Journal Cover
Journal of Neuroscience
Journal Prestige (SJR): 4.466
Citation Impact (citeScore): 6
Number of Followers: 315  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 0270-6474 - ISSN (Online) 1529-2401
Published by Society for Neuroscience Homepage  [2 journals]
  • This Week in The Journal
    • Pages: 495 - 495
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.twij.40.3.2020
      Issue No: Vol. 40, No. 3 (2020)
       
  • Graded Coexpression of Ion Channel, Neurofilament, and Synaptic Genes in
           Fast-Spiking Vestibular Nucleus Neurons
    • Authors: Kodama, T; Gittis, A. H, Shin, M, Kelleher, K, Kolkman, K. E, McElvain, L, Lam, M, du Lac, S.
      Pages: 496 - 508
      Abstract: Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1500-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of
           the Medial Nucleus of the Trapezoid Body
    • Authors: Torres Cadenas, L; Fischl, M. J, Weisz, C. J. C.
      Pages: 509 - 525
      Abstract: Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1288-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • The Nebulin Family LIM and SH3 Proteins Regulate Postsynaptic Development
           and Function
    • Authors: Myers, K. R; Yu, K, Kremerskothen, J, Butt, E, Zheng, J. Q.
      Pages: 526 - 541
      Abstract: Neuronal dendrites have specialized actin-rich structures called dendritic spines that receive and integrate most excitatory synaptic inputs. The stabilization of dendrites and spines during neuronal maturation is essential for proper neural circuit formation. Changes in dendritic morphology and stability are largely mediated by regulation of the actin cytoskeleton; however, the underlying mechanisms remain to be fully elucidated. Here, we present evidence that the nebulin family members LASP1 and LASP2 play an important role in the postsynaptic development of rat hippocampal neurons from both sexes. We find that both LASP1 and LASP2 are enriched in dendritic spines, and their knockdown impairs spine development and synapse formation. Furthermore, LASP2 exerts a distinct role in dendritic arbor and dendritic spine stabilization. Importantly, the actin-binding N-terminal LIM domain and nebulin repeats of LASP2 are required for spine stability and dendritic arbor complexity. These findings identify LASP1 and LASP2 as novel regulators of neuronal circuitry.SIGNIFICANCE STATEMENT Proper regulation of the actin cytoskeleton is essential for the structural stability of dendrites and dendritic spines. Consequently, the malformation of dendritic structures accompanies numerous neurologic disorders, such as schizophrenia and autism. Nebulin family members are best known for their role in regulating the stabilization and function of actin thin filaments in muscle. The two smallest family members, LASP1 and LASP2, are more structurally diverse and are expressed in a broader array of tissues. While both LASP1 and LASP2 are highly expressed in the brain, little is currently known about their function in the nervous system. In this study, we demonstrate the first evidence that LASP1 and LASP2 are involved in the formation and long-term maintenance of dendrites and dendritic spines.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.0334-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • CCB is Involved in Actin-Based Axonal Transport of Selected Synaptic
           Proteins
    • Authors: Martin-Pena, A; Ferrus, A.
      Pages: 542 - 556
      Abstract: Synapse formation, maturation, and turnover require a finely regulated transport system that delivers selected cargos to specific synapses. However, the supporting mechanisms of this process are not fully understood. The present study unravels a new molecular system for vesicle-based axonal transport of proteins in male and female flies (Drosophila melanogaster). Here, we identify the gene CG14579 as the transcription unit corresponding to the regulatory mutations known as central complex broad (ccb). These mutations were previously isolated for their morphological phenotype in R-neurons of the ellipsoid body, a component of the central complex. Mutant axons from R-neurons fail to cross the midline, which is indicative of an aberrant composition of the growth cone. However, the molecular mechanism remained to be deciphered. In this manuscript, we show that CCB is involved in axonal trafficking of FasII and synaptobrevin, but not syntaxin. These results suggest that axonal transport of certain proteins is required for the correct pathfinding of R-neurons. We further investigated the molecular network supporting the CCB system and found that CCB colocalizes and coimmunoprecipitates with Rab11. Epistasis studies indicated that Rab11 is positioned downstream of CCB within this axonal transport system. Interestingly, ccb also interacts with actin and the actin nucleator spire. The data revealed that this interaction plays a key role in the development of axonal connections within the ellipsoid body. We propose that the CCB/Rab11/SPIRE system regulates axonal trafficking of synaptic proteins required for proper connectivity and synaptic function.SIGNIFICANCE STATEMENT Proper function of the nervous system requires the establishment of mature, functional synapses. Differential protein composition in the synapse enables optimal performance of cognitive tasks. Therefore, it is critical to have a finely regulated transport system to deliver selected synaptic proteins to synapses. Remarkably, impairments in cytoskeleton-based protein-transport systems often underlie cognitive deficits, such as those associated with aging and neurodegenerative diseases. This study reveals that CCB is part of a novel transport system that delivers certain synaptic proteins via the actin cytoskeleton within the Rab11-related domain of slow recycling endosomes.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.0915-18.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating
           Parkin Protein Turnover
    • Authors: Zhang, J; Shang, Y, Kamiya, S, Kotowski, S. J, Nakamura, K, Huang, E. J.
