for Journals by Title or ISSN
for Articles by Keywords
help
Journal Cover Conservation Physiology
  [1 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2051-1434
   Published by Oxford University Press Homepage  [363 journals]
  • Arctic grayling (Thymallus arcticus) in saltwater: a response to Blair et
           al. (2016)

    • Authors: Heim, K. C; Whitman, M. S, Moulton, L. L.
      PubDate: 2016-11-16T03:13:44-08:00
      DOI: 10.1093/conphys/cow055
      Issue No: Vol. 4, No. 1 (2016)
       
  • Sex-specific ecophysiological responses to environmental fluctuations of
           free-ranging Hermann's tortoises: implication for conservation

    • Authors: Sibeaux, A; Michel, C. L, Bonnet, X, Caron, S, Fourniere, K, Gagno, S, Ballouard, J.-M.
      Abstract: Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises (Testudo hermanni hermanni), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.
      PubDate: 2016-11-09T00:37:33-08:00
      DOI: 10.1093/conphys/cow054
      Issue No: Vol. 4, No. 1 (2016)
       
  • Interactions between rates of temperature change and acclimation affect
           latitudinal patterns of warming tolerance

    • Authors: Allen, J. L; Chown, S. L, Janion-Scheepers, C, Clusella-Trullas, S.
      Abstract: Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (
      PubDate: 2016-11-09T00:37:33-08:00
      DOI: 10.1093/conphys/cow053
      Issue No: Vol. 4, No. 1 (2016)
       
  • Effect of elevated carbon dioxide on shoal familiarity and metabolism in a
           coral reef fish

    • Authors: Nadler, L. E; Killen, S. S, McCormick, M. I, Watson, S.-A, Munday, P. L.
      Abstract: Atmospheric CO2 is expected to more than double by the end of the century. The resulting changes in ocean chemistry will affect the behaviour, sensory systems and physiology of a range of fish species. Although a number of past studies have examined effects of CO2 in gregarious fishes, most have assessed individuals in social isolation, which can alter individual behaviour and metabolism in social species. Within social groups, a learned familiarity can develop following a prolonged period of interaction between individuals, with fishes preferentially associating with familiar conspecifics because of benefits such as improved social learning and greater foraging opportunities. However, social recognition occurs through detection of shoal-mate cues; hence, it may be disrupted by near-future CO2 conditions. In the present study, we examined the influence of elevated CO2 on shoal familiarity and the metabolic benefits of group living in the gregarious damselfish species the blue-green puller (Chromis viridis). Shoals were acclimated to one of three nominal CO2 treatments: control (450 µatm), mid-CO2 (750 µatm) or high-CO2 (1000 µatm). After a 4–7 day acclimation period, familiarity was examined using a choice test, in which individuals were given the choice to associate with familiar shoal-mates or unfamiliar conspecifics. In control conditions, individuals preferentially associated with familiar shoal-mates. However, this association was lost in both elevated-CO2 treatments. Elevated CO2 did not impact the calming effect of shoaling on metabolism, as measured using an intermittent-flow respirometry methodology for social species following a 17–20 day acclimation period to CO2 treatment. In all CO2 treatments, individuals exhibited a significantly lower metabolic rate when measured in a shoal vs. alone, highlighting the complexity of shoal dynamics and the processes that influence the benefits of shoaling.
      PubDate: 2016-11-09T00:37:33-08:00
      DOI: 10.1093/conphys/cow052
      Issue No: Vol. 4, No. 1 (2016)
       
  • Temporal overlap and repeatability of feather corticosterone levels:
           practical considerations for use as a biomarker

    • Authors: Harris, C. M; Madliger, C. L, Love, O. P.
      Abstract: The measurement of corticosterone (CORT) levels in feathers has recently become an appealing tool for the conservation toolbox, potentially providing a non-invasive, integrated measure of stress activity throughout the time of feather growth. However, because the mechanism of CORT deposition, storage and stability in feathers is not fully understood, it is unclear how reliable this measure may be, especially when there is an extended interval between growth and feather collection. We compared CORT levels of naturally grown feathers from tree swallows (Tachycineta bicolor) that were moulted and regrown concurrently and therefore expected to have similar CORT levels. Specifically, we compared the same feather from the left and right wing (moulted symmetrically) and different types of feathers (wing, back and tail) expected to have been moulted within the same time period. We found that larger, heavier feathers held more CORT per unit length. In addition, we found a lack of concordance in CORT levels both within the same feather type and between different feather types, even after taking into account differences in feather density. Our results indicate that naturally grown feathers may not consistently provide an indication of stress status. Additionally, conflict in results may arise depending on the feather assayed, and total feather volume may be an important consideration when interpreting feather CORT levels. Future work is necessary to determine explicitly the mechanisms of CORT deposition, the effects of environmental exposure and feather wear on the permanence of the feather CORT signal, and the influence of responses to wild stressors on feather CORT levels, before feather CORT can be implemented effectively as a tool for ecological and conservation applications.
      PubDate: 2016-11-09T00:37:33-08:00
      DOI: 10.1093/conphys/cow051
      Issue No: Vol. 4, No. 1 (2016)
       
  • Endocrine and metabolic impacts of warming aquatic habitats: differential
           responses between recently isolated populations of a eurythermal desert
           pupfish

    • Authors: Lema, S. C; Chow, M. I, Resner, E. J, Westman, A. A, May, D, Dittman, A. H, Hardy, K. M.
      Abstract: Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae. We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2–40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 (dio2) and type 3 (dio3) and TH receptor β (trβ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2, dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 (mct8) and organic anion-transporting protein 1c1 (oatp1c1). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain (ldhA) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
      PubDate: 2016-11-05T05:37:57-07:00
      DOI: 10.1093/conphys/cow047
      Issue No: Vol. 4, No. 1 (2016)
       
  • Conservation physiology of marine fishes: state of the art and prospects
           for policy

    • Authors: McKenzie, D. J; Axelsson, M, Chabot, D, Claireaux, G, Cooke, S. J, Corner, R. A, De Boeck, G, Domenici, P, Guerreiro, P. M, Hamer, B, Jorgensen, C, Killen, S. S, Lefevre, S, Marras, S, Michaelidis, B, Nilsson, G. E, Peck, M. A, Perez-Ruzafa, A, Rijnsdorp, A. D, Shiels, H. A, Steffensen, J. F, Svendsen, J. C, Svendsen, M. B. S, Teal, L. R, van der Meer, J, Wang, T, Wilson, J. M, Wilson, R. W, Metcalfe, J. D.
      PubDate: 2016-10-18T08:28:16-07:00
      DOI: 10.1093/conphys/cow046
      Issue No: Vol. 4, No. 1 (2016)
       
  • Seasonal physiological dynamics of maturing female southern flounder
           (Paralichthys lethostigma)

    • Authors: Grieshaber, C. A; Midway, S. R, Scharf, F. S, Koopman, H, Luckenbach, J. A, Middleton, M. A.
      Abstract: Physiological information is rarely used in descriptions of maturity for managed, wild fish species; however, the use of physiological data holds great promise to provide important detail on the complexities of oocyte development and maturity. Investigating southern flounder (Paralichthys lethostigma)—an overfished commercial and recreational fishery resource—we examined pre-spawn physiological changes in females to provide further detail of the maturation process. Given that adults of this species complete maturation and spawn in unknown offshore locations, information on pre-spawn physiological changes is particularly informative for both size- and age-based patterns of maturity. We evaluated seasonal and ontogenetic changes in hormone concentrations in blood plasma that are commonly associated with sexual maturation, in addition to quantifying and classifying lipid stored in liver tissue. We found a strong positive relationship between body weight and lipid content during all months, as well as evidence for mobilization of lipids among larger females in September and October, presumably for gonadal development. Throughout the sampling period, the lipid content of smaller individuals was dominated by structural lipids (as opposed to storage lipids). In contrast, larger individuals possessed greater amounts of storage lipids. This suggests that larger, putatively maturing individuals were accumulating storage lipids for later production of vitellogenin. Females sampled for blood sex steroids and ovarian histology showed different testosterone and estradiol concentrations between putatively maturing and immature fish, and temporal variation with peaks in October and November. Overall, emerging patterns of liver lipid content and composition and blood steroid concentrations describe a multi-month maturation process that is often managed one dimensionally over short time periods. Insights from this work will improve our understanding of the life history of southern flounder, with the potential for better understanding of the dynamics of offshore spawning migration and informing subsequent species management.
      PubDate: 2016-10-18T08:28:16-07:00
      DOI: 10.1093/conphys/cow043
      Issue No: Vol. 4, No. 1 (2016)
       
