for Journals by Title or ISSN
for Articles by Keywords
Journal Cover Conservation Physiology
  [1 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2051-1434
   Published by Oxford University Press Homepage  [364 journals]
  • Physiology can contribute to better understanding, management, and
           conservation of coral reef fishes

    • Authors: Illing B; Rummer JL.
      Abstract: AbstractCoral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.
      PubDate: 2017-02-22
  • Intrinsic and extrinsic influences on standard metabolic rates of three
           species of Australian otariid

    • Authors: Ladds MA; Slip DJ, Harcourt RG.
      Abstract: AbstractThe study of marine mammal energetics can shed light on how these animals might adapt to changing environments. Their physiological potential to adapt will be influenced by extrinsic factors, such as temperature, and by intrinsic factors, such as sex and reproduction. We measured the standard metabolic rate (SMR) of males and females of three Australian otariid species (two Australian fur seals, three New Zealand fur seals and seven Australian sea lions). Mean SMR ranged from 0.47 to 1.05 l O2 min−1, which when adjusted for mass was from 5.33 to 7.44 ml O2 min−1 kg−1. We found that Australian sea lion mass-specific SMR (sSMR; in millilitres of oxygen per minute per kilogram) varied little in response to time of year or moult, but was significantly influenced by sex and water temperature. Likewise, sSMR of Australian and New Zealand fur seals was also influenced by sex and water temperature, but also by time of year (pre-moult, moult or post-moult). During the moult, fur seals had significantly higher sSMR than at other times of the year, whereas there was no discernible effect of moult for sea lions. For both groups, females had higher sSMR than males, but sea lions and fur seals showed different responses to changes in water temperature. The sSMR of fur seals increased with increasing water temperature, whereas sSMR of sea lions decreased with increasing water temperature. There were no species differences when comparing animals of the same sex. Our study suggests that fur seals have more flexibility in their physiology than sea lions, perhaps implying that they will be more resilient in a changing environment.
      PubDate: 2017-02-21
  • Conservation physiology and the quest for a ‘good’

    • Authors: Madliger CL; Franklin CE, Hultine KR, et al.
      Abstract: AbstractIt has been proposed that we are now living in a new geological epoch known as the Anthropocene, which is specifically defined by the impacts that humans are having on the Earth's biological diversity and geology. Although the proposal of this term was borne out of an acknowledgement of the negative changes we are imparting on the globe (e.g. climate change, pollution, coastal erosion, species extinctions), there has recently been action amongst a variety of disciplines aimed at achieving a ‘good Anthropocene’ that strives to balance societal needs and the preservation of the natural world. Here, we outline ways that the discipline of conservation physiology can help to delineate a hopeful, progressive and productive path for conservation in the Anthropocene and, specifically, achieve that vision. We focus on four primary ways that conservation physiology can contribute, as follows: (i) building a proactive approach to conservation; (ii) encouraging a pragmatic perspective; (iii) establishing an appreciation for environmental resilience; and (iv) informing and engaging the public and political arenas. As a collection of passionate individuals combining theory, technological advances, public engagement and a dedication to achieving conservation success, conservation physiologists are poised to make meaningful contributions to the productive, motivational and positive way forward that is necessary to curb and reverse negative human impact on the environment.
      PubDate: 2017-02-15
  • Non-invasive endocrine monitoring indicates seasonal variations in gonadal
           hormone metabolites in dholes ( Cuon alpinus )

    • Authors: Khonmee J; Rojanasthien S, Thitaram C, et al.
      Abstract: AbstractTo date, there is no information on reproductive endocrinology of dholes (Cuon alpinus). The objectives of the present study were as follows: (i) to characterize longitudinal profiles of gonadal steroids; and (ii) to examine the relationship between gonadal hormones and sexual behaviours in dholes. Three breeding pairs and two bachelor males were included in the study. Among these, four animals (2 males and 2 females; 4 years old) were imported from The Netherlands to Thailand 3 months before the study onset; the remaining individuals (3 males and 1 female; 5–7 years old) were native born. Faecal samples were collected 3–7 days/week for 12 months, extracted and assessed for gonadal hormone metabolites using a validated enzyme immunoassay. Observations of behaviour were conducted in 30 min sessions, 3–5 days/week. For the three breeding males, testosterone was elevated (P 
      PubDate: 2017-02-15
  • Body water conservation through selective brain cooling by the carotid
           rete: a physiological feature for surviving climate change'

    • Authors: Strauss W; Hetem RS, Mitchell D, et al.
      Abstract: AbstractSome mammals have the ability to lower their hypothalamic temperature below that of carotid arterial blood temperature, a process termed selective brain cooling. Although the requisite anatomical structure that facilitates this physiological process, the carotid rete, is present in members of the Cetartiodactyla, Felidae and Canidae, the carotid rete is particularly well developed in the artiodactyls, e.g. antelopes, cattle, sheep and goats. First described in the domestic cat, the seemingly obvious function initially attributed to selective brain cooling was that of protecting the brain from thermal damage. However, hyperthermia is not a prerequisite for selective brain cooling, and selective brain cooling can be exhibited at all times of the day, even when carotid arterial blood temperature is relatively low. More recently, it has been shown that selective brain cooling functions primarily as a water-conservation mechanism, allowing artiodactyls to save more than half of their daily water requirements. Here, we argue that the evolutionary success of the artiodactyls may, in part, be attributed to the evolution of the carotid rete and the resulting ability to conserve body water during past environmental conditions, and we suggest that this group of mammals may therefore have a selective advantage in the hotter and drier conditions associated with current anthropogenic climate change. A better understanding of how selective brain cooling provides physiological plasticity to mammals in changing environments will improve our ability to predict their responses and to implement appropriate conservation measures.
      PubDate: 2017-02-14
  • Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids

    • Authors: Gallagher AJ; Skubel RA, Pethybridge HR, et al.
      Abstract: AbstractEvaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species (n = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.
      PubDate: 2017-02-14
  • The effect of temperature on development and behaviour of relict leopard
           frog tadpoles

    • Authors: Goldstein JA; Hoff K, Hillyard SD.
      Abstract: AbstractRelict leopard frog (Rana [Lithobates] onca) tadpoles were obtained shortly after hatching at Gosner stage 25 and raised in aquaria maintained at 15, 20, 25, 30 and 35°C. Development was arrested in the 15°C group, and survivorship declined to 64% after 191 days. However, 80% of the surviving larvae remained alive after the temperature was increased to 25°C. Of these, 96% reached metamorphosis. Survivorship of the 20, 25 and 30°C acclimation groups was 82, 94 and 66%, respectively, whereas none survived at 35°C. Time to metamorphosis was significantly shorter for the 25°C group (67 ± 1 days), followed by the 30°C (98 ± 2 days) and 20°C (264 ± 7 days) groups. A linear 66 cm thermal gradient was used to identify temperature ranges selected by tadpoles in the different acclimation groups. Five 10°C gradients (10–20, 15–25, 20–30, 25–35 and 30–40°C) were used, and time spent in the cooler, middle and warmer thirds of the gradient was compared for 10 individuals from each acclimation group. In the coolest gradient, tadpoles from all acclimation groups selected the warmer third (>17°C) of the gradient. In the warmer gradients, tadpoles from the 20 and 25°C acclimation groups selected temperatures
      PubDate: 2017-02-14
  • An evaluation of the use of pentosidine as a biomarker for ageing turtles

    • Authors: Iverson JB; Stahl RS, Furcolow C, et al.
      Abstract: AbstractConcentrations of the biomarker pentosidine have been shown to be useful measures of age for a number of avian and mammalian species. However, no study has examined its usefulness as an age marker in a long-lived ectotherm despite the fact that such a marker could prove useful in understanding age distributions of populations subject to conservation programmes. Therefore, we evaluated pentosidine concentrations in the interdigital webbing of 117 female yellow mud turtles (Kinosternon flavescens) at a 35 year study site in western Nebraska where nearly all turtles are of known age. Pentosidine concentrations were extraordinarily low and positively correlated with age in this turtle, but concentrations were too variable to permit precise estimates of age for turtles of unknown age. These results may reflect the remarkable physiological adaptations of this turtle to low temperatures and oxygen deprivation in a highly seasonal environment requiring prolonged hibernation. Whether pentosidine concentrations in other ectotherms occupying less seasonal environments would be more highly correlated with age remains to be determined. However, our results suggest that patterns of accumulation of pentosidine in ectotherms may be fundamentally different from those in endotherms.
      PubDate: 2017-01-27
  • Environmental and physiological correlates of the severity of clinical
           signs of snake fungal disease in a population of pigmy rattlesnakes,
           Sistrurus miliarius

    • Authors: McCoy CM; Lind CM, Farrell TM.
      Abstract: AbstractIn the past decade, snake fungal disease (SFD) has been identified as an emerging threat to snake populations throughout the eastern USA. Snake fungal disease is caused by the fungus Ophidiomyces ophiodiicola. Little is known regarding the environmental or physiological variables that affect host vulnerability and O. ophiodiicola virulence in wild snake populations. Understanding the intrinsic and extrinsic factors that correlate with infection severity is a key first step in understanding host–pathogen dynamics. Host vulnerability may vary seasonally as a result of thermal conditions or energetic trade-offs, and pathogen growth rates or dispersal may be tied to seasonal trends in climate. To determine whether season, environmental temperature or energetic trade-offs associated with life-history stage influence an individual's susceptibility to infection, we monitored the severity of clinical signs of SFD, surface air temperature, reproductive status, body condition and serum complement activity (plasma bactericidal ability) in free-ranging pigmy rattlesnakes, Sistrurus miliarius, over the course of 18 months. Seasonal increases in the severity of clinical signs of SFD were correlated negatively with monthly air surface temperature and the mean body condition of the population. Bactericidal ability varied seasonally, but pigmy rattlesnakes suffering from active SFD infections did not exhibit deficits in innate immune function. Infected snakes were in significantly lower body condition when compared with the general population, but seasonal patterns in the mean body condition of the population were not driven by seasonal patterns of infection severity. Our results highlight the potential importance of the thermal environment and energetic status in determining infection severity and outcomes and the need for managers and researchers to consider seasonality of symptom presentation when the goal is to identify the prevalence or incidence of SFD in populations.
      PubDate: 2017-01-27
  • Expression of genes involved in brain GABAergic neurotransmission in
           three-spined stickleback exposed to near-future CO 2

    • Authors: Lai F; Fagernes CE, Jutfelt F, et al.
      PubDate: 2017-01-20
  • Reflections and progress in conservation physiology

    • Authors: Cooke SJ; Hultine KR, Rummer JL, et al.
      PubDate: 2017-01-04
  • Corticosterone, inflammation, immune status and telomere length in
           frigatebird nestlings facing a severe herpesvirus infection

    • Authors: Sebastiano M; Eens M, Angelier F, et al.
      Abstract: AbstractHerpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infection and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring 2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings, whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concentration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess survival probabilities of frigatebird nestlings facing a herpesvirus outbreak.
      PubDate: 2017-01-04
  • Unusual aerobic performance at high temperatures in juvenile Chinook
           salmon, Oncorhynchus tshawytscha

    • Authors: Poletto JB; Cocherell DE, Baird SE, et al.
      Abstract: AbstractUnderstanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed.
      PubDate: 2017-01-04
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016