      Pages: 557 - 568
      Abstract: Mitochondria are important sources of energy, but they are also the target of cellular stress, toxin exposure, and aging-related injury. Persistent accumulation of damaged mitochondria has been implicated in many neurodegenerative diseases. One highly conserved mechanism to clear damaged mitochondria involves the E3 ubiquitin ligase Parkin and PTEN-induced kinase 1 (PINK1), which cooperatively initiate the process called mitophagy that identifies and eliminates damaged mitochondria through the autophagosome and lysosome pathways. Parkin is a mostly cytosolic protein, but is rapidly recruited to damaged mitochondria and target them for mitophagy. Moreover, Parkin interactomes also involve signaling pathways and transcriptional machinery critical for survival and cell death. However, the mechanism that regulates Parkin protein level remains poorly understood. Here, we show that the loss of homeodomain interacting protein kinase 2 (HIPK2) in neurons and mouse embryonic fibroblasts (MEFs) has a broad protective effect from cell death induced by mitochondrial toxins. The mechanism by which Hipk2–/– neurons and MEFs are more resistant to mitochondrial toxins is in part due to the role of HIPK2 and its kinase activity in promoting Parkin degradation via the proteasome-mediated mechanism. The loss of HIPK2 leads to higher cytosolic Parkin protein levels at basal conditions and upon exposure to mitochondrial toxins, which protects mitochondria from toxin-induced damage. In addition, Hipk2–/– neurons and MEFs show increased expression of PGC-1α (peroxisome proliferator-activated receptor- coactivator 1), a Parkin downstream target that can provide additional benefits via transcriptional activation of mitochondrial genes. Together, these results reveal a previously unrecognized avenue to target HIPK2 in neuroprotection via the Parkin-mediated pathway.SIGNIFICANCE STATEMENT In this study, we provide evidence that homeodomain interacting protein kinase 2 (HIPK2) and its kinase activity promote Parkin degradation via the proteasome-mediated pathway. The loss of HIPK2 increases cytosolic and mitochondrial Parkin protein levels under basal conditions and upon exposure to mitochondrial toxins, which protect mitochondria from toxin-induced damage. In addition, Hipk2–/– neurons and mouse embryonic fibroblasts also show increased expression of PGC-1α (peroxisome proliferator-activated receptor- coactivator 1), a Parkin downstream target that can provide additional benefits via transcriptional activation of mitochondrial genes. These results indicate that targeting HIPK2 and its kinase activity can have neuroprotective effects by elevating Parkin protein levels.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.2017-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes
           Susceptibility and Resilience to Anhedonia
    • Authors: Prakash, N; Stark, C. J, Keisler, M. N, Luo, L, Der-Avakian, A, Dulcis, D.
      Pages: 569 - 584
      Abstract: Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1802-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Long-term Monocular Deprivation during Juvenile Critical Period Disrupts
           Binocular Integration in Mouse Visual Thalamus
    • Authors: Huh, C. Y. L; Abdelaal, K, Salinas, K. J, Gu, D, Zeitoun, J, Figueroa Velez, D. X, Peach, J. P, Fowlkes, C. C, Gandhi, S. P.