  • The use of {alpha}- or {beta}-blockers to ameliorate the chronic stress of
           captivity in the house sparrow (Passer domesticus)

    • Authors: Fischer, C. P; Romero, L. M.
      Abstract: When wild animals are brought into captivity for the first time, they frequently develop chronic stress symptoms. Animals can develop glucocorticoid dysregulation or changes in the sympathetic nervous system over the course of the first week in captivity. By blocking the action of epinephrine and norepinephrine using α- or β-blockers, we hoped to reduce the degree of chronic stress symptoms exhibited by newly captured house sparrows. We measured corticosterone, heart rate and heart rate variability in 24 house sparrows (Passer domesticus) over the first week of captivity. The birds were treated with saline, propranolol (a β-blocker) or phentolamine (an α-blocker) for the first 3 days of captivity. We also compared newly captured animals with animals that had been held in captivity for 1 month. During the first week of captivity, baseline corticosterone increased, but that increase was blocked by propranolol. Heart rate was not different between the treatment groups, but it was higher during the first week than after 1 month in captivity. Sympathetic nervous system activity (as measured by heart rate variability) decreased over the first week of captivity, but was not affected by treatment. β-Blockers, but not α-blockers, might help to improve some symptoms of chronic stress in newly captured animals.
      PubDate: 2016-10-15T05:48:58-07:00
      DOI: 10.1093/conphys/cow049
      Issue No: Vol. 4, No. 1 (2016)
       
  • Employing individual measures of baseline glucocorticoids as
           population-level conservation biomarkers: considering within-individual
           variation in a breeding passerine

    • Authors: Madliger, C. L; Love, O. P.
      Abstract: Labile physiological variables, such as stress hormones [i.e. glucocorticoids (GCs)], allow individuals to react to perturbations in their environment and may therefore reflect the effect of disturbances or positive conservation initiatives in advance of population-level demographic measures. Although the application of GCs as conservation biomarkers has been of extensive interest, few studies have explicitly investigated whether baseline GC concentrations respond to disturbances consistently across individuals. However, confirmation of consistent responses is of paramount importance to assessing the ease of use of GCs in natural systems and to making valid interpretations regarding population-level change (or lack of change) in GC concentrations. We investigated whether free-ranging female tree swallows (Tachycineta bicolor) display individually specific changes in baseline glucocorticoid concentrations naturally over the breeding season (from incubation to offspring provisioning) and in response to a manipulation of foraging profitability (representing a decrease in access to food resources). We show that baseline GC concentrations are repeatable within individuals over reproduction in natural conditions. However, in response to a reduction in foraging ability, baseline GC concentrations increase at the population level but are not repeatable within individuals, indicating a high level of within-individual variation. Overall, we suggest that baseline GCs measured on a subset of individuals may not provide a representative indication of responses to environmental change at the population level, and multiple within-individual measures may be necessary to determine the fitness correlates of GC concentrations. Further validation should be completed across a variety of taxa and life-history stages. Moving beyond a traditional cross-sectional approach by incorporating repeated-measures methods will be necessary to assess the suitability of baseline GCs as biomarkers of environmental change and population persistence, particularly from a logistical and ease-of-use perspective for conservation managers.
      PubDate: 2016-10-15T05:48:58-07:00
      DOI: 10.1093/conphys/cow048
      Issue No: Vol. 4, No. 1 (2016)
       
  • Coping with heat: behavioural and physiological responses of savanna
           elephants in their natural habitat

    • Authors: Mole, M. A; Rodrigues DAraujo, S, van Aarde, R. J, Mitchell, D, Fuller, A.
      Abstract: Most of southern Africa's elephants inhabit environments where environmental temperatures exceed body temperature, but we do not know how elephants respond to such environments. We evaluated the relationships between apparent thermoregulatory behaviour and environmental, skin and core temperatures for tame savanna elephants (Loxodonta africana) that were free-ranging in the hot parts of the day, in their natural environment. Environmental temperature dictated elephant behaviour within a day, with potential consequences for fine-scale habitat selection, space use and foraging. At black globe temperatures of ~30°C, elephants adjusted their behaviour to reduce environmental heat load and increase heat dissipation (e.g. shade use, wetting behaviour). Resting, walking and feeding were also influenced by environmental temperature. By relying on behavioural and autonomic adjustments, the elephants maintained homeothermy, even at environmental temperatures exceeding 40°C. Elephants clearly have the capacity to deal with extreme heat, at least in environments with adequate resources of forage, water and shade. Future conservation actions should provide for the thermoregulatory, resource and spatial needs of elephants.
      PubDate: 2016-10-15T05:48:58-07:00
      DOI: 10.1093/conphys/cow044
      Issue No: Vol. 4, No. 1 (2016)
       
  • Costs of locomotion in polar bears: when do the costs outweigh the
           benefits of chasing down terrestrial prey'

    • Authors: Gormezano, L. J; McWilliams, S. R, Iles, D. T, Rockwell, R. F.
      Abstract: Trade-offs between locomotory costs and foraging gains are key elements in determining constraints on predator–prey interactions. One intriguing example involves polar bears pursuing snow geese on land. As climate change forces polar bears to spend more time ashore, they may need to expend more energy to obtain land-based food. Given that polar bears are inefficient at terrestrial locomotion, any extra energy expended to pursue prey could negatively impact survival. However, polar bears have been regularly observed engaging in long pursuits of geese and other land animals, and the energetic worth of such behaviour has been repeatedly questioned. We use data-driven energetic models to examine how energy expenditures vary across polar bear mass and speed. For the first time, we show that polar bears in the 125–235 kg size range can profitably pursue geese, especially at slower speeds. We caution, however, that heat build-up may be the ultimate limiting factor in terrestrial chases, especially for larger bears, and this limit would be reached more quickly with warmer environmental temperatures.
      PubDate: 2016-10-15T05:48:58-07:00
      DOI: 10.1093/conphys/cow045
      Issue No: Vol. 4, No. 1 (2016)
       
  • Salinity tolerances of two Australian freshwater turtles, Chelodina
           expansa and Emydura macquarii (Testudinata: Chelidae)

    • Authors: Bower, D. S; Scheltinga, D. M, Clulow, S, Clulow, J, Franklin, C. E, Georges, A.
      Abstract: Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa, exposed to freshwater (0) and brackish water (15, representing a hyperosmotic environment). Brackish water is common in the Murray–Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15 water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa. Individuals of both species reduced feeding in 15 water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.
      PubDate: 2016-10-15T05:48:58-07:00
      DOI: 10.1093/conphys/cow042
      Issue No: Vol. 4, No. 1 (2016)
       
  • Pass the salt: physiological consequences of ecologically relevant
           hyposmotic exposure in juvenile gummy sharks (Mustelus antarcticus) and
           school sharks (Galeorhinus galeus)

    • Authors: Morash, A. J; Mackellar, S. R. C, Tunnah, L, Barnett, D. A, Stehfest, K. M, Semmens, J. M, Currie, S.
      Abstract: Estuarine habitats are frequently used as nurseries by elasmobranch species for their protection and abundant resources; however, global climate change is increasing the frequency and severity of environmental challenges in these estuaries that may negatively affect elasmobranch physiology. Hyposmotic events are particularly challenging for marine sharks that osmoconform, and species-specific tolerances are not well known. Therefore, we sought to determine the effects of an acute (48 h) ecologically relevant hyposmotic event (25.8 ppt) on the physiology of two juvenile shark species, namely the school shark (Galeorhinus galeus), listed by the Australian Environmental Protection and Biodiversity Conservation Act as ‘conservation dependent’, and the gummy shark (Mustelus antarcticus), from the Pittwater Estuary (Australia). In both species, we observed a decrease in plasma osmolality brought about by selective losses of NaCl, urea and trimethylamine N-oxide, as well as decreases in haemoglobin, haematocrit and routine oxygen consumption. Heat-shock protein levels varied between species during the exposure, but we found no evidence of protein damage in any of the tissues tested. Although both species seemed to be able to cope with this level of osmotic challenge, overall the school sharks exhibited higher gill Na+/K+-ATPase activity and ubiquitin concentrations in routine and experimental conditions, a larger heat-shock protein response and a smaller decrease in routine oxygen consumption during the hyposmotic exposure, suggesting that there are species-specific responses that could potentially affect their ability to withstand longer or more severe changes in salinity. Emerging evidence from acoustic monitoring of sharks has indicated variability in the species found in the Pittwater Estuary during hyposmotic events, and together, our data may help to predict species abundance and distribution in the face of future global climate change.
      PubDate: 2016-10-06T08:30:43-07:00
      DOI: 10.1093/conphys/cow036
      Issue No: Vol. 4, No. 1 (2016)
       
