic plasticity. Key messages • TNF modulates the ability of neurons to express synaptic plasticity. • High concentrations of TNF impair synaptic plasticity. • Low concentrations of TNF improve synaptic plasticity. • TNF does not affect previously established long-term potentiation. • Plasticity effects of TNF are modulated by intracellular calcium stores.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1674-1
      Issue No: Vol. 96, No. 10 (2018)
       
  • Genetic ablation of adenosine receptor A3 results in articular cartilage
           degeneration
    • Authors: Ruzanna Shkhyan; Siyoung Lee; Francesca Gullo; Lei Li; Maria Peleli; Mattias Carlstrom; Andrei S. Chagin; Nicholas W. Banks; Sean Limfat; Nancy Q. Liu; Denis Evseenko
      Pages: 1049 - 1060
      Abstract: Osteoarthritis (OA), the most common form of arthritis, is characterized by inflammation of joints and cartilage degradation leading to disability, discomfort, severe pain, inflammation, and stiffness of the joint. It has been shown that adenosine, a purine nucleoside composed of adenine attached to ribofuranose, is enzymatically produced by the human synovium. However, the functional significance of adenosine signaling in homeostasis and pathology of synovial joints remains unclear. Adenosine acts through four cell surface receptors, i.e., A1, A2A, A2B, and A3, and here, we have systematically analyzed mice with a deficiency for A3 receptor as well as pharmacological modulations of this receptor with specific analogs. The data show that adenosine receptor signaling plays an essential role in downregulating catabolic mechanisms resulting in prevention of cartilage degeneration. Ablation of A3 resulted in development of OA in aged mice. Mechanistically, A3 signaling inhibited cellular catabolic processes in chondrocytes including downregulation of Ca2+/calmodulin-dependent protein kinase (CaMKII), an enzyme that promotes matrix degradation and inflammation, as well as Runt-related transcription factor 2 (RUNX2). Additionally, selective A3 agonists protected chondrocytes from cell apoptosis caused by pro-inflammatory cytokines or hypo-osmotic stress. These novel data illuminate the protective role of A3, which is mediated via inhibition of intracellular CaMKII kinase and RUNX2 transcription factor, the two major pro-catabolic regulators in articular cartilage. Key messages Adenosine receptor A3 (A3) knockout results in progressive loss of articular cartilage in vivo. Ablation of A3 results in activation of matrix degradation and cartilage hypertrophy. A3 agonists downregulate RUNX2 and CaMKII expression in osteoarthritic human articular chondrocytes. A3 prevents articular cartilage matrix degradation induced by inflammation and osmotic fluctuations. A3 agonist inhibits proteolytic activity of cartilage-degrading enzymes.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1680-3
      Issue No: Vol. 96, No. 10 (2018)
       
  • STIM1 deficiency is linked to Alzheimer’s disease and triggers cell
           death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca 2+
           entry
    • Authors: Carlos Pascual-Caro; Maria Berrocal; Aida M. Lopez-Guerrero; Alberto Alvarez-Barrientos; Eulalia Pozo-Guisado; Carlos Gutierrez-Merino; Ana M. Mata; Francisco Javier Martin-Romero
      Pages: 1061 - 1079
      Abstract: STIM1 is an endoplasmic reticulum protein with a role in Ca2+ mobilization and signaling. As a sensor of intraluminal Ca2+ levels, STIM1 modulates plasma membrane Ca2+ channels to regulate Ca2+ entry. In neuroblastoma SH-SY5Y cells and in familial Alzheimer’s disease patient skin fibroblasts, STIM1 is cleaved at the transmembrane domain by the presenilin-1-associated γ-secretase, leading to dysregulation of Ca2+ homeostasis. In this report, we investigated expression levels of STIM1 in brain tissues (medium frontal gyrus) of pathologically confirmed Alzheimer’s disease patients, and observed that STIM1 protein expression level decreased with the progression of neurodegeneration. To study the role of STIM1 in neurodegeneration, a strategy was designed to knock-out the expression of STIM1 gene in the SH-SY5Y neuroblastoma cell line by CRISPR/Cas9-mediated genome editing, as an in vitro model to examine the phenotype of STIM1-deficient neuronal cells. It was proved that, while STIM1 is not required for the differentiation of SH-SY5Y cells, it is absolutely essential for cell survival in differentiating cells. Differentiated STIM1-KO cells showed a significant decrease of mitochondrial respiratory chain complex I activity, mitochondrial inner membrane depolarization, reduced mitochondrial free Ca2+ concentration, and higher levels of senescence as compared with wild-type cells. In parallel, STIM1-KO cells showed a potentiated Ca2+ entry in response to depolarization, which was sensitive to nifedipine, pointing to L-type voltage-operated Ca2+ channels as mediators of the upregulated Ca2+ entry. The stable knocking-down of CACNA1C transcripts restored mitochondrial function, increased mitochondrial Ca2+ levels, and dropped senescence to basal levels, demonstrating the essential role of the upregulation of voltage-operated Ca2+ entry through Cav1.2 channels in STIM1-deficient SH-SY5Y cell death. Key messages STIM1 protein expression decreases with the progression of neurodegeneration in Alzheimer’s disease. STIM1 is essential for cell viability in differentiated SH-SY5Y cells. STIM1 deficiency triggers voltage-regulated Ca2+ entry-dependent cell death. Mitochondrial dysfunction and senescence are features of STIM1-deficient differentiated cells.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1677-y
      Issue No: Vol. 96, No. 10 (2018)
       
