for Journals by Title or ISSN
for Articles by Keywords
Followed Journals
Journal you Follow: 0
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Jurnals are published.
Already have an account? Sign In to see the journals you follow.
Journal Cover   ISRN Biomedical Engineering
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2314-6346
   Published by ISRN International Scholarly Research Network Homepage  [96 journals]
  • Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control
           of Ankle Joint Muscle Contractions during Functional Electrical

    • Abstract: The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject’s ankle joint angle as controlled by the FES system while having the subject’s body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
      PubDate: Wed, 29 Oct 2014 00:00:00 +000
  • ECG Beats Classification Using Mixture of Features

    • Abstract: Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.
      PubDate: Wed, 17 Sep 2014 07:11:23 +000
  • Measurement of Optical Scattering Coefficient of the Individual Layers of
           the Human Urinary Bladder Using Optical Coherence Tomography

    • Abstract: The author reports measurement of the optical attenuation of the urinary bladder using Optical Coherence Tomography. This method uses the exponential relationship that exists between the intensity of the back-scattered infrared light and the penetration depth. The method is applied to Optical Coherence Tomography images of the human urinary bladder and the scattering coefficients of the top three layers (urothelium, lamina propria, and muscle layers, resp.) are extracted. An optical attenuation ratio of 1 : 6.2 : 4.2 for the three layers is reported.
      PubDate: Sun, 16 Feb 2014 14:07:51 +000
  • Segmentation of Scarred Myocardium in Cardiac Magnetic Resonance Images

    • Abstract: The segmentation of scarred and nonscarred myocardium in Cardiac Magnetic Resonance (CMR) is obtained using different features and feature combinations in a Bayes classifier. The used features are found as a local average of intensity values and the underlying texture information in scarred and nonscarred myocardium. The segmentation classifier was trained and tested with different experimental setups and parameter combinations and was cross validated due to limited data. The experimental results show that the intensity variations are indeed an important feature for good segmentation, and the average area under the Receiver Operating Characteristic (ROC) curve, that is, the AUC, is 91.58 ± 3.2%. The segmentation using texture features also gives good segmentation with average AUC values at 85.89 ± 5.8%, that is, lower than the direct current (DC) feature. However, the texture feature gives robust performance compared to a local mean (DC) feature in a test set simulated from the original CMR data. The segmentation of scarred myocardium is comparable to manual segmentation in all the cross validation cases.
      PubDate: Tue, 31 Dec 2013 17:50:59 +000
  • Mathematical Methods in Biomedical Optics

    • Abstract: This paper presents a review of the phenomena regarding light-tissue interactions, especially absorption and scattering. The most important mathematical approaches for modeling the light transport in tissues and their domain of application: “first-order scattering,” “Kubelka-Munk theory,” “diffusion approximation,” “Monte Carlo simulation,” “inverse adding-doubling” and “finite element method” are briefly described.
      PubDate: Mon, 30 Dec 2013 16:09:19 +000
  • Subcutaneous Administration of D-Luciferin is an Effective Alternative to
           Intraperitoneal Injection in Bioluminescence Imaging of Xenograft Tumors
           in Nude Mice

    • Abstract: Currently, intraperitoneal (IP) injection of D-luciferin is the preferred method of providing substrate for bioluminescence imaging (BLI); however it has a failure rate of 3–10% due to accidental intestinal injection. The present study evaluates the quality of BLI after subcutaneous (SC) injection of D-luciferin and demonstrates the effectiveness of SC injection in anatomically disparate tumor models. Mice bearing luciferase-expressing tumors underwent BLI after SC or IP injection of D-luciferin. The average time to maximal luminescence was 6 min (range 5–9 min) after SC injection and 8 min (range 5–8 min) after IP injection. Within 7 minutes of injection, SC and IP routes yielded similar luminescence in subcutaneous, intracranial, tongue, and lung xenograft tumor models. In a model of combined subcutaneous and intracranial xenografts, SC injection resulted in proportional luminescence at all sites, confirming that preferential delivery of substrate does not occur. While tumors were occasionally not visualized with IP injection, all tumors were visualized reliably with SC injection. Thus, SC injection of D-luciferin is a convenient and effective alternative to IP injection for BLI in nude mice. It may be a preferable approach, particularly for tumors with weaker signals and/or when greater precision is required.
      PubDate: Wed, 18 Dec 2013 17:35:21 +000
  • Teager Energy Based Filter-Bank Cepstra in EEG Classification for Seizure
           Detection Using Radial Basis Function Neural Network