  • Impact of ocean acidification on the hypoxia tolerance of the woolly
           sculpin, Clinocottus analis

    • Authors: Hancock, J. R; Place, S. P.
      Abstract: As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis. We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid–base regulatory capacity (Na+,K+-ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.
      PubDate: 2016-10-04T08:13:33-07:00
      DOI: 10.1093/conphys/cow040
      Issue No: Vol. 4, No. 1 (2016)
       
  • Adaptive capacity at the northern front: sockeye salmon behaviourally
           thermoregulate during novel exposure to warm temperatures

    • Authors: Armstrong, J. B; Ward, E. J, Schindler, D. E, Lisi, P. J.
      Abstract: As climate change increases maximal water temperatures, behavioural thermoregulation may be crucial for the persistence of coldwater fishes, such as salmonids. Although myriad studies have documented behavioural thermoregulation in southern populations of salmonids, few if any have explored this phenomenon in northern populations, which are less likely to have an evolutionary history of heat stress, yet are predicted to experience substantial warming. Here, we treated a rare heat wave as a natural experiment to test whether wild sockeye salmon (Oncorhynchus nerka) at the northern extent of their primary range (60° latitude) can thermoregulate in response to abnormally high thermal conditions. We tagged adult sockeye salmon with temperature loggers as they staged in a lake epilimnion prior to spawning in small cold streams (n = 40 recovered loggers). As lake surface temperatures warmed to physiologically suboptimal levels (15–20°C), sockeye salmon thermoregulated by moving to tributary plumes or the lake metalimnion. A regression of fish body temperature against lake surface temperature indicated that fish moved to cooler waters when the epilimnion temperature exceeded ~12°C. A bioenergetics model suggested that the observed behaviour reduced daily metabolic costs by as much as ~50% during the warmest conditions (18–20°C). These results provide rare evidence of cool-seeking thermoregulation at the poleward extent of a species range, emphasizing the potential ubiquity of maximal temperature constraints and the functional significance of thermal heterogeneity for buffering poikilotherms from climate change.
      PubDate: 2016-10-04T08:13:33-07:00
      DOI: 10.1093/conphys/cow039
      Issue No: Vol. 4, No. 1 (2016)
       
  • Physiologically grounded metrics of model skill: a case study estimating
           heat stress in intertidal populations

    • Authors: Kish, N. E; Helmuth, B, Wethey, D. S.
      Abstract: Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change.
      PubDate: 2016-10-04T08:13:33-07:00
      DOI: 10.1093/conphys/cow038
      Issue No: Vol. 4, No. 1 (2016)
       
  • Feather corticosterone levels are related to age and future body
           condition, but not to subsequent fitness, in a declining migratory
           songbird

    • Authors: Boves, T. J; Fairhurst, G. D, Rushing, C. S, Buehler, D. A.
      Abstract: In migratory species, breeding and non-breeding locations are geographically separate, yet the effects of conditions from one stage may carry over to affect a subsequent stage. Ideally, to understand the mechanisms and implications of ‘carry-over effects’, one would need to follow individuals throughout the year, quantify potential environmental causal factors and physiological mediators during multiple life-history stages, and measure downstream fitness. Owing to current limitations of tracking technology, this is impossible for small, long-distance migrants, so indirect methods to characterize carry-over effects are required. Corticosterone (CORT) is a suspected physiological mediator of carry-over effects, but when collected from blood it provides only a physiological snapshot at that point in time. When extracted from feathers, however, feather corticosterone (CORTf) provides a measure of responses to stressors from previous, and longer, time periods. We collected feathers grown during two life-history stages (post-breeding and subsequent wintering) from individuals of two age classes of a rapidly declining migratory songbird, the cerulean warbler (Setophaga cerulea), on their breeding grounds and quantified CORTf concentrations. We then monitored reproduction and survival of individuals and analysed relationships among CORTf and age, body condition and future fitness. Compared with older males, second-year males had higher CORTf concentrations during both stages. When controlling for age and year, body condition at capture was positively related to CORTf concentrations from winter (especially for older birds). However, we found no relationships between CORTf and fitness (as defined by reproduction and survival). Thus, elevated CORT may represent a beneficial physiological response (e.g. hyperphagia prior to migration), particularly for certain life-history stages, and may mediate the condition in which individuals transition between stages. But for those birds that survive migration, subsequent fitness is likely determined by more recent events and local conditions (i.e. on breeding grounds), which have the potential to counteract conditions from the winter.
      PubDate: 2016-10-04T08:13:33-07:00
      DOI: 10.1093/conphys/cow041
      Issue No: Vol. 4, No. 1 (2016)
       
  • Morphological and physiological determinants of local adaptation to
           climate in Rocky Mountain butterflies

    • Authors: MacLean, H. J; Higgins, J. K, Buckley, L. B, Kingsolver, J. G.
      Abstract: Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24–26°C) than indicated by previous studies (28–30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change.
      PubDate: 2016-09-22T05:27:18-07:00
      DOI: 10.1093/conphys/cow035
      Issue No: Vol. 4, No. 1 (2016)
       
  • Early exposure to ultraviolet-B radiation decreases immune function later
           in life

    • Authors: Ceccato, E; Cramp, R. L, Seebacher, F, Franklin, C. E.
      Abstract: Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis.
      PubDate: 2016-09-22T05:27:18-07:00
      DOI: 10.1093/conphys/cow037
      Issue No: Vol. 4, No. 1 (2016)
       
  • Does habitat disturbance affect stress, body condition and parasitism in
           two sympatric lemurs'

    • Authors: Rakotoniaina, J. H; Kappeler, P. M, Ravoniarimbinina, P, Pechouskova, E, Hämäläinen, A. M, Grass, J, Kirschbaum, C, Kraus, C.
      Abstract: Understanding how animals react to human-induced changes in their environment is a key question in conservation biology. Owing to their potential correlation with fitness, several physiological parameters are commonly used to assess the effect of habitat disturbance on animals’ general health status. Here, we studied how two lemur species, the fat-tailed dwarf lemur (Cheirogaleus medius) and the grey mouse lemur (Microcebus murinus), respond to changing environmental conditions by comparing their stress levels (measured as hair cortisol concentration), parasitism and general body condition across four habitats ordered along a gradient of human disturbance at Kirindy Forest, Western Madagascar. These two species previously revealed contrasting responses to human disturbance; whereas M. murinus is known as a resilient species, C. medius is rarely encountered in highly disturbed habitats. However, neither hair cortisol concentrations nor parasitism patterns (prevalence, parasite species richness and rate of multiple infections) and body condition varied across the gradient of anthropogenic disturbance. Our results indicate that the effect of anthropogenic activities at Kirindy Forest is not reflected in the general health status of both species, which may have developed a range of behavioural adaptations to deal with suboptimal conditions. Nonetheless, a difference in relative density among sites suggests that the carrying capacity of disturbed habitat is lower, and both species respond differently to environmental changes, with C. medius being more negatively affected. Thus, even for behaviourally flexible species, extended habitat deterioration could hamper long-term viability of populations.
      PubDate: 2016-09-10T02:21:50-07:00
      DOI: 10.1093/conphys/cow034
      Issue No: Vol. 4, No. 1 (2016)
       
  • Validating faecal glucocorticoid metabolite analysis in the Virunga
           mountain gorilla using a natural biological stressor

    • Authors: Eckardt, W; Stoinski, T. S, Rosenbaum, S, Umuhoza, M. R, Santymire, R.
      Abstract: The continued degradation of primate habitat worldwide is forcing many primate populations into small protected forest islands surrounded by high-density human populations. One well-studied example is the critically endangered mountain gorilla (Gorilla beringei beringei). Decades of monitoring and research on Rwanda's mountain gorillas offer a unique opportunity to use non-invasive endocrine analysis to address pressing questions about the conservation of this endangered population. The aims of our study were as follows: (i) to validate field and laboratory methods for assessing stress through faecal glucocorticoid metabolite (FGM) analysis using inter-social unit interactions as a natural stressor; (ii) to determine the excretion lag times between interactions and detectable stress response in faeces; and (iii) to determine whether there are circadian patterns of FGM excretion. We collected ~6000 faecal samples from 127 known gorillas in 10 habituated groups, monitored by the Dian Fossey Gorilla Fund's Karisoke Research Center over 21 months in 2011 and 2012. Extracted FGMs were measured using a cortisol enzyme immunoassay (R4866; C. J. Munro). Results revealed cause–effect relationships between inter-unit interactions and increased FGMs (relative to individual pre-event samples) between 20 and 140 h after interactions, with the peak most often occurring on day 3. There was no evidence of circadian patterns in FGM concentrations, as previously shown in many species with long gut passage times. However, baseline FGM concentrations were lower in adult males than in adult females, and variation was associated with the collection month, indicating possible seasonal variation. This study provides a biologically validated, field-friendly faecal hormone metabolite extraction and laboratory enzyme immunoassay analysis method for non-invasive monitoring of adrenocortical activity in Virunga mountain gorillas. The methods are useful for future evaluation of a variety of environmental and human-induced potential stressors in this critically endangered population.
      PubDate: 2016-08-30T04:24:38-07:00
      DOI: 10.1093/conphys/cow029
      Issue No: Vol. 4, No. 1 (2016)
       