  • Interferon gamma decreases intestinal epithelial aquaporin 3 expression
           through downregulation of constitutive transcription
    • Authors: Michael A. Peplowski; Michael Dicay; Cristiane H. Baggio; Filip Wysokinski; Bernard Renaux; Morley D. Hollenberg; David Proud; Wallace K. MacNaughton
      Pages: 1081 - 1093
      Abstract: Aquaporin (AQP) 3 expression is altered in inflammatory bowel diseases, although the exact mechanisms regulating AQP abundance are unclear. Although interferon gamma (IFNγ) is centrally involved in intestinal inflammation, the effect of this cytokine on AQP3 expression remains unknown. HT-29 human colonic epithelial cells were treated with IFNγ to assess AQP3 mRNA expression by real-time RT-PCR and functional protein expression through the uptake of radiolabelled glycerol. Transient knockdown of signal transducer and activator of transcription 1 (STAT1), STAT3, Sp1, and Sp3 were performed to determine the involvement of these transcription factors in the IFNγ-induced signalling cascade. AQP3 promoter regions involved in the response to IFNγ were assessed using a luciferase reporter system. Likewise, enteroids derived from human colonic biopsies were also treated with IFNγ to assess for changes in AQP3 mRNA expression. IFNγ decreased AQP3 mRNA expression in HT-29 cells in a time- and concentration-dependent manner and reduced functional AQP3 protein expression (decreased 3H-labelled glycerol uptake). IFNγ also reduced AQP3 expression in enteroids derived from human colonic biopsies. Knockdown of STAT1 partially prevented the IFNγ-induced downregulation of AQP3 expression, whereas STAT3 and Sp3 knockdowns resulted in increased baseline expression of AQP3 but did not alter IFNγ-induced downregulation. Constitutive transcription of AQP3 is downregulated by IFNγ as demonstrated using the luciferase reporter system, with Sp3 bound to the AQP3 promoter as shown by chromatin immunoprecipitation. AQP3 constitutive transcription in intestinal epithelial cells is downregulated by IFNγ. This response requires STAT1 that is postulated to drive the downregulation of AQP3 expression through increased acetylation or decreased deacetylation the AQP3 promoter, ultimately resulting in decreased constitutive transcription of AQP3. Key messages • IFNγ suppresses the expression of AQP3 in intestinal epithelial cells. • Proximal AQP3 promoter elements are sufficient to drive constitutive expression and mediate the IFNγ-induced downregulation of AQP3 mRNA expression. • IFNγ-induced suppression of AQP3 is dependent upon STAT1 expression, but not STAT3, Sp1, or Sp3.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1681-2
      Issue No: Vol. 96, No. 10 (2018)
       
