Subjects -> BUILDING AND CONSTRUCTION (Total: 145 journals)
    - BUILDING AND CONSTRUCTION (137 journals)
    - CARPENTRY AND WOODWORK (8 journals)

BUILDING AND CONSTRUCTION (137 journals)                     

Showing 1 - 35 of 35 Journals sorted alphabetically
A+BE : Architecture and the Built Environment     Open Access   (Followers: 30)
Academia : Architecture and Construction     Open Access   (Followers: 1)
ACI Structural Journal     Full-text available via subscription   (Followers: 24)
Advanced Cement Based Materials     Full-text available via subscription   (Followers: 6)
Advances in Building Education     Open Access   (Followers: 7)
Advances in Building Energy Research     Hybrid Journal   (Followers: 12)
Ambiente Construído     Open Access   (Followers: 1)
Anales de Edificación     Open Access   (Followers: 1)
Asian Journal of Civil Engineering     Hybrid Journal   (Followers: 1)
Australasian Journal of Construction Economics and Building     Open Access   (Followers: 10)
Australasian Journal of Construction Economics and Building - Conference Series     Open Access   (Followers: 1)
Baltic Journal of Real Estate Economics and Construction Management     Open Access   (Followers: 3)
Baurechtliche Blätter : bbl     Hybrid Journal  
Bautechnik     Hybrid Journal   (Followers: 3)
BER : Architects and Quantity Surveyors' Survey     Full-text available via subscription   (Followers: 6)
BER : Building and Construction : Full Survey     Full-text available via subscription   (Followers: 11)
BER : Building Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Building Sub-Contractors' Survey     Full-text available via subscription   (Followers: 2)
BER : Capital Goods Industries Survey     Full-text available via subscription  
BER : Survey of Business Conditions in Building and Construction : An Executive Summary     Full-text available via subscription   (Followers: 3)
Beton- und Stahlbetonbau     Hybrid Journal   (Followers: 2)
Building & Management     Open Access   (Followers: 3)
Building Acoustics     Hybrid Journal   (Followers: 4)
Building Research Journal     Open Access   (Followers: 4)
Building Services Engineering Research & Technology     Hybrid Journal   (Followers: 3)
Buildings     Open Access   (Followers: 8)
BUILT : International Journal of Building, Urban, Interior and Landscape Technology     Open Access   (Followers: 1)
Built Environment Inquiry Journal     Open Access  
Built-Environment Sri Lanka     Full-text available via subscription  
Case Studies in Construction Materials     Open Access   (Followers: 9)
Cement and Concrete Composites     Hybrid Journal   (Followers: 22)
Cement and Concrete Research     Hybrid Journal   (Followers: 22)
Challenge Journal of Concrete Research Letters     Open Access   (Followers: 7)
Challenge Journal of Concrete Research Letters     Open Access   (Followers: 6)
Change Over Time     Full-text available via subscription   (Followers: 3)
City, Culture and Society     Hybrid Journal   (Followers: 26)
Civil Engineering = Siviele Ingenieurswese     Full-text available via subscription   (Followers: 4)
Clay Technology     Full-text available via subscription  
Concreto y cemento. Investigación y desarrollo     Open Access   (Followers: 1)
Construction Economics and Building     Open Access   (Followers: 4)
Construction Engineering     Open Access   (Followers: 11)
Construction Management and Economics     Hybrid Journal   (Followers: 23)
Construction Research and Innovation     Hybrid Journal   (Followers: 4)
Construction Robotics     Hybrid Journal   (Followers: 1)
Corporate Real Estate Journal     Full-text available via subscription   (Followers: 6)
Dams and Reservoirs     Hybrid Journal   (Followers: 4)
Energy and Built Environment     Open Access   (Followers: 1)
Engineering Project Organization Journal     Hybrid Journal   (Followers: 8)
Environment and Urbanization Asia     Hybrid Journal   (Followers: 4)
Frontiers in Built Environment     Open Access   (Followers: 1)
FUTY Journal of the Environment     Full-text available via subscription   (Followers: 1)
Gaceta Técnica     Open Access  
GISAP : Technical Sciences, Construction and Architecture     Open Access  
Glass Structures & Engineering     Hybrid Journal  
Handbook of Adhesives and Sealants     Full-text available via subscription   (Followers: 2)
HBRC Journal     Open Access   (Followers: 2)
Heritage Matters : The Magazine for New Zealanders Restoring, Preserving and Enjoying Our Heritage     Full-text available via subscription   (Followers: 2)
Housing and Society     Hybrid Journal   (Followers: 4)
HVAC&R Research     Hybrid Journal  
Indoor and Built Environment     Hybrid Journal   (Followers: 3)
Informes de la Construcción     Open Access  
Intelligent Buildings International     Hybrid Journal   (Followers: 1)
International Journal of Advanced Structural Engineering     Open Access   (Followers: 25)
International Journal of Air-Conditioning and Refrigeration     Hybrid Journal   (Followers: 17)