  • A perspective on physiological studies supporting the provision of
           scientific advice for the management of Fraser River sockeye salmon
           (Oncorhynchus nerka)

    • Authors: Patterson, D. A; Cooke, S. J, Hinch, S. G, Robinson, K. A, Young, N, Farrell, A. P, Miller, K. M.
      Abstract: The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management.
      PubDate: 2016-08-26T05:49:03-07:00
      DOI: 10.1093/conphys/cow026
      Issue No: Vol. 4, No. 1 (2016)
       
  • Life history linked to immune investment in developing amphibians

    • Authors: Woodhams, D. C; Bell, S. C, Bigler, L, Caprioli, R. M, Chaurand, P, Lam, B. A, Reinert, L. K, Stalder, U, Vazquez, V. M, Schliep, K, Hertz, A, Rollins-Smith, L. A.
      Abstract: The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.
      PubDate: 2016-08-26T05:49:03-07:00
      DOI: 10.1093/conphys/cow025
      Issue No: Vol. 4, No. 1 (2016)
       
  • Get the most out of blow hormones: validation of sampling materials, field
           storage and extraction techniques for whale respiratory vapour samples

    • Authors: Burgess, E. A; Hunt, K. E, Kraus, S. D, Rolland, R. M.
      Abstract: Studies are progressively showing that vital physiological data may be contained in the respiratory vapour (blow) of cetaceans. Nonetheless, fundamental methodological issues need to be addressed before hormone analysis of blow can become a reliable technique. In this study, we performed controlled experiments in a laboratory setting, using known doses of pure parent hormones, to validate several technical factors that may play a crucial role in hormone analyses. We evaluated the following factors: (i) practical field storage of samples on small boats during daylong trips; (ii) efficiency of hormone extraction methods; and (iii) assay interference of different sampler types (i.e. veil nylon, nitex nylon mesh and polystyrene dish). Sampling materials were dosed with mock blow samples of known mixed hormone concentrations (progesterone, 17β-estradiol, testosterone, cortisol, aldosterone and triiodothyronine), designed to mimic endocrine profiles characteristic of pregnant females, adult males, an adrenal glucocorticoid response or a zero-hormone control (distilled H2O). Results showed that storage of samples in a cooler on ice preserved hormone integrity for at least 6 h (P = 0.18). All sampling materials and extraction methods yielded the correct relative patterns for all six hormones. However, veil and nitex mesh produced detectable assay interference (mean 0.22 ± 0.04 and 0.18 ± 0.03 ng/ml, respectively), possibly caused by some nylon-based component affecting antibody binding. Polystyrene dishes were the most efficacious sampler for accuracy and precision (P 
      PubDate: 2016-08-26T05:49:03-07:00
      DOI: 10.1093/conphys/cow024
      Issue No: Vol. 4, No. 1 (2016)
       
  • Understanding invasion history and predicting invasive niches using
           genetic sequencing technology in Australia: case studies from
           Cucurbitaceae and Boraginaceae

    • Authors: Shaik, R. S; Zhu, X, Clements, D. R, Weston, L. A.
      Abstract: Part of the challenge in dealing with invasive plant species is that they seldom represent a uniform, static entity. Often, an accurate understanding of the history of plant introduction and knowledge of the real levels of genetic diversity present in species and populations of importance is lacking. Currently, the role of genetic diversity in promoting the successful establishment of invasive plants is not well defined. Genetic profiling of invasive plants should enhance our understanding of the dynamics of colonization in the invaded range. Recent advances in DNA sequencing technology have greatly facilitated the rapid and complete assessment of plant population genetics. Here, we apply our current understanding of the genetics and ecophysiology of plant invasions to recent work on Australian plant invaders from the Cucurbitaceae and Boraginaceae. The Cucurbitaceae study showed that both prickly paddy melon (Cucumis myriocarpus) and camel melon (Citrullus lanatus) were represented by only a single genotype in Australia, implying that each was probably introduced as a single introduction event. In contrast, a third invasive melon, Citrullus colocynthis, possessed a moderate level of genetic diversity in Australia and was potentially introduced to the continent at least twice. The Boraginaceae study demonstrated the value of comparing two similar congeneric species; one, Echium plantagineum, is highly invasive and genetically diverse, whereas the other, Echium vulgare, exhibits less genetic diversity and occupies a more limited ecological niche. Sequence analysis provided precise identification of invasive plant species, as well as information on genetic diversity and phylogeographic history. Improved sequencing technologies will continue to allow greater resolution of genetic relationships among invasive plant populations, thereby potentially improving our ability to predict the impact of these relationships upon future spread and better manage invaders possessing potentially diverse biotypes and exhibiting diverse breeding systems, life histories and invasion histories.
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow030
      Issue No: Vol. 4, No. 1 (2016)
       
  • Coloured ornamental traits could be effective and non-invasive indicators
           of pollution exposure for wildlife

    • Authors: Lifshitz, N; St Clair, C. C.
      Abstract: Growth in human populations causes habitat degradation for other species, which is usually gauged by physical changes to landscapes. Corresponding habitat degradation to air and water is also common, but its effects on individuals can be difficult to detect until they result in the decline or disappearance of populations. More proactive measures of pollution usually combine abiotic samples of soil, water or air with invasive sampling of expendable species, but this approach sometimes creates ethical dilemmas and has limited application for threatened species. Here, we describe the potential to measure the effects of pollution on many species of birds and fish by using ornamental traits that are expressed as coloured skin, feathers and scales. As products of sexual selection, these traits are sensitive to environmental conditions, thereby providing honest information about the condition of their bearers as ready-made biomarkers. We review the documented effects of several classes of pollutants, including pharmaceuticals, pesticides, industry-related compounds and metals, on two classes of colour pigments, namely melanins and carotenoids. We find that several pollutants impede the expression of both carotenoids and brown melanin, while enhancing traits coloured by black melanin. We also review some of the current limitations of using ornamental colour as an indicator of pollution exposure, suggest avenues for future research and speculate about how advances in robotics and remote imagery will soon make it possible to measure these traits remotely and in a non-invasive manner. Wider awareness of this potential by conservation managers could foster the development of suitable model species and comparative metrics and lay a foundation for pollution monitoring that is more generalizable and biologically relevant than existing standards.
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow028
      Issue No: Vol. 4, No. 1 (2016)
       
  • Maximal oxygen consumption increases with temperature in the European eel
           (Anguilla anguilla) through increased heart rate and arteriovenous
           extraction

    • Authors: Claësson, D; Wang, T, Malte, H.
      Abstract: Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish.
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow027
      Issue No: Vol. 4, No. 1 (2016)
       
  • Physiological stress response, reflex impairment and delayed mortality of
           white sturgeon Acipenser transmontanus exposed to simulated fisheries
           stressors

    • Authors: McLean, M. F; Hanson, K. C, Cooke, S. J, Hinch, S. G, Patterson, D. A, Nettles, T. L, Litvak, M. K, Crossin, G. T.
      Abstract: White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations.
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow031
      Issue No: Vol. 4, No. 1 (2016)
       
  • Condition-dependent migratory behaviour of endangered Atlantic salmon
           smolts moving through an inland sea

    • Authors: Crossin, G. T; Hatcher, B. G, Denny, S, Whoriskey, K, Orr, M, Penney, A, Whoriskey, F. G.
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow032
      Issue No: Vol. 4, No. 1 (2016)
       
  • Gill structural change in response to turbidity has no effect on the
           oxygen uptake of a juvenile sparid fish

    • Authors: Cumming, H; Herbert, N. A.
      Abstract: Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (
      PubDate: 2016-08-24T08:51:30-07:00
      DOI: 10.1093/conphys/cow033
      Issue No: Vol. 4, No. 1 (2016)
       
