Abstract: The HVDC system has many significant benefits and is widely used around the world. The protection of HVDC system is always an issue, which should be solved. This paper presents the working principle of different protection schemes. The advantages and disadvantages of these protection schemes are also introduced. In order to solve the HVDC fault, two protection strategies are proposed. One design focusses on the topologies of the HVDC breaker in the HVDC line, such as all-solid HVDC breaker, resonant HVDC breaker, and hybrid HVDC breaker. The other design is from the viewpoint of converter topology, which has two types. One type generates the counter-emf in arms, such as full bridge MMC, hybrid MMC, and clamp-double MMC. The other type cuts off the current path from the AC side to the DC side, which is also introduced in this paper. Some performances of these topologies are compared, such as switching time and efficiency. PubDate: Wed, 07 Feb 2018 00:00:00 +000
Abstract: A new analog technique is proposed in order to track the maximum power point (MPP) of PV panels. The proposed technique uses the well-known simple functions of electronic circuits. The proposed technique is validated by applying it to boost based off grid PV system. The simulation of the PV system was done on the circuit oriented simulator Proteus-ISIS. A good efficiency of the analog technique (more than 98%) was registered. The variation of irradiation was introduced in order to study the robustness of the proposed analog MPPT technique. PubDate: Mon, 25 Sep 2017 00:00:00 +000
Abstract: One of the emerging research topics in the propulsion drive of the electric vehicles is the improvement in the efficiency of its component parts, namely, the propulsion motor and the associated inverter. This paper is focused on the efficiency of the inverter and analyzes the improvement that follows from the replacement of the silicon (Si) IGBT devices with silicon carbide (SiC) MOSFETs. To this end, the paper starts by deriving the voltage-current solicitations of the inverter over the working torque-speed plane of the propulsion motor. Then, a proper model of the power losses in the inverter over a supply period of the motor is formulated for the two types of device, including the integrated freewheeling diode. By putting together the voltage-current solicitations and the device power losses, the efficiency maps of the Si IGBT and SiC MOSFET inverters are calculated and compared over the torque-speed plane. The results for the Si IGBT inverter are supported by measurements executed on a marketed C-segment compact electric car, while the SiC MOSFET loss model is validated by an on-purpose built test bench. Finally, the overall efficiency of the propulsion drive is calculated by accounting for the motor efficiency. Main outcomes of the paper is a quantitative evaluation of both the improvement in the efficiency achievable with the SiC MOSFETs and the ensuing increase in the electric car range. PubDate: Tue, 28 Feb 2017 09:16:50 +000
Abstract: This paper presents the experimental verification of a 2 kW battery energy storage system (BESS). The BESS comprises a full-bridge bidirectional isolated dc-dc converter and a PWM converter that is intended for integration with a photovoltaic (PV) generator, resulting in leveling of the intermittent output power from the PV generator at the utility side. A phase-shift controller is also employed to manage the charging and discharging operations of the BESS based on PV output power and battery voltage. Moreover, a current controller that uses the - synchronous reference frame is proposed to regulate the dc voltage at the high-voltage side (HVS) to ensure that the voltage ratio of the HVS with low-voltage side (LVS) is equivalent to the transformer turns ratio. The proposed controllers allow fast response to changes in real power requirements and results in unity power factor current injection at the utility side. In addition, the efficient active power injection is achieved as the switching losses are minimized. The peak efficiency of the bidirectional isolated dc-dc converter is measured up to 95.4% during battery charging and 95.1% for battery discharging. PubDate: Tue, 24 Jan 2017 10:02:50 +000