  • Oxidative stress-induced miRNAs modulate AKT signaling and promote
           cellular senescence in uterine leiomyoma
    • Authors: Xiuhua Xu; J. Julie Kim; Yinuo Li; Jia Xie; Changshun Shao; Jian-Jun Wei
      Pages: 1095 - 1106
      Abstract: Uterine leiomyomas (ULM) grow under high oxidative stress due to a hypoxic microenvironment and defects in redox metabolism. AKT is one major pathway activated by reactive oxygen species (ROS) that maintains ULM growth and survival. We previously reported that AKT inactivated by AKT inhibitors can significantly induce cellular senescence in ULM cells. Since some miRNAs are induced by AKT inhibitors in an ROS-dependent manner, we proposed that these miRNAs may modulate AKT function and cellular senescence in ULM. We therefore established ex vivo models of a three-dimensional ULM spheroid culture system to study the role of miRNAs in cellular senescence. Four miRNAs, miR-29b, miR-181a, miR-182, and miR-200c, were found to induce cellular senescence in primary ULM and myometrium spheroid cultures when stably overexpressed. miR-181a and miR-182 were found to repress AKT3 and CCND2, respectively. Correspondingly, RNAi of AKT3 or CCND2 also induced cellular senescence and G0/G1 arrest. Thus, miR-181a and miR-182 may drive cellular senescence in ULM by repressing AKT3 and CCND2 activity, respectively. We further demonstrated that senescent ULM cells can be effectively removed by BH3 mimetic ABT263, which provides a new therapeutic venue for the treatment of ULM. Our findings suggest that miRNAs are potent modulators in regulating the ROS-AKT-cell cycle axis in uterine leiomyoma. Key messages A subset of oxidative stress-induced miRNAs is involved in AKT signaling in uterine leiomyoma. Overexpression of miR-181a and miR-182 resulted in cellular senescence in leiomyoma through repression of AKT3 and CCND2, respectively. Silencing of AKT3 and CCND2 drives leiomyoma cell into senescence and cycle arrest. Application of our newly developed 3D leiomyoma spheroids can provide a quick and reliable ex vivo model for cytopathologic and functional analysis. BH3 mimetics can effectively reduce the viability of miRNA-mediated senescent cells in leiomyoma.
      PubDate: 2018-10-01
      DOI: 10.1007/s00109-018-1682-1
      Issue No: Vol. 96, No. 10 (2018)
       
  • Targeting senescence to delay progression of multiple sclerosis
    • Authors: Wendy Oost; Nynke Talma; Jan F. Meilof; Jon D. Laman
      Abstract: Abstract Multiple sclerosis (MS) is a chronic and often progressive, demyelinating disease of the central nervous system (CNS) white and gray matter and the single most common cause of disability in young adults. Age is one of the factors most strongly influencing the course of progression in MS. One of the hallmarks of aging is cellular senescence. The elimination of senescent cells with senolytics has very recently been shown to delay age-related dysfunction in animal models for other neurological diseases. In this review, the possible link between cellular senescence and the progression of MS is discussed, and the potential use of senolytics as a treatment for progressive MS is explored. Currently, there is no cure for MS and there are limited treatment options to slow the progression of MS. Current treatment is based on immunomodulatory approaches. Various cell types present in the CNS can become senescent and thus potentially contribute to MS disease progression. We propose that, after cellular senescence has indeed been shown to be directly implicated in disease progression, administration of senolytics should be tested as a potential therapeutic approach for the treatment of progressive MS.
      PubDate: 2018-09-18
      DOI: 10.1007/s00109-018-1686-x
       
  • High-fat diet consumption reduces hepatic folate transporter expression
           via nuclear respiratory factor-1
    • Authors: Victoria Sid; Yaw L. Siow; Yue Shang; Connie W. Woo; Karmin O
      Abstract: Folate is an essential micronutrient for biological function. The liver, a primary organ for folate metabolism and storage, plays an important role in folate homeostasis. Proton-coupled folate transporter (PCFT) and reduced folate carrier (RFC) are the major folate transporters responsible for folate uptake at basolateral membrane of hepatocytes. Low serum folate levels are frequently associated with obesity. We investigated the mechanism that regulated folate status in a mouse model with diet-induced obesity. Mice (C57BL/6J) were fed a high-fat diet (60% kcal fat) for 8 weeks. Mice displayed increased hepatic lipid accumulation and decreased folate levels in the liver and serum compared to mice fed a normal chow diet (10% kcal fat). High-fat diet-fed mice had low expression of PCFT and RFC and decreased nuclear respiratory factor-1 (NRF-1)/DNA-binding activity. Treatment with NRF-1 siRNA or palmitic acid reduced folate transporter expression in hepatocytes. Inhibition of NRF-1 mediated folate transporter expression significantly reduced intracellular folate levels. These results suggest that chronic consumption of high-fat diets impairs folate transporter expression via NRF-1-dependent mechanism, leading to reduced hepatic folate storage. Understanding the regulation of folate homeostasis in obesity may have an important implication in current guideline of folate intake. Key messages Serum and liver folate levels are decreased in diet-induced obese mice. Chronic high-fat diet consumption impairs expression of hepatic PCFT and RFC. NRF-1 regulates hepatic folate transporters expression and folate levels.
      PubDate: 2018-09-04
      DOI: 10.1007/s00109-018-1688-8
       