  • A paradox in individual-based models of populations

    • Authors: van der Meer; J.
      Abstract: The standard dynamic energy budget model is widely used to describe the physiology of individual animals. It assumes that assimilation rate scales with body surface area, whereas maintenance rate scales with body volume. When the model is used as the building block of a population model, only limited dynamical behaviour, the so-called juvenile-driven cycles, emerges. The reason is that in the model juveniles are competitively superior over adults, because juveniles have a higher surface area-to-volume ratio. Maintenance requirements for adults are therefore relatively large, and a reduced assimilation rate as a result of lowered food levels will easily become insufficient. Here, an alternative dynamic energy budget model is introduced that gives rise to adult-driven cycles, which may be closer to what is often observed in reality. However, this comes at the price of a rather odd description of the individual, in that maintenance scales with body area and assimilation rate with body volume, resulting in unbounded exponential body growth. I make a plea to solve the paradox and come up with reliable descriptions at both the individual and the population level.
      PubDate: 2016-06-29T06:42:45-07:00
      DOI: 10.1093/conphys/cow023
      Issue No: Vol. 4, No. 1 (2016)
       
  • Endocrine responses to diverse stressors of capture, entanglement and
           stranding in leatherback turtles (Dermochelys coriacea)

    • Authors: Hunt, K. E; Innis, C. J, Merigo, C, Rolland, R. M.
      Abstract: Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 ‘distressed’ leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ~40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ~25 and ~50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration
      PubDate: 2016-06-29T06:42:45-07:00
      DOI: 10.1093/conphys/cow022
      Issue No: Vol. 4, No. 1 (2016)
       
  • Methodological considerations for measuring glucocorticoid metabolites in
           feathers

    • Authors: Berk, S. A; McGettrick, J. R, Hansen, W. K, Breuner, C. W.
      Abstract: In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT.
      PubDate: 2016-06-14T08:06:30-07:00
      DOI: 10.1093/conphys/cow020
      Issue No: Vol. 4, No. 1 (2016)
       
  • Feather and faecal corticosterone concentrations predict future
           reproductive decisions in harlequin ducks (Histrionicus histrionicus)

    • Authors: Hansen, W. K; Bate, L. J, Landry, D. W, Chastel, O, Parenteau, C, Breuner, C. W.
      Abstract: Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life-history phase that contributes to reproductive decisions. Identification of critical life-history phases is paramount to efficient management of species.
      PubDate: 2016-06-14T08:06:30-07:00
      DOI: 10.1093/conphys/cow015
      Issue No: Vol. 4, No. 1 (2016)
       
  • Partitioning the metabolic scope: the importance of anaerobic metabolism
           and implications for the oxygen- and capacity-limited thermal tolerance
           (OCLTT) hypothesis

    • Authors: Ejbye-Ernst, R; Michaelsen, T. Y, Tirsgaard, B, Wilson, J. M, Jensen, L. F, Steffensen, J. F, Pertoldi, C, Aarestrup, K, Svendsen, J. C.
      Abstract: Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for sustainable activities and the ability of individuals and species to cope with climate change.
      PubDate: 2016-06-03T23:40:31-07:00
      DOI: 10.1093/conphys/cow019
      Issue No: Vol. 4, No. 1 (2016)
       
  • Assessment of faecal glucocorticoid metabolite excretion in captive female
           fishing cats (Prionailurus viverinus) in Thailand

    • Authors: Khonmee, J; Vorawattanatham, N, Pinyopummin, A, Thitaram, C, Somgird, C, Punyapornwithaya, V, Brown, J. L.
      Abstract: There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (~60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1–2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P 
      PubDate: 2016-06-02T00:45:42-07:00
      DOI: 10.1093/conphys/cow021
      Issue No: Vol. 4, No. 1 (2016)
       
  • Condition-dependent migratory behaviour of endangered Atlantic salmon
           smolts moving through an inland sea

    • Authors: Crossin, G. T; Hatcher, B. G, Denny, S, Whoriskey, K, Orr, M, Penney, A, Whoriskey, F. G.
      Abstract: The Bras d’Or Lake watershed of Cape Breton Island, Nova Scotia, Canada is a unique inland sea ecosystem, UNESCO Biosphere Reserve and home to a group of regionally distinct Atlantic salmon (Salmo salar) populations. Recent population decreases in this region have raised concern about their long-term persistence. We used acoustic telemetry to track the migrations of juvenile salmon (smolts) from the Middle River into the Bras d’Or Lake and, subsequently, into the Atlantic Ocean. Roughly half of the tagged smolts transited the Bras d’Or Lakes to the Atlantic Ocean, using a migration route that took them through the Gulf of St Lawrence’s northern exit at the Strait of Belle Isle (~650 km from the home river) towards feeding areas in the Labrador Sea and Greenland. However, a significant fraction spent >70 days in the Lakes, suggesting that this population has an alternative resident form, in which smolts limit their migrations within the Bras d’Or. Smolts in good relative condition (as determined from length-to-mass relationships) tended to be residents, whereas fish in poorer condition were ocean migrants. We also found a covarying effect of river temperature that helped to predict residence vs. ocean migration. We discuss these results relative to their bioenergetic implications and provide suggestions for future studies aimed at the conservation of declining salmon populations in Canada.
      PubDate: 2016-05-23T18:05:37-07:00
      DOI: 10.1093/conphys/cow018
      Issue No: Vol. 4, No. 1 (2016)
       
  • Small pelagics in a changing ocean: biological responses of sardine early
           stages to warming

    • Authors: Faleiro, F; Pimentel, M, Pegado, M. R, Bispo, R, Lopes, A. R, Diniz, M. S, Rosa, R.
      Abstract: Small pelagic fishes are known to respond rapidly to changes in ocean climate. In this study, we evaluate the effects of future environmental warming (+2°C) during the early ontogeny of the European sardine, Sardina pilchardus. Warming reduced the survival of 30-day-old larvae by half. Length at hatching increased with temperature as expected, but no significant effect was observed on the length and growth at 30 days post-hatching. Warming did not significantly affect the thermal tolerance of sardine larvae, even though the mean lethal temperature increased by 1°C. In the warm conditions, sardine larvae showed signs of thermal stress, indicated by a pronounced increase in larval metabolism (Q10 = 7.9) and a 45% increase in the heat shock response. Lipid peroxidation was not significantly affected by the higher temperature, even though the mean value doubled. Warming did not affect the time larvae spent swimming, but decreased by 36% the frequency of prey attacks. Given the key role of these small pelagics in the trophic dynamics off the Western Iberian upwelling ecosystem, the negative effects of warming on the early stages may have important implications for fish recruitment and ecosystem structure.
      PubDate: 2016-05-17T19:45:28-07:00
      DOI: 10.1093/conphys/cow017
      Issue No: Vol. 4, No. 1 (2016)
       
  • Stress hormone levels in a freshwater turtle from sites differing in human
           activity

    • Authors: Polich; R. L.
      Abstract: Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.
      PubDate: 2016-05-17T19:45:28-07:00
      DOI: 10.1093/conphys/cow016
      Issue No: Vol. 4, No. 1 (2016)
       
  • Longitudinal progesterone profiles in baleen from female North Atlantic
           right whales (Eubalaena glacialis) match known calving history

    • Authors: Hunt, K. E; Lysiak, N. S, Moore, M. J, Rolland, R. M.
      Abstract: Reproduction of mysticete whales is difficult to monitor, and basic parameters, such as pregnancy rate and inter-calving interval, remain unknown for many populations. We hypothesized that baleen plates (keratinous strips that grow downward from the palate of mysticete whales) might record previous pregnancies, in the form of high-progesterone regions in the sections of baleen that grew while the whale was pregnant. To test this hypothesis, longitudinal baleen progesterone profiles from two adult female North Atlantic right whales (Eubalaena glacialis) that died as a result of ship strike were compared with dates of known pregnancies inferred from calf sightings and post-mortem data. We sampled a full-length baleen plate from each female at 4 cm intervals from base (newest baleen) to tip (oldest baleen), each interval representing ~60 days of baleen growth, with high-progesterone areas then sampled at 2 or 1 cm intervals. Pulverized baleen powder was assayed for progesterone using enzyme immunoassay. The date of growth of each sampling location on the baleen plate was estimated based on the distance from the base of the plate and baleen growth rates derived from annual cycles of stable isotope ratios. Baleen progesterone profiles from both whales showed dramatic elevations (two orders of magnitude higher than baseline) in areas corresponding to known pregnancies. Baleen hormone analysis shows great potential for estimation of recent reproductive history, inter-calving interval and general reproductive biology in this species and, possibly, in other mysticete whales.
      PubDate: 2016-05-11T19:35:32-07:00
      DOI: 10.1093/conphys/cow014
      Issue No: Vol. 4, No. 1 (2016)
       
  • A new analysis of hypoxia tolerance in fishes using a database of critical
           oxygen level (Pcrit)

