for Journals by Title or ISSN
for Articles by Keywords
help
Followed Journals
Journal you Follow: 0
 
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Journals are published.
Already have an account? Sign In to see the journals you follow.
Journal Cover Nature
  [SJR: 21.936]   [H-I: 948]   [3989 followers]  Follow
    
   Full-text available via subscription Subscription journal
   ISSN (Print) 0028-0836 - ISSN (Online) 1476-4687
   Published by NPG Homepage  [135 journals]
  • Against discrimination
    • Pages: 259 - 259
      Abstract: Science cannot and should not be used to justify prejudice.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548259b
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Budget cuts fuel frustration among Japan’s academics
    • Pages: 259 - 259
      Abstract: Funding trouble at flagship research centre reflects a broader malaise in the country’s scientific priorities that must be addressed.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-14
      DOI: 10.1038/nature.2017.22444
      Issue No: Vol. 548, No. 7667 (2017)
       
  • A little democracy could go a long way
    • Authors: Ehsan Masood
      Pages: 261 - 261
      Abstract: The Middle East is freezing out Qatar. A science academy could help — and would set an important precedent for the region, says Ehsan Masood.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-15
      DOI: 10.1038/548261a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Opioid emergency, climate language and a frozen fruit cake
    • Pages: 264 - 265
      Abstract: The week in science: 11–17 August 2017.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548264a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • California’s scientists push to create massive climate-research
           programme
    • Authors: Jeff Tollefson
      Pages: 267 - 268
      Abstract: Effort backed by the state’s flagship universities comes as US President Donald Trump shrugs off global warming.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548267a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • China launches brain-imaging factory
    • Authors: David Cyranoski
      Pages: 268 - 269
      Abstract: Hub aims to make industrial-scale high-resolution brain mapping a standard tool for neuroscience
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548268a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Massive El Niño sent greenhouse-gas emissions soaring
    • Authors: Gabriel Popkin
      Pages: 269 - 269
      Abstract: Disruptive weather pattern in 2014–2016 spurred tropical forests to pump out 3 billion tonnes of carbon.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-10
      DOI: 10.1038/nature.2017.22440
      Issue No: Vol. 548, No. 7667 (2017)
       
  • US biomedical-research facilities unprepared for attacks and natural
           disasters
    • Authors: Sara Reardon
      Pages: 270 - 270
      Abstract: Science panel says institutions need to do more to prevent and mitigate damage to research equipment and animals.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-10
      DOI: 10.1038/nature.2017.22446
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Thousands across India march in support of science
    • Authors: T. V. Padma
      Pages: 270 - 270
      Abstract: Protesters demand respect for research — but some scientists were told to stay away.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature.2017.22439
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Why 14 ecology labs teamed up to watch grass grow
    • Authors: Ewen Callaway
      Pages: 271 - 271
      Abstract: Multi-lab efforts point the way to shoring up the reliability of field studies.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-15
      DOI: 10.1038/548271a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • China’s embrace of embryo selection raises thorny questions
    • Authors: David Cyranoski
      Pages: 272 - 274
      Abstract: Fertility centres are making a massive push to increase preimplantation genetic diagnosis in a bid to eradicate certain diseases.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548272a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Revitalize the world’s countryside
    • Authors: Yansui Liu, Yuheng Li
      Pages: 275 - 277
      Abstract: A rural revival is needed to counter urbanization across the globe, say Yansui Liu and Yuheng Li.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548275a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Seismology: Quake news from America
    • Authors: Roger Bilham
      Pages: 278 - 280
      Abstract: Roger Bilham savours two rich accounts of seismicity across the continent.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548278a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Books in brief
    • Authors: Barbara Kiser
      Pages: 279 - 279
      Abstract: Barbara Kiser reviews five of the week's best science picks.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548279a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Data sharing: guard the privacy of donors
    • Authors: Shirley Y. Hill
      Pages: 281 - 281
      Abstract: I endorse Emma Kowal and colleagues' call for more-responsible sharing of people's research data (Nature546, 474;10.1038/546474a2017). The reuse of data without participants' consent is a serious ethical problem and could discourage participation in future projects (see, for example,
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548281a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Data sharing: do scientists know best'
    • Authors: David Lambert, Craig Millar, Eske Willerslev
      Pages: 281 - 281
      Abstract: Emma Kowal and colleagues argue against restricting access to genomic data collected from indigenous peoples (Nature546, 474;10.1038/546474a2017), citing our study of Aboriginal Australians as a case in point (A.-S.Malaspinaset al. Nature538, 207
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548281b
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Climate adaptation: Past US floods give lessons in retreat
    • Authors: A. R. Siders
      Pages: 281 - 281
      Abstract: The movement of people and infrastructure out of vulnerable areas, a process called managed retreat, is gaining recognition as a potential adaptation strategy to climate change and natural hazards (see also M.Hinoet al. Nature Clim. Change7, 364–370;
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548281c
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Carbon emissions: More nuclear power can speed CO2 cuts
    • Authors: Richard Rhodes
      Pages: 281 - 281
      Abstract: Christiana Figueres and colleagues note that turning around global carbon dioxide emissions by 2020 may not be feasible through renewable energy alone (Nature546, 593–595;10.1038/546593a2017). Low-carbon nuclear power will be needed as well.Historically, energy transitions take
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548281d
      Issue No: Vol. 548, No. 7667 (2017)
       