  • Dietary phytol reduces clinical symptoms in experimental autoimmune
           encephalomyelitis (EAE) at least partially by modulating NOX2 expression
    • Authors: Leonard Blum; Nadja Tafferner; Ilknur Spring; Jennifer Kurz; Natasja deBruin; Gerd Geisslinger; Michael J. Parnham; Susanne Schiffmann
      Abstract: Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. We investigated the effect of phytol in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), as phytol, a plant-derived diterpene alcohol, exerts anti-inflammatory and redox-protective actions. We observed a significant amelioration of clinical symptoms in EAE C57BL/6N mice fed prophylactically with a phytol-enriched diet. Demyelination, DNA damage, and infiltration of immune cells, specifically TH1 cells, into the central nervous system were reduced in phytol-fed EAE mice. Furthermore, phytol reduced T-cell proliferation ex vivo. Phytanic acid — a metabolite of phytol — also reduced T-cell proliferation, specifically that of TH1 cells. Additionally, phytol-enriched diet increased the mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 2 in white blood cells in the lymph nodes. Accordingly, phytol lost its anti-inflammatory effects in chimeric EAE C57BL/6N mice whose peripheral cells lack NOX2, indicating that phytol mediates its effects in peripheral cells via NOX2. Moreover, the effects of phytol on T-cell proliferation were also NOX2-dependent. In contrast, the T-cell subtype alterations and changes in proliferation induced by phytanic acid, the primary metabolite of phytol, were NOX2-independent. In conclusion, phytol supplementation of the diet leads to amelioration of EAE pathology in both a NOX2-dependent and a NOX2-independent manner via yet unknown mechanisms. Key messages Phytol diet ameliorates EAE pathology. Phytol diet reduces demyelination, immune cell infiltration, and T-cell proliferation. Phytol diet increases NOX2 mRNA expression in white blood cells in the lymph nodes. Phytol mediates its effects in peripheral cells via NOX2. Effects of phytol on T-cell proliferation were NOX2-dependent.
      PubDate: 2018-08-27
      DOI: 10.1007/s00109-018-1689-7
       
  • MicroRNA 675 cooperates PKM2 to aggravate progression of human liver
           cancer stem cells induced from embryonic stem cells
    • Authors: Yuxin Yang; Qiuyu Meng; Chen Wang; Xiaonan Li; Yanan Lu; Xiaoru Xin; Qidi Zheng; Dongdong Lu
      Abstract: Abstract Both miR675 and pyruvate kinase M2 (PKM2) contribute to malignant progression of tumor, but its functions in liver cancer stem cells remain unclear. Herein, our findings indicate that miR675 plus PKM2 strongly promotes the growth of liver cancer stem cells. Mechanistically, miR675 plus PKM2 enhances the transcriptional activity of SUV39h2. On the other hand, the excessive SUV39h2 binds to more substrate histone H3, triggering an increase of tri-methylation of histone H3 on the ninth lysine. Furthermore, the tri-methylation of histone 3 on the ninth lysine (H3K9me3)-heterochromatin protein 1 alpha (HP1α) complex is increased when the complex occupancy ability on the C-myc promoter region is raised, recruiting CREB, P300, and RNApolII to the special position that results in C-myc high abundance. Therefore, miR675 plus PKM2 triggered the upregulation of C-myc by increasing the interaction between H3K9me3 and HP1α. Understanding the signaling pathways that miR675 plus PKM2 epigenetically possesses during the malignant transformation of liver cancer stem cells will contribute to more effective liver cancer therapies.
      PubDate: 2018-08-23
      DOI: 10.1007/s00109-018-1687-9
       
  • Translating emerging molecular genetic insights into clinical practice in
           inherited cardiomyopathies
    • Authors: Babken Asatryan; Argelia Medeiros-Domingo
      Abstract: Abstract Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
      PubDate: 2018-08-20
      DOI: 10.1007/s00109-018-1685-y
       