International Journal of Architectural Computing     Full-text available via subscription   (Followers: 7)
International Journal of Built Environment and Sustainability     Open Access   (Followers: 5)
International Journal of Concrete Structures and Materials     Open Access   (Followers: 16)
International Journal of Construction Engineering and Management     Open Access   (Followers: 11)
International Journal of Construction Management     Hybrid Journal   (Followers: 4)
International Journal of Masonry Research and Innovation     Hybrid Journal   (Followers: 1)
International Journal of Protective Structures     Hybrid Journal   (Followers: 6)
International Journal of River Basin Management     Hybrid Journal   (Followers: 1)
International Journal of Structural Stability and Dynamics     Hybrid Journal   (Followers: 7)
International Journal of Sustainable Building Technology and Urban Development     Hybrid Journal   (Followers: 12)
International Journal of Sustainable Built Environment     Open Access   (Followers: 6)
International Journal of Sustainable Construction Engineering and Technology     Open Access   (Followers: 9)
International Journal of Sustainable Real Estate and Construction Economics     Hybrid Journal   (Followers: 2)
International Journal of the Built Environment and Asset Management     Hybrid Journal   (Followers: 4)
International Journal of Ventilation     Full-text available via subscription   (Followers: 1)
International Journal Sustainable Construction & Design     Open Access   (Followers: 3)
Journal for Education in the Built Environment     Open Access   (Followers: 3)
Journal of Architecture, Planning and Construction Management     Open Access   (Followers: 11)
Journal of Asian Architecture and Building Engineering     Open Access  
Journal of Building Construction and Planning Research     Open Access   (Followers: 10)
Journal of Building Engineering     Hybrid Journal   (Followers: 4)
Journal of Building Materials and Structures     Open Access   (Followers: 3)
Journal of Building Pathology and Rehabilitation     Hybrid Journal  
Journal of Building Performance Simulation     Hybrid Journal   (Followers: 7)
Journal of Civil Engineering and Construction Technology     Open Access   (Followers: 16)
Journal of Civil Engineering and Management     Open Access   (Followers: 9)
Journal of Computational Acoustics     Hybrid Journal   (Followers: 5)
Journal of Computing in Civil Engineering     Full-text available via subscription   (Followers: 22)
Journal of Construction Engineering     Open Access   (Followers: 9)
Journal of Construction Engineering, Technology & Management     Full-text available via subscription   (Followers: 5)
Journal of Construction Project Management and Innovation     Full-text available via subscription   (Followers: 8)
Journal of Green Building     Full-text available via subscription   (Followers: 10)
Journal of Legal Affairs and Dispute Resolution in Engineering and Construction     Full-text available via subscription   (Followers: 5)
Journal of Sustainable Cement-Based Materials     Hybrid Journal  
Journal of Sustainable Design and Applied Research in Innovative Engineering of the Built Environment     Open Access   (Followers: 2)
Journal of the South African Institution of Civil Engineering     Open Access   (Followers: 2)
Journal of Transport and Land Use     Open Access   (Followers: 25)
Landscape History     Hybrid Journal   (Followers: 14)
Materiales de Construcción     Open Access   (Followers: 2)
Mauerwerk     Hybrid Journal  
Modular and Offsite Construction (MOC) Summit Proceedings |     Open Access   (Followers: 4)
Naval Engineers Journal     Hybrid Journal   (Followers: 2)
Open Construction & Building Technology Journal     Open Access  
Organization, Technology and Management in Construction     Open Access  
PARC Pesquisa em Arquitetura e Construção     Open Access  
Proceedings of the Institution of Civil Engineers - Forensic Engineering     Hybrid Journal  
Proceedings of the Institution of Civil Engineers - Urban Design and Planning     Hybrid Journal   (Followers: 13)
Revista ALCONPAT     Open Access   (Followers: 2)
Revista de la Construcción     Open Access  
Revista de Urbanismo     Open Access   (Followers: 2)
Revista Hábitat Sustenable     Open Access   (Followers: 1)
Revista IBRACON de Estruturas e Materiais     Open Access   (Followers: 1)
Revista Ingenieria de Construcción     Open Access   (Followers: 1)
Revista INVI     Open Access  
RILEM Technical Letters     Open Access  
Room One Thousand     Open Access  
Ruang-Space: Jurnal Lingkungan Binaan (Journal of The Built Environment)     Open Access  
Russian Journal of Construction Science and Technology     Open Access  
Science and Engineering of Composite Materials     Open Access   (Followers: 62)
Science and Technology for the Built Environment     Hybrid Journal   (Followers: 1)