    • Authors: Rogers, N. J; Urbina, M. A, Reardon, E. E, McKenzie, D. J, Wilson, R. W.
      Abstract: Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (Pcrit) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of Pcrit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on Pcrit, including temperature, CO2, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with Pcrit; 20% of variation in the Pcrit data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO2 within a closed respirometer during the measurement of Pcrit. Modelling suggests that the final partial pressure of CO2 reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood acid–base balance and Pcrit itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
      PubDate: 2016-04-28T02:50:30-07:00
      DOI: 10.1093/conphys/cow012
      Issue No: Vol. 4, No. 1 (2016)
       
  • Survival, growth and stress response of juvenile tidewater goby,
           Eucyclogobius newberryi, to interspecific competition for food

    • Authors: Chase, D. A; Flynn, E. E, Todgham, A. E.
      Abstract: Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents the first reported cortisol, glucose and lactate concentrations in response to chronic stress for E. newberryi.
      PubDate: 2016-04-22T23:40:29-07:00
      DOI: 10.1093/conphys/cow013
      Issue No: Vol. 4, No. 1 (2016)
       
  • Reduced immune function predicts disease susceptibility in frogs infected
           with a deadly fungal pathogen

    • Authors: Savage, A. E; Terrell, K. A, Gratwicke, B, Mattheus, N. M, Augustine, L, Fleischer, R. C.
      Abstract: The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1–15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29–55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations.
      PubDate: 2016-04-15T22:45:29-07:00
      DOI: 10.1093/conphys/cow011
      Issue No: Vol. 4, No. 1 (2016)
       
  • Understanding the individual to implement the ecosystem approach to
           fisheries management

    • Authors: Ward, T. D; Algera, D. A, Gallagher, A. J, Hawkins, E, Horodysky, A, Jorgensen, C, Killen, S. S, McKenzie, D. J, Metcalfe, J. D, Peck, M. A, Vu, M, Cooke, S. J.
      Abstract: Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.
      PubDate: 2016-04-07T18:55:33-07:00
      DOI: 10.1093/conphys/cow005
      Issue No: Vol. 4, No. 1 (2016)
       
  • Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is
           associated with rapid development of a gill interlamellar cell mass:
           implications of high-saline spills on native freshwater salmonids

    • Authors: Blair, S. D; Matheson, D, He, Y, Goss, G. G.
      Abstract: Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium–potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies with regard to the Arctic grayling in their native habitat.
      PubDate: 2016-03-23T21:55:27-07:00
      DOI: 10.1093/conphys/cow010
      Issue No: Vol. 4, No. 1 (2016)
       
  • Are global warming and ocean acidification conspiring against marine
           ectotherms' A meta-analysis of the respiratory effects of elevated
           temperature, high CO2 and their interaction

    • Authors: Lefevre; S.
      Abstract: With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase–optimum–decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.
      PubDate: 2016-03-23T21:55:27-07:00
      DOI: 10.1093/conphys/cow009
      Issue No: Vol. 4, No. 1 (2016)
       
  • Methods matter: considering locomotory mode and respirometry technique
           when estimating metabolic rates of fishes

    • Authors: Rummer, J. L; Binning, S. A, Roche, D. G, Johansen, J. L.
      Abstract: Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body–caudal fin or a median–paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope.
      PubDate: 2016-03-23T21:55:27-07:00
      DOI: 10.1093/conphys/cow008
      Issue No: Vol. 4, No. 1 (2016)
       
  • Context dependency of trait repeatability and its relevance for management
           and conservation of fish populations

    • Authors: Killen, S. S; Adriaenssens, B, Marras, S, Claireaux, G, Cooke, S. J.
      Abstract: Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits.
      PubDate: 2016-03-23T21:55:27-07:00
      DOI: 10.1093/conphys/cow007
      Issue No: Vol. 4, No. 1 (2016)
       
  • Assessment of ground transportation stress in juvenile Kemps ridley sea
           turtles (Lepidochelys kempii)

    • Authors: Hunt, K. E; Innis, C. J, Kennedy, A. E, McNally, K. L, Davis, D. G, Burgess, E. A, Merigo, C.
      Abstract: Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress (‘transport stress’) on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp’s ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp’s ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on ‘control days’ 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four ‘stress-associated’ parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp’s ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These results are likely to depend on specific transportation and handling protocols.
      PubDate: 2016-03-22T08:05:27-07:00
      DOI: 10.1093/conphys/cov071
      Issue No: Vol. 4, No. 1 (2016)
       
  • Haematological and immunological characteristics of eastern hellbenders
           (Cryptobranchus alleganiensis alleganiensis) infected and co-infected with
           endo- and ectoparasites

    • Authors: Hopkins, W. A; Fallon, J. A, Beck, M. L, Coe, B. H, Jachowski, C. M. B.
      Abstract: Disease is among the leading causes of the global decline in amphibian populations. In North America, parasites and pathogens are among the factors implicated in precipitous population declines of the giant hellbender salamander (Cryptobranchus alleganiensis), but the incidence of infections and the responses of hellbenders to infections remain poorly studied. Here, we document the prevalence of leech and trypanosome infections in a wild population of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) and describe haematological and immunological characteristics of hellbenders harbouring these infections. We hypothesized that hellbenders parasitized by trypanosomes would be anaemic, that individuals infected with either or both parasites would exhibit shifts in white blood cell counts and that hellbenders infected with leeches would exhibit altered plasma bactericidal capacity. We found that 24 and 68% of hellbenders in our sample population were infected with leeches and trypanosomes, respectively, and 20% were co-infected with both parasites. We found no evidence suggestive of anaemia among infected individuals. However, hellbenders infected with either or both parasites exhibited marked shifts in circulating white blood cells that were consistent with predictable responses to parasitic infection. Additionally, we found that hellbenders harbouring leeches had much higher plasma bactericidal capacity than individuals without leeches, and we offer multiple potential mechanistic explanations for this observation. We also found evidence that cellular and serological immune responses to parasites were less robust in juvenile than adult hellbenders. This finding warrants further investigation in light of the demographic characteristics, specifically the scarcity of juvenile age classes, of hellbender populations where disease is a possible contributor to declines. Finally, we describe two methodological advances that will improve future studies seeking to diagnose trypanosome infections and to test the bactericidal capacity of hellbenders and perhaps other amphibians. Our study provides fundamental insights into how hellbenders respond physiologically to endo- and ectoparasites, which could ultimately prove useful for their conservation.
      PubDate: 2016-03-21T01:25:27-07:00
      DOI: 10.1093/conphys/cow002
      Issue No: Vol. 4, No. 1 (2016)
       
  • Assessments at multiple levels of biological organization allow for an
           integrative determination of physiological tolerances to turbidity in an
           endangered fish species

    • Authors: Hasenbein, M; Fangue, N. A, Geist, J, Komoroske, L. M, Truong, J, McPherson, R, Connon, R. E.
      Abstract: Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator–prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento–San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta smelt physiological performance, causing significant effects on overall stress, food intake and mortality. They also highlight the need for turbidity to be considered in habitat and water management decisions.
      PubDate: 2016-03-16T03:50:30-07:00
      DOI: 10.1093/conphys/cow004
      Issue No: Vol. 4, No. 1 (2016)
       
  • Calibration of the HemoCue point-of-care analyser for determining
           haemoglobin concentration in a lizard and a fish

    • Authors: Andrewartha, S. J; Munns, S. L, Edwards, A.
      Abstract: Haemoglobin concentration ([Hb]) is measured for a wide variety of animal studies. The use of point-of-care devices, such as the HemoCue, is becoming increasingly common because of their portability, relative ease of use and low cost. In this study, we aimed to determine whether the [Hb] of blue-tongued skink (Tiliqua nigrolutea) blood can be determined accurately using the HemoCue and whether the HemoCue overestimates the [Hb] of reptile blood in a similar manner to fish blood. Additionally, we aimed to test whether ploidy affected [Hb] determined by the HemoCue using blood from diploid and triploid Atlantic salmon (Salmo salar). The HemoCue Hb 201+ systematically overestimated [Hb] in both blue-tongued skinks and Atlantic salmon, and there was no difference between calibration equations determined for diploid or triploid salmon. The overestimation was systematic in both species and, as such, [Hb] determined by the HemoCue can be corrected using appropriate calibration equations.
      PubDate: 2016-03-14T01:30:24-07:00
      DOI: 10.1093/conphys/cow006
      Issue No: Vol. 4, No. 1 (2016)
       
  • Will ocean acidification affect the early ontogeny of a tropical oviparous
           elasmobranch (Hemiscyllium ocellatum)?