  • History: Ingenious solutions sparked by a crisis
    • Authors: Biswa Prasun Chatterji
      Pages: 281 - 281
      Abstract: Researchers have taken to recycling laboratory helium in the face of dwindling supplies resulting from the blockade of Qatar (Nature547, 16;10.1038/547016a2017). Such extreme situations have also prompted other scientists to devise imaginative alternatives in the past.In the
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548281e
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Climate science: Origins of Atlantic decadal swings
    • Authors: Gabriel A. Vecchi, Thomas L. Delworth, Ben Booth
      Pages: 284 - 285
      Abstract: Temperature variability in the North Atlantic Ocean is the result of many competing physical processes, but the relative roles of these processes is a source of contention. Here, scientists present two perspectives on the debate.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23538
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Neurobiology: A bitter–sweet symphony
    • Authors: Jiefu Li, Liqun Luo
      Pages: 285 - 287
      Abstract: Information about taste sensations, such as bitter or sweet, is relayed from the mouse tongue to the brain through taste-specific pathways. It emerges that semaphorin proteins guide the wiring of these pathways. See Letter p.330
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23537
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Cancer genomics: Human metastases under scrutiny
    • Authors: G. Steven Bova
      Pages: 287 - 288
      Abstract: Sequences of the DNA and RNA of 500 human cancers that have spread from their primary site in the body take us a step closer to the convergence of basic science and patient benefit. See Article p.297
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-02
      DOI: 10.1038/nature23535
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Astronomy: A turbulent stellar atmosphere in full view
    • Authors: Gail H. Schaefer
      Pages: 288 - 289
      Abstract: The dynamic motion of gas in the outer atmosphere of a red supergiant star has been mapped, providing clues to the mysterious mechanism that causes massive stars to lose mass through stellar winds. See Letter p.310
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548288a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Cell biology: Healthy skin rejects cancer
    • Authors: Joseph Burclaff, Jason C. Mills
      Pages: 289 - 290
      Abstract: Live imaging shows that healthy skin cells surround and expel neighbours that have cancer-promoting mutations, revealing that tissues can recognize and eliminate mutant cells to prevent tumour initiation. See Letter p.334
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-02
      DOI: 10.1038/nature23534
      Issue No: Vol. 548, No. 7667 (2017)
       