      Pages: 585 - 604
      Abstract: Study of the neural deficits caused by mismatched binocular vision in early childhood has predominantly focused on circuits in the primary visual cortex (V1). Recent evidence has revealed that neurons in mouse dorsolateral geniculate nucleus (dLGN) can undergo rapid ocular dominance plasticity following monocular deprivation (MD). It remains unclear, however, whether the long-lasting deficits attributed to MD during the critical period originate in the thalamus. Using in vivo two-photon Ca2+ imaging of dLGN afferents in superficial layers of V1 in female and male mice, we demonstrate that 14 d MD during the critical period leads to a chronic loss of binocular dLGN inputs while sparing response strength and spatial acuity. Importantly, MD leads to profoundly mismatched visual tuning properties in remaining binocular dLGN afferents. Furthermore, MD impairs binocular modulation, reducing facilitation of responses of both binocular and monocular dLGN inputs during binocular viewing. As predicted by our findings in thalamic inputs, Ca2+ imaging from V1 neurons revealed spared spatial acuity but impaired binocularity in L4 neurons. V1 L2/3 neurons in contrast displayed deficits in both binocularity and spatial acuity. Our data demonstrate that critical-period MD produces long-lasting disruptions in binocular integration beginning in early binocular circuits in dLGN, whereas spatial acuity deficits first arise from circuits further downstream in V1. Our findings indicate that the development of normal binocular vision and spatial acuity depend upon experience-dependent refinement of distinct stages in the mammalian visual system.SIGNIFICANCE STATEMENT Abnormal binocular vision and reduced acuity are hallmarks of amblyopia, a disorder that affects 2%–5% of the population. It is widely thought that the neural deficits underlying amblyopia begin in the circuits of primary visual cortex. Using in vivo two-photon calcium imaging of thalamocortical axons in mice, we show that depriving one eye of input during a critical period in development chronically impairs binocular integration in thalamic inputs to primary visual cortex. In contrast, visual acuity is spared in thalamic inputs. These findings shed new light on the role for developmental mechanisms in the thalamus in establishing binocular vision and may have critical implications for amblyopia.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1626-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Level of Consciousness Is Dissociable from Electroencephalographic
           Measures of Cortical Connectivity, Slow Oscillations, and Complexity
    • Authors: Pal, D; Li, D, Dean, J. G, Brito, M. A, Liu, T, Fryzel, A. M, Hudetz, A. G, Mashour, G. A.
      Pages: 605 - 618
      Abstract: Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25–155 Hz), slow oscillations (0.5–1 Hz), and complexity (
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1910-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Excitatory-Inhibitory Synaptic Coupling in Avian Nucleus Magnocellularis
    • Authors: Al-Yaari, M; Yamada, R, Kuba, H.
      Pages: 619 - 631
      Abstract: The activity of neurons is determined by the balance between their excitatory and inhibitory synaptic inputs. Neurons in the avian nucleus magnocellularis (NM) integrate monosynaptic excitatory and polysynaptic inhibitory inputs from the auditory nerve, and transmit phase-locked output to higher auditory centers. The excitatory input is graded tonotopically, such that neurons tuned to higher frequency receive fewer, but larger, axon terminals. However, it remains unknown how the balance between excitatory and inhibitory inputs is determined in NM. We here examined synaptic and spike responses of NM neurons during stimulation of the auditory nerve in thick brain slices of chicken of both sexes, and found that the excitatory–inhibitory balance varied according to tonotopic region, ensuring reliable spike output across frequencies. Auditory nerve stimulation elicited IPSCs in NM neurons regardless of tonotopic region, but the dependence of IPSCs on intensity varied in a systematic way. In neurons tuned to low frequency, IPSCs appeared and increased in parallel with EPSCs with elevation of intensity, which expanded dynamic range by preventing saturation of spike generation. On the other hand, in neurons tuned to higher frequency, IPSCs were smaller than EPSCs and had higher thresholds for activation, thus facilitating high-fidelity transmission. Computer simulation confirmed that these differences in inhibitory input were optimally matched to the patterns of excitatory input, and enabled appropriate level of neuronal output for wide intensity and frequency ranges of sound in the auditory system.SIGNIFICANCE STATEMENT Neurons in nucleus magnocellularis encode timing information of sound across wide intensity ranges by integrating excitatory and inhibitory synaptic inputs from the auditory nerve, but underlying synaptic mechanisms of this integration are not fully understood. We here show that the excitatory–inhibitory relationship was expressed differentially at each tonotopic region; the relationship was linear in neurons tuned to low-frequency, expanding dynamic range by preventing saturation of spike generation; by contrast inhibitory input remained much smaller than excitatory input in neurons tuned to higher frequency, thus ensuring high-fidelity transmission. The tonotopic regulation of excitatory and inhibitory input optimized the output across frequencies and intensities, playing a fundamental role in the timing coding pathway in the auditory system.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1124-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Manipulations of Central Amygdala Neurotensin Neurons Alter the