    • Abstract: About 1–3% of the world population suffers from epilepsy. Epileptic seizures are abnormal sudden discharges in the brain with signatures manifesting in the electroencephalograph (EEG) recordings by frequency changes and increased amplitudes. These changes, in this work, are captured through static and dynamic features derived from three Teager energy based filter-bank cepstra (TE-FB-CEPs). We compared the performance of linear, logarithmic, and Mel frequency scale TE-FB-CEPs using radial basis function neural network in general epileptic seizure detection. The comparison is tried on eight different classification problems which encompass all the possible discriminations in the medical field related to epilepsy. In a previous study, using traditional cepstrum on the same database, we had found that the composite vectors showed a degraded performance in seizure detection. In this study, however, irrespective of frequency scaling used, it is found that the composite vectors of TE-FB-CEPs maintain excellent overall accuracy in all the eight classification problems.
      PubDate: Mon, 25 Nov 2013 17:07:07 +000
  • Optical Measurement of Blood Oxygen Saturation of Dental Pulp

    • Abstract: The applicability of arterial pulse oximetry to dental pulp was demonstrated using in vitro and in vivo measurements. First, porcine blood of known oxygen saturation (SO2) was circulated through extracted human upper incisors, while transmitted-light plethysmography was performed using three different visible wavelengths. From the light intensity waveforms measured in vitro, a parameter that is statistically correlated to SO2 was calculated using the pulsatile/nonpulsatile component ratios of two wavelengths for different SO2. Then, values were measured in vivo for living incisors, and the corresponding SO2 values were calculated using the results of in vitro measurements. The estimated SO2 values of the upper central incisors measured in vivo were from 71.0 to 92.7%. This study showed the potential to measure the oxygen saturation changes to identify the sign of pulpal inflammation.
      PubDate: Wed, 06 Nov 2013 15:56:29 +000
  • Application of Linear Prediction for Phase and Magnitude Correction in
           Partially Acquired MRI

    • Abstract: Using the boxcar representation in the spatial domain and a signal-space representation of its frequency-weighted -space, an iterative prediction method is developed to derive an improved low-resolution phase approximation for phase correction. Compared to the homodyne filter, the proposed predictor is found to be more efficient due to its capability of exhibiting an equivalent degree of performance using a lower number of fractional lines. The phase correction performance is illustrated using partially acquired susceptibility weighted images (SWI). An extension of the predictor into higher frequency regions of phase-encodes in conjunction with a signal-space projection in the frequency-weighted partial k-space is shown to provide restoration of fine structural details of sparse magnitude images. The application of subspace projection filtering is demonstrated using magnetic resonance angiogram (MRA).
      PubDate: Tue, 05 Nov 2013 14:14:24 +000
  • Comparison of Baseline Cepstral Vector and Composite Vectors in the
           Automatic Seizure Detection Using Probabilistic Neural Networks

    • Abstract: Epileptic seizures are abnormal sudden discharges in the brain with signatures manifesting in the electroencephalogram (EEG) recordings by frequency changes and increased amplitudes. These changes, in this work, are captured through traditional cepstrum and the cepstrum-derived dynamic features. We compared the performance of the traditional baseline cepstral vector with that of the two composite vectors, the first including velocity cepstral coefficients and the second including velocity and acceleration cepstral coefficients, using probabilistic neural network in general epileptic seizure detection. The comparison is tried on seven different classification problems which encompass all the possible discriminations in the medical field related to epilepsy. In this study, it is found that the overall performance of both the composite vectors deteriorates compared to that of baseline cepstral vector.
      PubDate: Tue, 27 Aug 2013 08:51:03 +000
  • Slip Effects on Pulsatile Flow of Blood through a Stenosed Arterial
           Segment under Periodic Body Acceleration