  • Regulation of IL-1 signaling by the decoy receptor IL-1R2
    • Authors: Thomas Schlüter; Carsten Schelmbauer; Khalad Karram; Ilgiz A. Mufazalov
      Abstract: Abstract The pleiotropic cytokine IL-1 mediates its biological functions via association with the signaling receptor IL-1R1. Despite an apparent simplicity in IL-1 signaling activation, multiple negative regulators have been identified. The decoy receptor IL-1R2 (also known as CD121b) can suppress IL-1 maturation, sequester its active forms or hinder the signaling complex assembly. IL-1R2 is differentially expressed among numerous cell types and displays cis- and trans- modes of action. In this review, we link different forms of IL-1R2 (membrane-bound (mIL-1R2), secreted (sIL-1R2), shedded (shIL-1R2), cytoplasmic, and intracellular domain (IL-1R2ICD) restricted) with their ability to interfere with IL-1, thereby regulating immune responses. We also discuss the intriguing possible function of IL-1R2 as a transcriptional regulator. Finally, we summarize the known impact of IL-1R2 in disease pathogenesis and discuss its potential role in treatment of inflammatory conditions.
      PubDate: 2018-08-15
      DOI: 10.1007/s00109-018-1684-z
       
  • Cell-specific gene therapy driven by an optimized hypoxia-regulated vector
           reduces choroidal neovascularization
    • Authors: Manas R. Biswal; Howard M. Prentice; George W. Smith; Ping Zhu; Yao Tong; C. Kathleen Dorey; Alfred S. Lewin; Janet C. Blanks
      Abstract: Aberrant growth of blood vessels in the choroid layer of the eye, termed choroidal neovascularization (CNV), is the pathological hallmark of exudative age-related macular degeneration (AMD), causing irreversible blindness among the elderly. Co-localization of proangiogenic factors and hypoxia inducible factors (HIF) in neovascular membranes from AMD eyes suggests the role of hypoxia in pathogenesis of CNV. In order to utilize hypoxic conditions in RPE for therapeutic purposes, we developed an optimized hypoxia regulated, RPE cell-specific gene therapy to inhibit choroidal neovascularization. An adeno-associated virus (AAV2) vector comprising a RPE-specific promoter and HIF-1 response elements (HRE) was designed to regulate production of human endostatin (a powerful angiostatic protein) in RPE. The vector was tested in a mouse model of laser-induced CNV using subretinal delivery. Spectral domain optical coherence tomography (SD-OCT) images from live mice and confocal images from lectin stained RPE flat mount sections demonstrated reduction in CNV areas by 80% compared to untreated eyes. Quantitative real-time polymerase chain reaction (qPCR) confirmed exogenous endostatin mRNA expression from the regulated vector that was significantly elevated 3, 7, and 14 days following laser treatment, but its expression was completely shut off after 45 days. Thus, RPE-specific, hypoxia-regulated delivery of anti-angiogenic proteins could be a valuable therapeutic approach to treat neovascular AMD at the time and in the ocular space where it arises. Key points An optimized gene therapy vector targeting hypoxia and tissue-specific expression has been designed. The inhibitory role of gene therapy vector was tested in a mouse model of laser-induced CNV. An 80% reduction in choroidal neovascularization was achieved by the optimized vector. The expression of endostatin was limited to retinal pigment epithelium and regulated by hypoxia.
      PubDate: 2018-08-13
      DOI: 10.1007/s00109-018-1683-0
       
  • Adenosinergic signaling as a target for natural killer cell immunotherapy
    • Authors: Jiao Wang; Sandro Matosevic
      Abstract: Abstract Purinergic signaling through adenosine plays a key role in immune regulation. Hypoxia-driven accumulation of extracellular adenosine results in the generation of an immunosuppressive niche that fuels tumor development. Such immunometabolic modulation has shown to be a promising therapeutic target through blockade of adenosine receptors which mediate adenosine’s immunosuppressive function, or cancer-associated ectonucleotidases CD39 and CD73 that catalyze the synthesis of adenosine. Adenosinergic signaling heavily implicates natural killer cells through both direct and indirect effects on their cytolytic activity, expression of cytotoxic granules, interferon-γ, and activating receptors. Continuing work has uncovered multiple checkpoints linked to adenosine within the purinergic signaling cascade as contributing to immune evasion from NK cell effector function. Here, we discuss these checkpoints and the recent body of work that focuses on adenosinergic signaling as a target for natural killer cell of cancer.
      PubDate: 2018-08-01
      DOI: 10.1007/s00109-018-1679-9
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.166.203.17
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-