    • Authors: Johnson, M. S; Kraver, D. W, Renshaw, G. M. C, Rummer, J. L.
      Abstract: Atmospheric CO2 is increasing due to anthropogenic causes. Approximately 30% of this CO2 is being absorbed by the oceans and is causing ocean acidification (OA). The effects of OA on calcifying organisms are starting to be understood, but less is known about the effects on non-calcifying organisms, notably elasmobranchs. One of the few elasmobranch species that has been studied with respect to OA is the epaulette shark, Hemiscyllium ocellatum. Mature epaulette sharks can physiologically and behaviourally tolerate prolonged exposure to elevated CO2, and this is thought to be because they are routinely exposed to diurnal decreases in O2 and probably concomitant increases in CO2 in their coral reef habitats. It follows that H. ocellatum embryos, while developing in ovo on the reefs, would have to be equally if not more tolerant than adults because they would not be able to escape such conditions. Epaulette shark eggs were exposed to either present-day control conditions (420 µatm) or elevated CO2 (945 µatm) and observed every 3 days from 10 days post-fertilization until 30 days post-hatching. Growth (in square centimetres per day), yolk usage (as a percentage), tail oscillations (per minute), gill movements (per minute) and survival were not significantly different in embryos reared in control conditions when compared with those reared in elevated CO2 conditions. Overall, these findings emphasize the importance of investigating early life-history stages, as the consequences are expected to transfer not only to the success of an individual but also to populations and their distribution patterns.
      PubDate: 2016-03-07T09:00:32-08:00
      DOI: 10.1093/conphys/cow003
      Issue No: Vol. 4, No. 1 (2016)
       
  • Conservation physiology of animal migration

    • Authors: Lennox, R. J; Chapman, J. M, Souliere, C. M, Tudorache, C, Wikelski, M, Metcalfe, J. D, Cooke, S. J.
      Abstract: Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration' Will shifting temperatures change the annual clocks of migrating animals' Will anthropogenic influences have an effect on orientation during migration' Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals' Can physiological knowledge be used to identify strategies for facilitating the movement of animals' Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.
      PubDate: 2016-02-29T20:15:22-08:00
      DOI: 10.1093/conphys/cov072
      Issue No: Vol. 4, No. 1 (2016)
       
  • Energetic benefits of enhanced summer roosting habitat for little brown
           bats (Myotis lucifugus) recovering from white-nose syndrome

    • Authors: Wilcox, A; Willis, C. K. R.
      Abstract: Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.
      PubDate: 2016-02-26T20:27:30-08:00
      DOI: 10.1093/conphys/cov070
      Issue No: Vol. 4, No. 1 (2016)
       
  • Effects of ocean acidification on embryonic respiration and development of
           a temperate wrasse living along a natural CO2 gradient

    • Authors: Cattano, C; Giomi, F, Milazzo, M.
      Abstract: Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (~400 µatm) and high (800–1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that spawned in ambient conditions had higher metabolic rates. Although metabolic phenotypic plasticity may show a positive response to high CO2, it often comes at a cost, in this case as a smaller size at hatching. This can have adverse effects because smaller larvae often exhibit a lower survival in the wild. However, the adverse effects of increased CO2 on metabolism and development did not occur when embryos from the high-CO2 nesting site were exposed to ambient conditions, suggesting that offspring from the high-CO2 nesting site could be resilient to a wider range of pCO2 values than those belonging to the site with present-day pCO2 levels. Our study identifies a crucial need to increase the number of studies dealing with these processes under global change trajectories and to expand these to naturally high-CO2 environments, in order to assess further the adaptive plasticity mechanism that encompasses non-genetic inheritance (epigenetics) through parental exposure and other downstream consequences, such as survival of larvae.
      PubDate: 2016-02-26T20:27:30-08:00
      DOI: 10.1093/conphys/cov073
      Issue No: Vol. 4, No. 1 (2016)
       
  • Development and application of an antibody-based protein microarray to
           assess physiological stress in grizzly bears (Ursus arctos)

    • Authors: Carlson, R. I; Cattet, M. R. L, Sarauer, B. L, Nielsen, S. E, Boulanger, J, Stenhouse, G. B, Janz, D. M.
      Abstract: A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic–pituitary–adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50–100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally
      PubDate: 2016-02-26T20:27:30-08:00
      DOI: 10.1093/conphys/cow001
      Issue No: Vol. 4, No. 1 (2016)
       
  • Inter-population differences in salinity tolerance and osmoregulation of
           juvenile wild and hatchery-born Sacramento splittail

    • Authors: Verhille, C. E; Dabruzzi, T. F, Cocherell, D. E, Mahardja, B, Feyrer, F, Foin, T. C, Baerwald, M. R, Fangue, N. A.
      Abstract: The Sacramento splittail (Pogonichthys macrolepidotus) is a minnow endemic to the highly modified San Francisco Estuary of California, USA and its associated rivers and tributaries. This species is composed of two genetically distinct populations, which, according to field observations and otolith strontium signatures, show largely allopatric distribution patterns as recently hatched juveniles. Juvenile Central Valley splittail are found primarily in the nearly fresh waters of the Sacramento and San Joaquin rivers and their tributaries, whereas San Pablo juveniles are found in the typically higher-salinity waters (i.e. up to 10) of the Napa and Petaluma Rivers. As the large salinity differences between young-of-year habitats may indicate population-specific differences in salinity tolerance, we hypothesized that juvenile San Pablo and Central Valley splittail populations differ in their response to salinity. In hatchery-born and wild-caught juvenile San Pablo splittail, we found upper salinity tolerances, where mortalities occurred within 336 h of exposure to 16 or higher, which was higher than the upper salinity tolerance of 14 for wild-caught juvenile Central Valley splittail. This, in conjunction with slower recovery of plasma osmolality, but not ion levels, muscle moisture or gill Na+,K+-ATPase activity, in Central Valley relative to San Pablo splittail during osmoregulatory disturbance provides some support for our hypothesis of inter-population variation in salinity tolerance and osmoregulation. The modestly improved salinity tolerance of San Pablo splittail is consistent with its use of higher-salinity habitats. Although confirmation of the putative adaptive difference through further studies is recommended, this may highlight the need for population-specific management considerations.
      PubDate: 2016-02-16T20:30:19-08:00
      DOI: 10.1093/conphys/cov063
      Issue No: Vol. 4, No. 1 (2016)
       
  • Long-term effect of carbohydrate reserves on growth and reproduction of
           Prosopis denudans (Fabaceae): implications for conservation of woody
           perennials

    • Authors: Vilela, A. E; Agüero, P. R, Ravetta, D, Gonzalez-Paleo, L.
      Abstract: Prosopis denudans, an extreme xerophyte shrub, is consumed by ungulates and threatened by firewood gathering, because it is one of the preferred species used by Mapuche indigenous people of Patagonia. In a scenario of uncontrolled use of vegetation, it is very difficult to develop a conservation plan that jointly protects natural resources and its users. We performed a field experiment to assess the impact of defoliation on growth, reproduction and stores of a wild population of P. denudans. We imposed four levels of defoliation (removal of 100, 66, 33 and 0% of leaves) and evaluated the short- and long-term (3 years) effects of this disturbance. Seasonal changes in shoot carbohydrates suggested that they support leaf-flush and blooming. Severely defoliated individuals also used root reserves to support growth and leaf-flush after clipping. Vegetative growth was not affected by defoliation history. Leaf mass area increased after the initial clipping, suggesting the development of structural defenses. The depletion of root reserves at the end of the first year affected inflorescence production the following spring. We conclude that P. denudans shrubs could lose up to one-third of their green tissues without affecting growth or inflorescence production. The removal of a higher proportion of leaves will diminish stores, which in turn, will reduce or completely prevent blooming and, therefore, fruit production the following seasons. Very few studies integrate conservation and plant physiology, and we are not aware, so far, of any work dealing with long-term plant carbon economy of a long-lived perennial shrub as an applied tool in conservation. These results might help the development of management strategies that consider both the use and the conservation of wild populations of P. denudans.
      PubDate: 2016-02-10T17:50:18-08:00
      DOI: 10.1093/conphys/cov068
      Issue No: Vol. 4, No. 1 (2016)
       
  • Physiological stress and post-release mortality of white marlin (Kajikia
           albida) caught in the United States recreational fishery

    • Authors: Schlenker, L. S; Latour, R. J, Brill, R. W, Graves, J. E.
      Abstract: White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be
      PubDate: 2016-02-10T17:50:18-08:00
      DOI: 10.1093/conphys/cov066
      Issue No: Vol. 4, No. 1 (2016)
       
  • Effects of salinity on upstream-migrating, spawning sea lamprey,
           Petromyzon marinus