    • Abstract: A theoretical investigation concerning the influence of externally imposed periodic body acceleration on the flow of blood through a time-dependent stenosed arterial segment by taking into account the slip velocity at the wall of the artery has been carried out. A mathematical model is developed by treating blood as a non-Newtonian fluid obeying the Casson fluid model. The pulsatile flow is analyzed by considering a periodic pressure gradient and the inertial effects as negligibly small. A suitable generalized geometry for time-dependent stenosis is taken into account. Perturbation method is used to solve the coupled implicit system of nonlinear differential equations that govern the flow of blood. Analytical expressions for the velocity profile, volumetric flow rate, and wall shear stress are obtained. A thorough quantitative analysis has been made through numerical computations of the variables involved in the analysis that are of special interest in this study. The computational results are presented graphically. The results for different values of the parameters involved in the problem under consideration presented here show that the flow is appreciably influenced by slip velocity in the presence of periodic body acceleration.
      PubDate: Sun, 18 Aug 2013 12:06:50 +000
  • Study of the Effects of Changing Physiological Conditions on Dielectric
           Properties of Breast Tissues

    • Abstract: This paper addresses the changes in the physical characteristics (temperature and water/blood content) of breast tissue under different physiological conditions. We examined ex vivo specimens of breast tissue excised at the time of surgery to study the effects of physiological conditions on dielectric properties. We observed that the dielectric properties strongly depend on tissue physiological state. When the biological tissues undergo physiological changes, such as those due to disease or those induced by external changes such as variations in the environmental temperature, the microscopic processes deviate from their normal state and impact the overall dielectric properties. This suggests that microwave imaging might be used to monitor the physiological conditions of the body.
      PubDate: Wed, 31 Jul 2013 07:59:28 +000
  • High-Fidelity Visualization of Large Medical Datasets on Commodity

    • Abstract: Recent advances in CT and MRI static and dynamic scanning techniques have led to great improvements in the resolution and size of volumetric medical datasets, and this trend is still ongoing. However, the explosion of dataset size prevents clinicians from taking advantage of an interactive, high-resolution exploration of volumetric medical data on commodity hardware, due to the memory constraints of modern graphics cards. This paper presents a hybrid CPU-GPU volume ray-casting method and some hybrid-based inspection tools aimed at providing interactive, medical-quality visualization using an ordinary desktop PC. Experimental results show that the hybrid method provides a near-interactive high-fidelity visualization of large medical datasets even if only limited hardware resources are available.
      PubDate: Thu, 27 Jun 2013 10:50:24 +000
  • 0.5 V Cardiac Sense Amplifier Realization Using Log-Domain

    • Abstract: A novel configuration of a cardiac sense amplifier for pacemakers, realized using the concept of Log-Domain filtering, is introduced in this paper. The analog part of the amplifier operates under a single 0.5 V power supply voltage. Compared to the corresponding already published configuration, the proposed scheme offers the benefits of reduced operating voltage and dc power dissipation. The performance of the intermediate stages, as well as of the whole system, has been evaluated through the utilization of the Analog Design Environment of the Cadence software and, also, the design kit provided by the AMS 0.35 μm CMOS process.
      PubDate: Sun, 23 Jun 2013 14:58:32 +000
  • Companding Realizations of the Nonlinear Energy Operator

    • Abstract: Realizations of the nonlinear energy operator (NEO), using the concept of companding filtering, are introduced and compared in this work. For this purpose, the Log-Domain and Sinh-Domain filtering techniques have been followed. Both topologies are constructed from differentiator and multiplier blocks which have been realized through the utilization of nonlinear transconductor cells. Both of the proposed topologies offer the capability of ultra-low voltage operation, thanks to the employment of MOS transistors in the weak inversion. Considering a single power supply voltage of 0.5 V, the behavior of the proposed NEO realizations has been simulated using the Analog Design Environment of the Cadence software and the design kit of the TSMC 130 nm process. Comparison results show that the Sinh-Domain realization offers a more power efficient design than that offered by the Log-Domain realization.
      PubDate: Thu, 20 Jun 2013 17:16:06 +000
  • A New Approach to Detect Epileptic Seizures in Electroencephalograms Using
           Teager Energy