           Consumption of Ethanol and Sweet Fluids in Mice
    • Authors: Torruella-Suarez, M. L; Vandenberg, J. R, Cogan, E. S, Tipton, G. J, Teklezghi, A, Dange, K, Patel, G. K, McHenry, J. A, Hardaway, J. A, Kantak, P. A, Crowley, N. A, DiBerto, J. F, Faccidomo, S. P, Hodge, C. W, Stuber, G. D, McElligott, Z. A.
      Pages: 632 - 647
      Abstract: The central nucleus of the amygdala plays a significant role in alcohol use and other affective disorders; however, the genetically-defined neuronal subtypes and projections that govern these behaviors are not well known. Here we show that neurotensin neurons in the central nucleus of the amygdala of male mice are activated by in vivo ethanol consumption and that genetic ablation of these neurons decreases ethanol consumption and preference in non-ethanol-dependent animals. This ablation did not impact preference for sucrose, saccharin, or quinine. We found that the most robust projection of the central amygdala neurotensin neurons was to the parabrachial nucleus, a brain region known to be important in feeding behaviors, conditioned taste aversion, and alarm. Optogenetic stimulation of projections from these neurons to the parabrachial nucleus is reinforcing, and increases ethanol drinking as well as consumption of sucrose and saccharin solutions. These data suggest that this central amygdala to parabrachial nucleus projection influences the expression of reward-related phenotypes and is a novel circuit promoting consumption of ethanol and palatable fluids.SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health burden worldwide. Although ethanol consumption is required for the development of AUD, much remains unknown regarding the underlying neural circuits that govern initial ethanol intake. Here we show that ablation of a population of neurotensin-expressing neurons in the central amygdala decreases intake of and preference for ethanol in non-dependent animals, whereas the projection of these neurons to the parabrachial nucleus promotes consumption of ethanol as well as other palatable fluids.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1466-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Top-Down Feedback Controls the Cortical Representation of Illusory
           Contours in Mouse Primary Visual Cortex
    • Authors: Pak, A; Ryu, E, Li, C, Chubykin, A. A.
      Pages: 648 - 660
      Abstract: Visual systems have evolved to recognize and extract features from complex scenes using limited sensory information. Contour perception is essential to this process and can occur despite breaks in the continuity of neighboring features. Such robustness of the animal visual system to degraded or occluded shapes may also give rise to an interesting phenomenon of optical illusions. These illusions provide a great opportunity to decipher neural computations underlying contour integration and object detection. Kanizsa illusory contours have been shown to evoke responses in the early visual cortex despite the lack of direct receptive field activation. Recurrent processing between visual areas has been proposed to be involved in this process. However, it is unclear whether higher visual areas directly contribute to the generation of illusory responses in the early visual cortex. Using behavior, in vivo electrophysiology, and optogenetics, we first show that the primary visual cortex (V1) of male mice responds to Kanizsa illusory contours. Responses to Kanizsa illusions emerge later than the responses to the contrast-defined real contours in V1. Second, we demonstrate that illusory responses are orientation-selective. Finally, we show that top-down feedback controls the neural correlates of illusory contour perception in V1. Our results suggest that higher-order visual areas may fill in the missing information in the early visual cortex necessary for illusory contour perception.SIGNIFICANCE STATEMENT Perception of the Kanizsa illusory contours is impaired in neurodevelopmental disorders such as schizophrenia, autism, and Williams syndrome. However, the mechanism of the illusory contour perception is poorly understood. Here we describe the behavioral and neural correlates of Kanizsa illusory contours perception in mice, a genetically tractable model system. We show that top-down feedback controls the neural responses to Kanizsa illusion in V1. To our knowledge, this is the first description of the neural correlates of the Kanizsa illusion in mice and the first causal demonstration of their regulation by top-down feedback.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1998-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making
    • Authors: Chen, X; Voets, S, Jenkinson, N, Galea, J. M.