Steel Construction - Design and Research     Hybrid Journal   (Followers: 5)
Stroitel’stvo : Nauka i Obrazovanie     Open Access  
Structural Concrete     Hybrid Journal   (Followers: 10)
Structural Mechanics of Engineering Constructions and Buildings     Open Access   (Followers: 2)
Sustainable Buildings     Open Access   (Followers: 1)
Sustainable Cities and Society     Hybrid Journal   (Followers: 23)
Technology|Architecture + Design     Hybrid Journal : A Journal of the Built & Natural Environments     Free   (Followers: 3)
The Historic Environment : Policy & Practice     Hybrid Journal   (Followers: 5)
The IES Journal Part A: Civil & Structural Engineering     Hybrid Journal   (Followers: 6)
Tidsskrift for boligforskning     Open Access  
YBL Journal of Built Environment     Open Access  
Zeitschrift für Miet- und Raumrecht     Hybrid Journal  


Similar Journals
Journal Cover
Construction Robotics
Number of Followers: 1  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 2509-811X - ISSN (Online) 2509-8780
Published by Springer-Verlag Homepage  [2626 journals]
  • Design, simulation and robotic assembly of reversible timber structures
    • Abstract: Abstract Wood is more and more seen as a sustainable solution to offset carbon emissions from constructions. In response and in parallel to this, the research in robotic timber construction is evolving rapidly, pushed by Industry 4.0 technologies and the integration of digital and physical robotic assets. This paper presents an approach for the design and assembly automation of layered timber structures, with the use of a flexible cell based on collaborative robots. Advanced assembly procedures and digital design of non-standard timber structures are here established and integrated. The automation process is here enhanced by the (1) use of feedback systems based on the location and force signals, (2) the introduction of a flexible robot setup with automatic screwing, and (3) human-collaboration to provide immediate assistance to the robot in the case the signals do not match the defined assembly conditions. The paper discusses the development and use of a Cyber-Physical System to govern the entire construction process, including reflections on the integrated approach to the design, modelling and simulation of the process.
      PubDate: 2021-01-02
  • Editorial
    • PubDate: 2020-12-02
  • Adaptive kinematic textile architecture
    • Abstract: Abstract The research presented in this paper explores how textiles can be formed into adaptive, kinematic spaces to be able to respond to its environment and users utilizing on-site, distributed, mobile robotic connectors. The project aimed at creating an adaptive system that consumes little energy while making use of textiles’ advantageous qualities—their lightweight, portability, and manipulability. This was achieved through the development of a bespoke on-material mobile machine able to locomote on suspended sheets of fabrics while shaping them. Together, the connector and the tectonic system compose a lightweight architectural robot controlled with a feedback loop that evaluates real-time environmental sensor data from the space against user-defined targets. This research demonstrates how the combination of mobile robotics and textile architecture opens up new design possibilities for adaptive spaces by proposing a system that is able to generate a significant architectural effect with minimal mechanical actuation.
      PubDate: 2020-11-30
  • Skeletal composites: robotic fabrication processes for lightweight
           multi-nodal structural components
    • Abstract: Abstract The research presented in this chapter describes the novel robotic fabrication strategies for multi-nodal structural components made from lightweight fiber composite materials. The paper contextualizes the research within a larger area of composite manufacturing in architecture and focuses on the developed methodologies for adaptive, material-efficient production. This research builds on coreless filament winding processes that eliminate the need for large surface molds and wasted materials for composite production. This process allows for large geometrically differentiated structural building components to be easily produced adaptively for architectural applications. The research tests the production of complex components for a vertical lattice structural system. The multi-nodal structural components enable continuous material and fiber orientations across the intersections of the lattice while simplifying connections. Key improvements presented in this paper included the robotic assembly process for the reconfigurable winding frames that reduce assembly times and increase accuracy, computational techniques for developing winding syntax, and physical simulation of material orientations for robotic path planning. This is followed by a conclusion and outlook to discuss the tested results on a full-scale demonstrator and the future design potentials.