    • Abstract: A Teager energy (TE) based approach to discriminate electroencephalogram signals corresponding to nonseizure (eyes open, eyes closed, or interictal) and seizure (ictal) intervals is proposed. Though a good number of contributions have been made for seizure detection, the challenges of unbalanced data (nonseizure and seizure events) and system computational efficiency still remain a challenge. It is reported in the literature that the seizures are characterized by abnormal sudden discharges in the brain which get manifested in the EEG recordings by frequency changes and increased amplitudes. Teager energy (TE) is capable of tracking such rapid changes in frequency as well as amplitude in the time domain. An important finding of this study is that the mean TE quantifier is largely independent of the window length and exhibits relative consistency when used as a relative measure for comparison. We compared the diagnostic capability of TE quantifier with those of Higuchi’s fractal dimension and sample entropy in discriminating nonseizure and seizure states in the EEGs and found that TE outperforms the other two nonlinear quantifiers. The result shows that the application of this method compares favorably with conventional classification methods in terms of performance and is well suited for real-time automatic epileptic seizure detection.
      PubDate: Wed, 19 Jun 2013 15:12:19 +000
  • Artificial Neural Network-Based Automated ECG Signal Classifier

    • Abstract: The ECG signal is well known for its nonlinear dynamic behavior and a key characteristic that is utilized in this research; the nonlinear component of its dynamics changes more significantly between normal and abnormal conditions than does the linear one. As the higher-order statistics (HOS) preserve phase information, this study makes use of one-dimensional slices from the higher-order spectral domain of normal and ischemic subjects. A feedforward multilayer neural network (NN) with error back-propagation (BP) learning algorithm was used as an automated ECG classifier to investigate the possibility of recognizing ischemic heart disease from normal ECG signals. Different NN structures are tested using two data sets extracted from polyspectrum slices and polycoherence indices of the ECG signals. ECG signals from the MIT/BIH CD-ROM, the Normal Sinus Rhythm Database (NSR-DB), and European ST-T database have been utilized in this paper. The best classification rates obtained are 93% and 91.9% using EDBD learning rule with two hidden layers for the first structure and one hidden layer for the second structure, respectively. The results successfully showed that the presented NN-based classifier can be used for diagnosis of ischemic heart disease.
      PubDate: Mon, 17 Jun 2013 18:51:34 +000
  • Ambulatory Monitoring of Physical Activity Based on Knee Flexion/Extension
           Measured by Inductive Sensor Technology

    • Abstract: We developed a knee brace to measure the knee angle and implicitly the flexion/extension (f/e) of the knee joint during daily activities. The goal of this study is to classify and validate a limited set of physical activities on ten young healthy subjects based on knee f/e. Physical activities included in this study are walking, ascending and descending of stairs, and fast locomotion (such as jogging, running, and sprinting) at self-selected speeds. The knee brace includes 2 accelerometers for static measurements and calibration and an inductive sensor for dynamic measurements. As we focus on physical activities, the inductive sensor will provide the required information on knee f/e. In this study, the subjects traversed a predefined track which consisted of indoor paths, outdoor paths, and obstacles. The activity classification algorithm based on peak detection in the knee f/e angle resulted in a detection rate of 95.9% for walking, 90.3% for ascending stairs, 78.3% for descending stairs, and 82.2% for fast locomotion. We conclude that we developed a measurement device which allows long-term and ambulatory monitoring. Furthermore, it is possible to predict the aforementioned activities with an acceptable performance.
      PubDate: Sun, 09 Jun 2013 14:21:14 +000
  • Lossless Medical Image Compression by Integer Wavelet and Predictive