  • New gliding mammaliaforms from the Jurassic
    • Authors: Qing-Jin Meng, David M. Grossnickle, Di Liu, Yu-Guang Zhang, April I. Neander, Qiang Ji, Zhe-Xi Luo
      Pages: 291 - 296
      Abstract: Stem mammaliaforms are Mesozoic forerunners to mammals, and they offer critical evidence for the anatomical evolution and ecological diversification during the earliest mammalian history. Two new eleutherodonts from the Late Jurassic period have skin membranes and skeletal features that are adapted for gliding. Characteristics of
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23476
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Integrative clinical genomics of metastatic cancer
    • Authors: Dan R. Robinson, Yi-Mi Wu, Robert J. Lonigro, Pankaj Vats, Erin Cobain, Jessica Everett, Xuhong Cao, Erica Rabban, Chandan Kumar-Sinha, Victoria Raymond, Scott Schuetze, Ajjai Alva, Javed Siddiqui, Rashmi Chugh, Francis Worden, Mark M. Zalupski, Jeffrey Innis, Rajen J. Mody, Scott A. Tomlins, David Lucas, Laurence H. Baker, Nithya Ramnath, Ann F. Schott, Daniel F. Hayes, Joseph Vijai, Kenneth Offit, Elena M. Stoffel, J. Scott Roberts, David C. Smith, Lakshmi P. Kunju, Moshe Talpaz, Marcin Cieślik, Arul M. Chinnaiyan
      Pages: 297 - 303
      Abstract: Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-02
      DOI: 10.1038/nature23306
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Ram-pressure feeding of supermassive black holes
    • Authors: Bianca M. Poggianti, Yara L. Jaffé, Alessia Moretti, Marco Gullieuszik, Mario Radovich, Stephanie Tonnesen, Jacopo Fritz, Daniela Bettoni, Benedetta Vulcani, Giovanni Fasano, Callum Bellhouse, George Hau, Alessandro Omizzolo
      Pages: 304 - 309
      Abstract: When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven ‘jellyfish’ galaxies—galaxies with long ‘tentacles’ of material that extend for dozens of kiloparsecs beyond the galactic disks—host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/nature23462
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Vigorous atmospheric motion in the red supergiant star Antares
    • Authors: K. Ohnaka, G. Weigelt, K.-H. Hofmann
      Pages: 310 - 312
      Abstract: Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about −20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/nature23445
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Electronic in-plane symmetry breaking at field-tuned quantum criticality
           in CeRhIn5
    • Authors: F. Ronning, T. Helm, K. R. Shirer, M. D. Bachmann, L. Balicas, M. K. Chan, B. J. Ramshaw, R. D. McDonald, F. F. Balakirev, M. Jaime, E. D. Bauer, P. J. W. Moll
      Pages: 313 - 317
      Abstract: Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-07
      DOI: 10.1038/nature23315
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
    • Authors: Suhas Kumar, John Paul Strachan, R. Stanley Williams
      Pages: 318 - 321
      Abstract: At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal–insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23307
      Issue No: Vol. 548, No. 7667 (2017)
       
  • An early modern human presence in Sumatra 73,000–63,000 years ago
    • Authors: K. E. Westaway, J. Louys, R. Due Awe, M. J. Morwood, G. J. Price, J.-x. Zhao, M. Aubert, R. Joannes-Boyau, T. M. Smith, M. M. Skinner, T. Compton, R. M. Bailey, G. D. van den Bergh, J. de Vos, A. W. G. Pike, C. Stringer, E. W. Saptomo, Y. Rizal, J. Zaim, W. D. Santoso, A. Trihascaryo, L. Kinsley, B. Sulistyanto
      Pages: 322 - 325
      Abstract: Genetic evidence for anatomically modern humans (AMH) out of Africa before 75 thousand years ago (ka) and in island southeast Asia (ISEA) before 60 ka (93–61 ka) predates accepted archaeological records of occupation in the region. Claims that AMH arrived in ISEA before 60 ka (ref. 4) have been supported only by equivocal or non-skeletal evidence. AMH evidence from this period is rare and lacks robust chronologies owing to a lack of direct dating applications, poor preservation and/or excavation strategies and questionable taxonomic identifications. Lida Ajer is a Sumatran Pleistocene cave with a rich rainforest fauna associated with fossil human teeth. The importance of the site is unclear owing to unsupported taxonomic identification of these fossils and uncertainties regarding the age of the deposit, therefore it is rarely considered in models of human dispersal. Here we reinvestigate Lida Ajer to identify the teeth confidently and establish a robust chronology using an integrated dating approach. Using enamel–dentine junction morphology, enamel thickness and comparative morphology, we show that the teeth are unequivocally AMH. Luminescence and uranium-series techniques applied to bone-bearing sediments and speleothems, and coupled uranium-series and electron spin resonance dating of mammalian teeth, place modern humans in Sumatra between 73 and 63 ka. This age is consistent with biostratigraphic estimations, palaeoclimate and sea-level reconstructions, and genetic evidence for a pre-60 ka arrival of AMH into ISEA. Lida Ajer represents, to our knowledge, the earliest evidence of rainforest occupation by AMH, and underscores the importance of reassessing the timing and environmental context of the dispersal of modern humans out of Africa.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23452
      Issue No: Vol. 548, No. 7667 (2017)
       
