for Journals by Title or ISSN
for Articles by Keywords
help
Followed Journals
Journal you Follow: 0
 
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Journals are published.
Already have an account? Sign In to see the journals you follow.
Journal Cover Journal of Developmental Biology
  [2 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2221-3759
   Published by MDPI Homepage  [151 journals]
  • JDB, Vol. 5, Pages 4: Moving the Shh Source over Time: What Impact on
           Neural Cell Diversification in the Developing Spinal Cord'

    • Authors: Cathy Danesin, Cathy Soula
      First page: 4
      Abstract: A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
      PubDate: 2017-04-12
      DOI: 10.3390/jdb5020004
      Issue No: Vol. 5, No. 2 (2017)
       
  • JDB, Vol. 5, Pages 5: Special Issue on HOX Genes in Development

    • Authors: Vincenzo Zappavigna
      First page: 5
      Abstract: n/a
      PubDate: 2017-05-10
      DOI: 10.3390/jdb5020005
      Issue No: Vol. 5, No. 2 (2017)
       
  • JDB, Vol. 5, Pages 6: Sonic Hedgehog Signaling and Development of the
           Dentition

    • Authors: Maisa Seppala, Gareth Fraser, Anahid Birjandi, Guilherme Xavier, Martyn Cobourne
      First page: 6
      Abstract: Sonic hedgehog (Shh) is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.
      PubDate: 2017-05-31
      DOI: 10.3390/jdb5020006
      Issue No: Vol. 5, No. 2 (2017)
       
  • JDB, Vol. 5, Pages 1: Acknowledgement to Reviewers of Journal of
           Developmental Biology in 2016

    • Authors: JDB Editorial Office
      First page: 1
      Abstract: n/a
      PubDate: 2017-01-11
      DOI: 10.3390/jdb5010001
      Issue No: Vol. 5, No. 1 (2017)
       
  • JDB, Vol. 5, Pages 2: Sonic Hedgehog—‘Jack-of-All-Trades’ in Neural
           Circuit Formation

    • Authors: Nikole Zuñiga, Esther Stoeckli
      First page: 2
      Abstract: As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
      PubDate: 2017-02-08
      DOI: 10.3390/jdb5010002
      Issue No: Vol. 5, No. 1 (2017)
       
  • JDB, Vol. 5, Pages 3: Canonical Sonic Hedgehog Signaling in Early Lung
           Development

    • Authors: Hugo Fernandes-Silva, Jorge Correia-Pinto, Rute Moura
      First page: 3
      Abstract: The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
      PubDate: 2017-03-13
      DOI: 10.3390/jdb5010003
      Issue No: Vol. 5, No. 1 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.81.120.254
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016