    • Abstract: The future of healthcare delivery systems and telemedical applications will undergo a radical change due to the developments in wearable technologies, medical sensors, mobile computing, and communication techniques. When dealing with applications of collecting, sorting and transferring medical data from distant locations for performing remote medical collaborations and diagnosis we required to considered many parameters for telemedical application. E-health was born with the integration of networks and telecommunications. In recent years, healthcare systems rely on images acquired in two-dimensional domains in the case of still images or three-dimensional domains for volumetric video sequences and images. Images are acquired by many modalities including X-ray, magnetic resonance imaging, ultrasound, positron emission tomography, and computed axial tomography (Sapkal and Bairagi, 2011). Medical information is either in multidimensional or multiresolution form, which creates enormous amount of data. Retrieval, efficient storage, management, and transmission of these voluminous data are highly complex. One of the solutions to reduce this complex problem is to compress the medical data without any loss (i.e., lossless). Since the diagnostics capabilities are not compromised, this technique combines integer transforms and predictive coding to enhance the performance of lossless compression. The proposed techniques can be evaluated for performance using compression quality measures.
      PubDate: Tue, 04 Jun 2013 12:32:09 +000
  • Extrahepatic 25-Hydroxylation of Vitamin D3 in an Engineered Osteoblast
           Precursor Cell Line Exploring the Influence on Cellular Proliferation and
           Matrix Maturation during Bone Development

    • Abstract: Osteoblastic precursors experience distinct stages during differentiation and bone development, which include proliferation, extracellular matrix (ECM) maturation, and ECM mineralization. It is well known that vitamin D plays a large role in the regulation of bone mineralization and homeostasis via the endocrine system. The activation of vitamin D requires two sequential hydroxylation steps, first in the kidney and then in the liver, in order to carry out its role in calcium homeostasis. Recent research has demonstrated that human-derived mesenchymal stem cells (MSCs) and osteoblasts can metabolize the immediate vitamin D precursor 25-dihydroxyvitamin D3 (25OHD3) to the active steroid 1α,25-dihydroxyvitamin D3 (1,25OH2D3) and elicit an osteogenic response. However, reports of extrahepatic metabolism of vitamin D3, the parental vitamin D precursor, have been limited. In this study, we investigated whether osteoblast precursors have the capacity to convert vitamin D3 to 1,25OH2D3 and examined the potential of vitamin D3 to induce 1,25OH2D3 associated biological activities in osteoblast precursors. It was demonstrated that the engineered osteoblast precursor derived from human marrow (OPC1) is capable of metabolizing vitamin D3 to 1,25OH2D3 in a dose-dependent manner. It was also demonstrated that administration of vitamin D3 leads to the increase in alkaline phosphatase (ALP) activity associated with osteoblast ECM maturation and calcium deposits and a decrease in cellular proliferation in both osteoblast precursor cell lines OPC1 and MC3T3-E1. These findings provide a two-dimensional culture foundation for future three-dimensional engineered tissue studies using the OPC1 cell line.
      PubDate: Tue, 04 Jun 2013 09:53:45 +000
  • Diffusion in Replica Healthy and Emphysematous Alveolar Models Using
           Computational Fluid Dynamics

    • Abstract: Deposition of nanosized particles in the pulmonary region has the potential of crossing the blood-gas barrier. Experimental in vivo studies have used micron-sized particles, and therefore nanoparticle deposition in the pulmonary region is not well understood. Furthermore, little attention has been paid to the emphysematous lungs, which have characteristics quite different from the healthy lung. Healthy and emphysematous replica acinus models were created from healthy and diseased human lung casts using three-dimensional reconstruction. Particle concentration and deposition were determined by solving the convective-diffusion equation numerically for steady and unsteady cases. Results showed decreased deposition efficiencies for emphysema compared to healthy lungs, consistent with the literature and attributed to significant airway remodeling in the diseased lung. Particle diffusion was found to be six times slower in emphysema compared to healthy model. The unsteady state simulation predicted deposition efficiencies of 96% in the healthy model for the 1 nm and 3 nm particles and 94% and 93% in the emphysema model for the 1 nm and 3 nm particles, respectively. Steady state was achieved in less than one second for both models. Comparisons between steady and unsteady predictions indicate that a steady-state simulation is reasonable for predicting particle transport under similar conditions.
      PubDate: Mon, 03 Jun 2013 18:21:34 +000
  • Evaluation of Image Quality Improvements When Adding Patient Outline
           Constraints into a Generalized Scatter PET Reconstruction Algorithm