      Pages: 661 - 670
      Abstract: From psychology to economics, there has been substantial interest in how costs (e.g., delay, risk) are represented asymmetrically during decision-making when attempting to gain reward or avoid punishment. For example, in decision-making under risk, individuals show a tendency to prefer to avoid punishment rather than to acquire the equivalent reward (loss aversion). Although the cost of physical effort has recently received significant attention, it remains unclear whether loss aversion exists during effort-based decision-making. On the one hand, loss aversion may be hardwired due to asymmetric evolutionary pressure on losses and gains and therefore exists across decision-making contexts. On the other hand, distinct brain regions are involved with different decision costs, making it questionable whether similar asymmetries exist. Here, we demonstrate that young healthy human participants (females, 16; males, 6) exhibit loss aversion during effort-based decision-making by exerting more physical effort to avoid punishment than to gain a same-size reward. Next, we show that medicated Parkinson's disease (PD) patients (females, 9; males, 9) show a reduction in loss aversion compared with age-matched control subjects (females, 11; males, 9). Behavioral and computational analysis revealed that people with PD exerted similar physical effort in return for a reward but were less willing to produce effort to avoid punishment. Therefore, loss aversion is present during effort-based decision-making and can be modulated by altered dopaminergic state. This finding could have important implications for our understanding of clinical disorders that show a reduced willingness to exert effort in the pursuit of reward.SIGNIFICANCE STATEMENT Loss aversion—preferring to avoid punishment rather than to acquire equivalent reward—is an important concept in decision-making under risk. However, little is known about whether loss aversion also exists during decisions where the cost is physical effort. This is surprising given that motor cost shapes human behavior, and a reduced willingness to exert effort is a characteristic of many clinical disorders. Here, we show that healthy human individuals exert more effort to minimize punishment than to maximize reward (loss aversion). We also demonstrate that medicated Parkinson's disease patients exert similar effort to gain reward but less effort to avoid punishment when compared with healthy age-matched control subjects. This indicates that dopamine-dependent loss aversion is crucial for explaining effort-based decision-making.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1760-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Unimodal and Bimodal Access to Sensory Working Memories by Auditory and
           Visual Impulses
    • Authors: Wolff, M. J; Kandemir, G, Stokes, M. G, Akyürek, E. G.
      Pages: 671 - 681
      Abstract: It is unclear to what extent sensory processing areas are involved in the maintenance of sensory information in working memory (WM). Previous studies have thus far relied on finding neural activity in the corresponding sensory cortices, neglecting potential activity-silent mechanisms, such as connectivity-dependent encoding. It has recently been found that visual stimulation during visual WM maintenance reveals WM-dependent changes through a bottom-up neural response. Here, we test whether this impulse response is uniquely visual and sensory-specific. Human participants (both sexes) completed visual and auditory WM tasks while electroencephalography was recorded. During the maintenance period, the WM network was perturbed serially with fixed and task-neutral auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented during the maintenance of a pure tone resulted in a WM-dependent neural response, providing evidence for the auditory counterpart to the visual WM findings reported previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent impulse response, implicating the visual cortex in the maintenance of auditory information, either directly or indirectly, as a pathway to the neural auditory WM representations elsewhere. In contrast, during visual WM maintenance, only the impulse response to visual stimulation was content-specific, suggesting that visual information is maintained in a sensory-specific neural network, separated from auditory processing areas.SIGNIFICANCE STATEMENT Working memory is a crucial component of intelligent, adaptive behavior. Our understanding of the neural mechanisms that support it has recently shifted: rather than being dependent on an unbroken chain of neural activity, working memory may rely on transient changes in neuronal connectivity, which can be maintained efficiently in activity-silent brain states. Previous work using a visual impulse stimulus to perturb the memory network has implicated such silent states in the retention of line orientations in visual working memory. Here, we show that auditory working memory similarly retains auditory information. We also observed a sensory-specific impulse response in visual working memory, while auditory memory responded bimodally to both visual and auditory impulses, possibly reflecting visual dominance of working memory.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1194-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • Extent of Single-Neuron Activity Modulation by Hippocampal Interictal
           Discharges Predicts Declarative Memory Disruption in Humans
    • Authors: Reed, C. M; Mosher, C. P, Chandravadia, N, Chung, J. M, Mamelak, A. N, Rutishauser, U.