  • New evidence for mammaliaform ear evolution and feeding adaptation in a
           Jurassic ecosystem
    • Authors: Zhe-Xi Luo, Qing-Jin Meng, David M. Grossnickle, Di Liu, April I. Neander, Yu-Guang Zhang, Qiang Ji
      Pages: 326 - 329
      Abstract: Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar–pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23483
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Rewiring the taste system
    • Authors: Hojoon Lee, Lindsey J. Macpherson, Camilo A. Parada, Charles S. Zuker, Nicholas J. P. Ryba
      Pages: 330 - 333
      Abstract: In mammals, taste buds typically contain 50–100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5–20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23299
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Correction of aberrant growth preserves tissue homeostasis
    • Authors: Samara Brown, Cristiana M. Pineda, Tianchi Xin, Jonathan Boucher, Kathleen C. Suozzi, Sangbum Park, Catherine Matte-Martone, David G. Gonzalez, Julie Rytlewski, Slobodan Beronja, Valentina Greco
      Pages: 334 - 337
      Abstract: Cells in healthy tissues acquire mutations with surprising frequency. Many of these mutations are associated with abnormal cellular behaviours such as differentiation defects and hyperproliferation, yet fail to produce macroscopically detectable phenotypes. It is currently unclear how the tissue remains phenotypically normal, despite the presence of these mutant cells. Here we use intravital imaging to track the fate of mouse skin epithelium burdened with varying numbers of activated Wnt/β-catenin stem cells. We show that all resulting growths that deform the skin tissue architecture regress, irrespective of their size. Wild-type cells are required for the active elimination of mutant cells from the tissue, while utilizing both endogenous and ectopic cellular behaviours to dismantle the aberrant structures. After regression, the remaining structures are either completely eliminated or converted into functional skin appendages in a niche-dependent manner. Furthermore, tissue aberrancies generated from oncogenic Hras, and even mutation-independent deformations to the tissue, can also be corrected, indicating that this tolerance phenomenon reflects a conserved principle in the skin. This study reveals an unanticipated plasticity of the adult skin epithelium when faced with mutational and non-mutational insult, and elucidates the dynamic cellular behaviours used for its return to a homeostatic state.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-02
      DOI: 10.1038/nature23304
      Issue No: Vol. 548, No. 7667 (2017)
       
  • m6A mRNA methylation controls T cell homeostasis by targeting the
           IL-7/STAT5/SOCS pathways
    • Authors: Hua-Bing Li, Jiyu Tong, Shu Zhu, Pedro J. Batista, Erin E. Duffy, Jun Zhao, Will Bailis, Guangchao Cao, Lina Kroehling, Yuanyuan Chen, Geng Wang, James P. Broughton, Y. Grace Chen, Yuval Kluger, Matthew D. Simon, Howard Y. Chang, Zhinan Yin, Richard A. Flavell
      Pages: 338 - 342
      Abstract: N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by ‘writers’, ‘erasers’ and ‘readers’ of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A ‘writer’ protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23450
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Genome-scale activation screen identifies a lncRNA locus regulating a gene
           neighbourhood
    • Authors: Julia Joung, Jesse M. Engreitz, Silvana Konermann, Omar O. Abudayyeh, Vanessa K. Verdine, Francois Aguet, Jonathan S. Gootenberg, Neville E. Sanjana, Jason B. Wright, Charles P. Fulco, Yuen-Yi Tseng, Charles H. Yoon, Jesse S. Boehm, Eric S. Lander, Feng Zhang
      Pages: 343 - 346
      Abstract: Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes—for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR–Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23451
      Issue No: Vol. 548, No. 7667 (2017)
       
  • mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian
           maternal transcriptome
    • Authors: Marcos Morgan, Christian Much, Monica DiGiacomo, Chiara Azzi, Ivayla Ivanova, Dimitrios M. Vitsios, Jelena Pistolic, Paul Collier, Pedro N. Moreira, Vladimir Benes, Anton J. Enright, Dónal O’Carroll
      Pages: 347 - 351
      Abstract: A fundamental principle in biology is that the program for early development is established during oogenesis in the form of the maternal transcriptome. How the maternal transcriptome acquires the appropriate content and dosage of transcripts is not fully understood. Here we show that 3′ terminal uridylation of mRNA mediated by TUT4 and TUT7 sculpts the mouse maternal transcriptome by eliminating transcripts during oocyte growth. Uridylation mediated by TUT4 and TUT7 is essential for both oocyte maturation and fertility. In comparison to somatic cells, the oocyte transcriptome has a shorter poly(A) tail and a higher relative proportion of terminal oligo-uridylation. Deletion of TUT4 and TUT7 leads to the accumulation of a cohort of transcripts with a high frequency of very short poly(A) tails, and a loss of 3′ oligo-uridylation. By contrast, deficiency of TUT4 and TUT7 does not alter gene expression in a variety of somatic cells. In summary, we show that poly(A) tail length and 3′ terminal uridylation have essential and specific functions in shaping a functional maternal transcriptome.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23318
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex
           with Hrd3
    • Authors: Stefan Schoebel, Wei Mi, Alexander Stein, Sergey Ovchinnikov, Ryan Pavlovicz, Frank DiMaio, David Baker, Melissa G. Chambers, Huayou Su, Dongsheng Li, Tom A. Rapoport, Maofu Liao
      Pages: 352 - 355
      Abstract: Misfolded endoplasmic reticulum proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the membrane, and degraded by the proteasome—a pathway termed endoplasmic reticulum-associated protein degradation (ERAD). Proteins with misfolded domains in the endoplasmic reticulum lumen or membrane are discarded through the ERAD-L and ERAD-M pathways, respectively. In Saccharomyces cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain. Hrd1 is the crucial membrane component for retro-translocation, but it is unclear whether it forms a protein-conducting channel. Here we present a cryo-electron microscopy structure of S. cerevisiae Hrd1 in complex with its endoplasmic reticulum luminal binding partner, Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight transmembrane segments, five of which form an aqueous cavity extending from the cytosol almost to the endoplasmic reticulum lumen, while a segment of the neighbouring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features of protein-conducting conduits that facilitate polypeptide movement in the opposite direction—from the cytosol into or across membranes. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the endoplasmic reticulum membrane.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-07-06
      DOI: 10.1038/nature23314
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Structural insights into ligand recognition by the lysophosphatidic acid
           receptor LPA6
    • Authors: Reiya Taniguchi, Asuka Inoue, Misa Sayama, Akiharu Uwamizu, Keitaro Yamashita, Kunio Hirata, Masahito Yoshida, Yoshiki Tanaka, Hideaki E. Kato, Yoshiko Nakada-Nakura, Yuko Otani, Tomohiro Nishizawa, Takayuki Doi, Tomohiko Ohwada, Ryuichiro Ishitani, Junken Aoki, Osamu Nureki
      Pages: 356 - 360
      Abstract: Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA1–LPA3) and the phylogenetically distant non-EDG family (LPA4–LPA6). The structure of LPA1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y1 and P2Y12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-09
      DOI: 10.1038/nature23448
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Student immigration: The gamble of going abroad
    • Authors: Virginia Gewin
      Pages: 361 - 363
      Abstract: Political concerns and visa access are swaying students deciding where to pursue a degree.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/nj7667-361a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • Trade talk: Crime buster
    • Authors: Julie Gould
      Pages: 363 - 363
      Abstract: A molecular biologist uses his investigative skills to support detectives.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/nj7667-363a
      Issue No: Vol. 548, No. 7667 (2017)
       
  • First date with the Hive
    • Authors: Gretchen Tessmer
      Pages: 366 - 366
      Abstract: Mind how you go.
      Citation: Nature 548, 7667 (2017)
      PubDate: 2017-08-16
      DOI: 10.1038/548366a
      Issue No: Vol. 548, No. 7667 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.81.42.111
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016