    • Abstract: Scattered coincidences degrade image contrast and compromise quantitative accuracy in positron emission tomography (PET). A number of approaches to estimating and correcting scattered coincidences have been proposed, but most of them are based on estimating and subtracting a scatter sinogram from the measured data. We have previously shown that both true and scattered coincidences can be treated similarly by using Compton scattering kinematics to define a locus of scattering which may in turn be used to reconstruct the activity distribution using a generalized scatter maximum-likelihood expectation maximization (GS-MLEM) algorithm. The annihilation position can be further confined by taking advantage of the patient outline (or a geometrical shape that encompasses the patient outline). The proposed method was tested on a phantom generated using GATE. The results have shown that for scatter fractions of 10–60% this algorithm improves the contrast recovery coefficients (CRC) by 4 to 28.6% for a source and 5.1 to 40% for a cold source while the relative standard deviation (RSD) was reduced. Including scattered photons directly into the reconstruction eliminates the need for (often empirical) scatter corrections, and further improvements in the contrast and noise properties of the reconstructed images can be made by including the patient outline in the reconstruction algorithm as a constraint.
      PubDate: Thu, 02 May 2013 09:53:07 +000
  • Automated Brain Tissue Classification by Multisignal Wavelet Decomposition
           and Independent Component Analysis

    • Abstract: Multispectral analysis is a potential approach in simultaneous analysis of brain MRI sequences. However, conventional classification methods often fail to yield consistent accuracy in tissue classification and abnormality extraction. Feature extraction methods like Independent Component Analysis (ICA) have been effectively used in recent studies to improve the results. However, these methods were inefficient in identifying less frequently occurred features like small lesions. A new method, Multisignal Wavelet Independent Component Analysis (MW-ICA), is proposed in this work to resolve this issue. First, we applied a multisignal wavelet analysis on input multispectral data. Then, reconstructed signals from detail coefficients were used in conjunction with original input signals to do ICA. Finally, Fuzzy C-Means (FCM) clustering was performed on generated results for visual and quantitative analysis. Reproducibility and accuracy of the classification results from proposed method were evaluated by synthetic and clinical abnormal data. To ensure the positive effect of the new method in classification, we carried out a detailed comparative analysis of reproduced tissues with those from conventional ICA. Reproduced small abnormalities were observed to give good accuracy/Tanimoto Index values, 98.69%/0.89, in clinical analysis. Experimental results recommend MW-ICA as a promising method for improved brain tissue classification.
      PubDate: Mon, 22 Apr 2013 13:38:54 +000
  • Postnatal Development of the Retina in Rats Exposed to Hyperoxia: A
           Fractal Analysis

    • Abstract: Purpose. The aim of this study was to investigate and quantify changes in the newborn rats retinal layers during the hyperoxia (80% O2) exposure using fractal analysis. Materials and Methods. This study was conducted on two groups of 20 newborn rats: a control (normal) group (10 rats) and an experimental group (10 rats). The control group was composed of 10 newborn rats, which were placed at 12 hours after birth, in a pediatric incubator, together with their mother, in conditions of normoxia for 21 days. The experimental group consisted of 10 newborn rats, which were placed at 12 hours after birth, in a pediatric incubator with their mother, in conditions of normoxia for 7 days, then 7 days of hyperoxia (80% O2) for 22.5 hours/day, and then 7 days in conditions of normoxia. Slaughtering of the rats was performed on day 21 and the eye globes were harvested in order to perform histopathological examinations. The fractal analyses of the retinal digital images were performed using the fractal analysis software Image J, and the fractal dimensions were calculated using the standard box-counting method. Results. Microscopic examination revealed a normal development of the retina in the control group. In the experimental group, all the animals exposed to hyperoxia revealed both structural and vascular abnormalities on entire retina. Conclusions. The results showed that the fractal analysis is a valuable tool to quantify histoarchitectural changes in the newborn rats retinal layers during the hyperoxia (80% O2).
      PubDate: Mon, 15 Apr 2013 15:56:01 +000
  • Dosimetry and Therapeutic Ratios for Rhenium-186 HEDP