      Pages: 682 - 693
      Abstract: Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes.SIGNIFICANCE STATEMENT Interictal epileptiform discharges (IEDs) are thought to be a cause of memory deficits in chronic epilepsy patients, but the underlying mechanisms are not understood. Utilizing single-neuron recordings in epilepsy patients, we found that hippocampal IEDs transiently change firing of hippocampal neurons and disrupted selectively the retrieval, but not encoding, of declarative memories. The extent of the modulation of the individual firing of hippocampal neurons by an IED predicted the extent of reduction of subjective retrieval confidence. Together, these data reveal a specific kind of transient cognitive impairment caused by IEDs and link this impairment to the modulation of the activity of individual neurons. Understanding the mechanisms by which IEDs impact memory is critical for understanding memory impairments in epilepsy patients.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1380-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
  • SIRT3 Haploinsufficiency Aggravates Loss of GABAergic Interneurons and
           Neuronal Network Hyperexcitability in an Alzheimer's Disease Model
    • Authors: Cheng, A; Wang, J, Ghena, N, Zhao, Q, Perone, I, King, T. M, Veech, R. L, Gorospe, M, Wan, R, Mattson, M. P.
      Pages: 694 - 709
      Abstract: Impaired mitochondrial function and aberrant neuronal network activity are believed to be early events in the pathogenesis of Alzheimer's disease (AD), but how mitochondrial alterations contribute to aberrant activity in neuronal circuits is unknown. In this study, we examined the function of mitochondrial protein deacetylase sirtuin 3 (SIRT3) in the pathogenesis of AD. Compared with AppPs1 mice, Sirt3-haploinsufficient AppPs1 mice (Sirt3+/–AppPs1) exhibit early epileptiform EEG activity and seizure. Both male and female Sirt3+/–AppPs1 mice were observed to die prematurely before 5 months of age. When comparing male mice among different genotypes, Sirt3 haploinsufficiency renders GABAergic interneurons in the cerebral cortex vulnerable to degeneration and associated neuronal network hyperexcitability. Feeding Sirt3+/–AppPs1 AD mice with a ketone ester-rich diet increases SIRT3 expression and prevents seizure-related death and the degeneration of GABAergic neurons, indicating that the aggravated GABAergic neuron loss and neuronal network hyperexcitability in Sirt3+/–AppPs1 mice are caused by SIRT3 reduction and can be rescued by increase of SIRT3 expression. Consistent with a protective role in AD, SIRT3 levels are reduced in association with cerebral cortical Aβ pathology in AD patients. In summary, SIRT3 preserves GABAergic interneurons and protects cerebral circuits against hyperexcitability, and this neuroprotective mechanism can be bolstered by dietary ketone esters.SIGNIFICANCE STATEMENT GABAergic neurons provide the main inhibitory control of neuronal activity in the brain. By preserving mitochondrial function, SIRT3 protects parvalbumin and calretinin interneurons against Aβ-associated dysfunction and degeneration in AppPs1 Alzheimer's disease mice, thus restraining neuronal network hyperactivity. The neuronal network dysfunction that occurs in Alzheimer's disease can be partially reversed by physiological, dietary, and pharmacological interventions to increase SIRT3 expression and enhance the functionality of GABAergic interneurons.
      PubDate: 2020-01-15T09:30:25-08:00
      DOI: 10.1523/JNEUROSCI.1446-19.2019
      Issue No: Vol. 40, No. 3 (2020)
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.227.2.246
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-