    • Authors: Ferreira-Martins, D; Coimbra, J, Antunes, C, Wilson, J. M.
      Abstract: The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ~1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na+:Cl– cotransporter (NCC/slc12a3) and epithelial Na+ channel (ENaC/scnn1) and kidney Na+/K+-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na+] and [Cl–] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na+:K+:2Cl– cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of seawater-type ionocytes detected through immunohistochemical NKA immunoreactivity in the gill, the central ionoregulatory organ. This work sheds light on the molecular and physiological limits to the potential return to seawater for lampreys searching for alternative FW systems in which to spawn.
      PubDate: 2016-02-06T03:40:17-08:00
      DOI: 10.1093/conphys/cov064
      Issue No: Vol. 4, No. 1 (2016)
       
  • Links between parasitism, energy reserves and fecundity of European
           anchovy, Engraulis encrasicolus, in the northwestern Mediterranean Sea

    • Authors: Ferrer-Maza, D; Lloret, J, Munoz, M, Faliex, E, Vila, S, Sasal, P.
      Abstract: The European anchovy, Engraulis encrasicolus L. 1758, is one of the most sought-after target species in the northwestern Mediterranean Sea. However, this stock currently consists of small individuals, and landings are reported to have decreased considerably. The main purpose of this study was to assess, for the first time, the interrelationships between size, fecundity, energy reserves and parasitism in female anchovies, in order to analyse the potential implications for the health of northwestern Mediterranean anchovy stocks arising from the current shortage of large individuals. Results revealed that smaller individuals show lower fecundity, lower lipid content and a higher intensity of certain parasites. As it is known that smaller individuals now predominate in the population, the relationships found in this study indicate that the health of anchovies from the northwestern Mediterranean is currently impaired.
      PubDate: 2016-01-22T20:40:09-08:00
      DOI: 10.1093/conphys/cov069
      Issue No: Vol. 4, No. 1 (2016)
       
  • Progressive hypoxia decouples activity and aerobic performance of skate
           embryos

    • Authors: Di Santo, V; Tran, A. H, Svendsen, J. C.
      Abstract: Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.
      PubDate: 2016-01-22T20:40:08-08:00
      DOI: 10.1093/conphys/cov067
      Issue No: Vol. 4, No. 1 (2016)
       
  • Prior exposure to capture heightens the corticosterone and behavioural
           responses of little penguins (Eudyptula minor) to acute stress

    • Authors: Carroll, G; Turner, E, Dann, P, Harcourt, R.
      Abstract: Studies of physiology can provide important insight into how animals are coping with challenges in their environment and can signal the potential effects of exposure to human activity in both the short and long term. In this study, we measured the physiological and behavioural response of little penguins (Eudyptula minor) that were naïve to human activity over 30 min of capture and handling. We assessed relationships between corticosterone secretion, behaviour, sex and time of day in order to characterize the determinants of the natural stress response. We then compared the response of these naïve penguins with the responses of female little penguins that had been exposed to research activity (bimonthly nest check and weighing) and to both research activity (monthly nest check and weighing) and evening viewing by tourists. We found that corticosterone concentrations increased significantly over 30 min of capture, with naïve penguins demonstrating a more acute stress response during the day than at night. Penguins that had previously been exposed to handling at the research and research/visitor sites showed elevated corticosterone concentrations and consistently more aggressive behaviour after 30 min compared with naïve birds, although there were no significant differences in baseline corticosterone concentrations. Our findings demonstrate that these little penguins have not habituated to routine capture, but rather mount a heightened physiological and behavioural response to handling by humans. Less invasive research monitoring techniques, such as individual identification with PIT tags and automatic recording and weighing, and a reduction in handling during the day should be considered to mitigate some of the potentially negative effects of disturbance. Given the paucity of data on the long-term consequences of heightened stress on animal physiology, our study highlights the need for further investigation of the relationship between the corticosterone stress response and fitness outcomes, such as breeding success and survival.
      PubDate: 2016-01-19T18:10:10-08:00
      DOI: 10.1093/conphys/cov061
      Issue No: Vol. 4, No. 1 (2016)
       
  • Fisheries conservation on the high seas: linking conservation physiology
           and fisheries ecology for the management of large pelagic fishes

    • Authors: Horodysky, A. Z; Cooke, S. J, Graves, J. E, Brill, R. W.
      Abstract: Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management.
      PubDate: 2016-01-13T21:40:40-08:00
      DOI: 10.1093/conphys/cov059
      Issue No: Vol. 4, No. 1 (2016)
       
  • Phenotypic variation in metabolism and morphology correlating with animal
           swimming activity in the wild: relevance for the OCLTT (oxygen- and
           capacity-limitation of thermal tolerance), allocation and performance
           models

    • Authors: Baktoft, H; Jacobsen, L, Skov, C, Koed, A, Jepsen, N, Berg, S, Boel, M, Aarestrup, K, Svendsen, J. C.
      Abstract: Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is correlated with in situ activity patterns.
      PubDate: 2016-01-11T17:22:31-08:00
      DOI: 10.1093/conphys/cov055
      Issue No: Vol. 4, No. 1 (2016)
       
  • Evaluating the effect of sample type on American alligator (Alligator
           mississippiensis) analyte values in a point-of-care blood analyser

    • Authors: Hamilton, M. T; Finger, J. W, Winzeler, M. E, Tuberville, T. D.
      Abstract: The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressure of carbon dioxide (PCO2), bicarbonate (HCO3–), total carbon dioxide (TCO2), base excess (BE), partial pressure of oxygen (PO2), oxygen saturation (sO2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. Lastly, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood.
      PubDate: 2016-01-08T00:18:35-08:00
      DOI: 10.1093/conphys/cov065
      Issue No: Vol. 4, No. 1 (2016)
       
  • Intraspecific individual variation of temperature tolerance associated
           with oxygen demand in the European sea bass (Dicentrarchus labrax)

    • Authors: Ozolina, K; Shiels, H. A, Ollivier, H, Claireaux, G.
      Abstract: The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
      PubDate: 2016-01-08T00:18:35-08:00
      DOI: 10.1093/conphys/cov060
      Issue No: Vol. 4, No. 1 (2016)
       
  • Success stories and emerging themes in conservation physiology

    • Authors: Madliger, C. L; Cooke, S. J, Crespi, E. J, Funk, J. L, Hultine, K. R, Hunt, K. E, Rohr, J. R, Sinclair, B. J, Suski, C. D, Willis, C. K. R, Love, O. P.
      Abstract: The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans.
      PubDate: 2016-01-05T00:13:04-08:00
      DOI: 10.1093/conphys/cov057
      Issue No: Vol. 4, No. 1 (2016)
       
  • Heavy with child' Pregnancy status and stable isotope ratios as
           determined from biopsies of humpback whales

    • Authors: Clark, C. T; Fleming, A. H, Calambokidis, J, Kellar, N. M, Allen, C. D, Catelani, K. N, Robbins, M, Beaulieu, N. E, Steel, D, Harvey, J. T.
      Pages: 1 - 13
      Abstract: Understanding reproductive rates of wild animal populations is crucially important for management and conservation. Assessing pregnancy status of free-ranging cetaceans has historically been difficult; however, recent advances in analytical techniques have allowed the diagnosis of pregnancy from small samples of blubber tissue. The primary objectives of this study were as follows: (i) to test the efficacy of blubber progesterone assays as a tool for diagnosing pregnancy in humpback whales (Megaptera novaeangliae); (ii) to estimate the pregnancy rate of humpback whales in Monterey Bay, California; and (iii) to investigate the relationship between stable isotopes and reproductive status of these whales. Progesterone concentrations of female whales fell into two distinct groups, allowing for diagnostic separation of pregnant and non-pregnant individuals. Pregnancy rate varied between years of the study (48.4%% in 2011 and 18.5% in 2012), but fell within the range of other estimates of reproductive success for this population. Stable carbon and nitrogen isotope ratios were examined to investigate the impacts of pregnancy on these values. Neither 15N nor 13C varied in a consistent way among animals of different sex or reproductive status. The relationship between 15N and 13C was strongly positive for male and non-pregnant female humpbacks; however, no relationship existed for pregnant whales. This difference may be indicative of the effects of pregnancy on 15N, resulting from tissue synthesis and reduced excretion of nitrogenous waste, as well as on 13C through increased mobilization of lipid stores to meet the energetic demands of pregnancy. Ultimately, our results support the use of blubber progesterone assays for diagnosing pregnancy in humpback whales and indicate that, when paired with other approaches (e.g. stable isotope analysis), pregnancy status can be an informative tool for addressing questions about animal physiology, ecology and population biology. This information will provide for more effective management and conservation efforts in a rapidly changing world.
      PubDate: 2016-10-18T08:28:16-07:00
      DOI: 10.1093/conphys/cow050
      Issue No: Vol. 4, No. 1 (2016)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.147.196.37
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016