    • Abstract: Rhenium-186 (Re-186) is a β-emitting radionuclide. Emitted β-particles have ranges up to 4.5 mm in tissue, capable of delivering high doses to skeletal regions of high Re-186 concentrations while sparing adjacent radiosensitive regions and thus making the irradiation well tolerated for the patient. Along with the β-emissions, γ-rays are emitted having an adequate energy for imaging during therapy and biodistribution assessment for patient-specific dosimetry calculations. The relatively short physical half-life combined with the β-emissions allows the delivery of relatively high activity rate for a short period of time in areas of concentration. This study is a short review concerning the palliative treatment of skeletal metastases using 186Re-HEDP. After presenting the dominant ways of 186Re production, special emphasis is given to dosimetry issues while the effect of palliation therapy can be evaluated through the comparison of the absorbed dose in metastatic lesion relatively to the normal bone region. Accurate dose estimation is required taking into account the anatomic individual difference of each patient. For this purpose a patient specific dosimetric model considering metastatic lesions as spherical nodules is introduced. In order to quantify in a representative way the results of palliation treatment, the concept of therapeutic ratios is analyzed.
      PubDate: Thu, 11 Apr 2013 10:11:08 +000
  • Automatic Valve-Rejection Algorithm for Cardiac Doppler Ultrasound Systems

    • Abstract: In recent years, blood flow diagnosis using Doppler ultrasound systems has become popular. Using these systems, the peak velocity of blood flow is automatically traced. However, because valve signals are mixed with the blood flow signals in a heart chamber, automatic measurements of blood flow are not correctly recorded. To solve this problem, we developed a novel method that adopted system identification. We applied a mathematical model with an electrocardiographic waveform as the input and a trace waveform of the peak velocity as the output. Several mathematical models with different structures and orders were compared to select the optimal model. Using this model, we developed a system that could automatically eliminate the valve signal. We also evaluated our valve-rejection algorithm using simulations based on actual clinical data.
      PubDate: Sun, 24 Mar 2013 10:54:15 +000
  • 18F-fluoro-L-thymidine Positron Emission Tomography for Mucosal Head and
           Neck Squamous Cell Carcinoma Treated with Definitive Chemoradiation: A
           Pilot Study of Nodal Assessment and Tracer Safety

    • Abstract: We aim to assess the utility and safety of 18F-fluoro-L-thymidine- positron emission tomography (FLT-PET), in reference to 18F-2-fluoro-2-deoxy-D-glucose (FDG-PET) in the assessment of nodal involvement for mucosal head and neck SCC (HNSCC). Methods. Ten patients with HNSCC receiving definitive chemoradiation (CRT) were enrolled. Baseline FLT-PET and FDG-PET were obtained. The total number of involved lymph nodes and ultimate nodal staging by the baseline FDG-PET and FLT-PET was compared. Receiver Operating Characteristics (ROC) analysis for the matched nodes was performed to identify an optimal maximal standardized uptake value (SUVmax) cutpoint. Results. The tracer uptake by the involved nodes on FDG-PET was higher than those judged to be involved by FLT-PET (mean SUVmax: 5.9 versus 3.4; ). More abnormal lymph nodes were detected by FLT-PET than FDG-PET (Odds ratio = 3.67; ). The optimal SUVmax cutpoint for FLT-PET to correspond with positive FDG-PET for the matched lymph nodes was 3.25 (range 3.1–3.4). Conclusions. It is unlikely that FLT-PET will be a more accurate staging investigation than FDG-PET. A SUVmax of 3.25 may be considered as a reference cut-off in determining if a cervical lymph node is involved for HNSCC. Validation in a surgical cohort with pathological correlation is warranted.
      PubDate: Sat, 16 Mar 2013 15:00:40 +000
  • Evaluation of the Feasibility and Quantitative Accuracy of a Generalized
           Scatter 2D PET Reconstruction Method

    • Abstract: Scatter degrades the contrast and quantitative accuracy of positron emission tomography (PET) images, and most methods for estimating and correcting scattered coincidences in PET subtract scattered events from the measured data. Compton scattering kinematics can be used to map out the locus of possible scattering locations. These curved lines (2D) or surfaces (3D), which connect the coincidence detectors, encompass the surface (2D) or volume (3D) where the decay occurs. In the limiting case where the scattering angle approaches zero, the scattered coincidence approaches the true coincidence. Therefore, both true and scattered coincidences can be considered similarly in a generalized scatter maximum-likelihood expectation-maximization reconstruction algorithm. The proposed method was tested using list-mode data obtained from a GATE simulation of a Jaszczak-type phantom. For scatter fractions from 10% to 60%, this approach reduces noise and improves the contrast recovery coefficients by 0.5–3.0% compared with reconstructions using true coincidences and by 3.0–24.5% with conventional reconstruction methods. The results demonstrate that this algorithm is capable of producing images entirely from scattered photons, eliminates the need for scatter corrections, increases image contrast, and reduces noise. This could be used to improve diagnostic quality and/or to reduce patient dose and radiopharmaceutical cost.
      PubDate: Thu, 28 Feb 2013 11:20:49 +000
  • Optical Coherence Tomography in the Diagnosis and Monitoring of Retinal

    • Abstract: Optical coherence tomography (OCT) allows the visualization of the retinal microarchitecture as cross-sectional or tomographic volumetric data. The usefulness of OCT in the management of various retinal diseases is validated by the possibility to allow early diagnosis and to help in the decision-making process. OCT is applied by two main methods: time domain (TD-OCT) and spectral domain (SD-OCT). The advantages of SD-OCT over TD-OCT are significant improvement of the image axial resolution, decreased acquisition times, reduction of motion artifacts, increased area of retinal sampling, and the possibility to create topographic maps by the three-dimensional evaluation of tissues. OCT is the most precise method to measure the central macular thickness (which is the most important practical parameter) in vivo. It has been demonstrated that there are differences in the retinal thickness measurements between OCT models, explained by the higher axial and transverse resolutions of the newer devices. Further research has led to significant improvements in OCT technology represented by ultrahigh resolution OCT (UHR-OCT), swept source OCT (SS-OCT), enhanced depth imaging OCT (EDI-OCT), and adaptive optics. Technological progress in OCT imaging offered new perspectives for better understanding the retinal diseases, opening new avenues for the fundamental and clinical research. This is a review of the data in the literature concerning the evolution of OCT technology in the field of retinal imaging.
      PubDate: Tue, 26 Feb 2013 14:19:38 +000
  • Ga-68- and Cu-64-Labeled NOTA-Albumin Conjugates for PET Sentinel Lymph
           Node Imaging

    • Abstract: Our objective was to develop and evaluate Ga-68- and Cu-64-labeled albumin conjugates for PET imaging of sentinel lymph nodes. Four different albumin conjugates were prepared starting from NOTA-HSA. The lymph node uptake of Ga-68- and Cu-64-labeled albumin conjugates was investigated after subcutaneous injection into the foot pad of Wistar rats. A pig model was utilized for further biological evaluation of the lymph node uptake. For all the four conjugates, radiolabeling with Ga-68 and Cu-64 resulted in >95% radiochemical yield. Denatured and mannosylated Ga-68 NOTA-HSA revealed the highest popliteal lymph node uptake in rats (% ID and % ID 10 min and 60 min p.i., resp.). The popliteal lymph node reached its maximum activity after approximately 120 min and remained constant for denatured and mannosylated Cu-64 NOTA-HSA at least up to 240 min p.i. In a pig model, 2% of the injected dose of this compound was found in the sentinel lymph node 60 min after subcutaneous injection. In conclusion, PET imaging of sentinel lymph nodes with Ga-68- and Cu-64-labeled denatured NOTA-Man-HSA could be successfully demonstrated and deserves further investigations.
      PubDate: Mon, 18 Feb 2013 16:52:34 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015