      PubDate: 2020-11-24
  • The digitization of the automated steel construction through the
           application of microcontrollers and MQTT
    • Abstract: Abstract Data acquisition and transfer are crucial aspects of the digitization and automation of construction workflows. Through the integration of microcontrollers in machinery, a multitude of data can be acquired and analyzed to adapt fabrication processes and optimize performance. The goal of this research was to develop connected multi-functional robotic systems that can transfer data across a wireless network through MQTT, a robust and lightweight IoT communication protocol. This research demonstrates a use case for such interconnected robotic technology by establishing wireless communication through MQTT between a mobile robot and a plasma cutting station. A microcontroller was utilized in the digitization and automation of this steel construction process to obtain, process and transfer the data in a way that was monitorable and storable for managing and optimizing workflows.
      PubDate: 2020-11-19
  • Crafting plaster through continuous mobile robotic fabrication on-site
    • Abstract: Abstract Industrialization of architectural components and technological advances have had a significant impact on how we design and build. These developments, resulting in mass-produced and panelized architectural components, have rationalized building construction. However, they often do not reveal the true potential of the inherent qualities of malleable materials. This research investigates the bespoke design potentials of combining a cementitious plaster, with a robotic spraying and forming process, and proposes an adaptive thin-layer additive manufacturing method for plasterwork. Research goals address an on-site construction system that is capable of performing continuous robotic plaster spraying on building elements. To support the understanding of the complex-to-simulate material behavior in this process, systematic studies and physical testing are proposed to be conducted to collect empirical knowledge and data. The goal is to explore bespoke surface qualities, with minimal waste, moving away from the modular and standardized form of the material. The paper presents the preliminary results and findings of the method that aims addressing the challenge of an adaptive construction system capable of performing continuous fabrication, for which mobile robots are proposed to be deployed.
      PubDate: 2020-11-12
  • Robotic timber assembly
    • Abstract: Abstract This paper presents an efficient workflow for the established digital fabrication and robotic assembly of a discrete timber structure. Here, the complexity and aesthetic value of the structure are derived from the aggregation and assembly of similar parts. In limiting the architectural building blocks to a few similar pieces, specific assembly is freed, and infinite structures can be constructed through iteration with the same sequential logic. Fabrication of the individual pieces is simplified, reducing material and energy use through standardization of component parts. The research further examines the potential of how three-dimensional wooden joinery can be incorporated to work with the robotic assembly, not only by analyzing the use of industrial robotic arms with an intent to leverage their capabilities, but also by exploring their limitations. In establishing a workflow around a joint which requires no adhesives or fasteners, the ability to robotically disassemble and reassemble the structures infinitely in different ways maximizes structural potential and material reuse. The assembly and aggregation of these joineries demonstrate a prototype that can be adopted for future timber constructions.
      PubDate: 2020-11-10
  • Craft to site
    • Abstract: Abstract The paper presents a craft-oriented middleware for assisting in situ robotic fabrication. This middleware addresses the need for sensor-based feedback in robotic fabrication involving uncertain materials, non-structured environments, or post-production surfaces. The presented middleware addresses these fabrication challenges by allowing the robot to react to its environment without the need for a predetermined program. The middleware and its components are presented, followed by experiments demonstrating in situ capacities. The first experiment demonstrates autonomous carving—performing an iterative, non-prescribed robotic fabrication process. The second experiment presents integrated fabrication—a sequence of subtractive and additive techniques performed on a non-even substrate. Together, these experiments contribute to the implementation of sensible robotic middleware in architecture and assist in restoring the lost link between workmanship and construction sites.
      PubDate: 2020-11-06
  • Towards digital automation flexibility in large-scale timber construction:
           integrative robotic prefabrication and co-design of the BUGA Wood Pavilion
    • Abstract: Abstract This paper discusses the digital automation workflows and co-design methods that made possible the comprehensive robotic prefabrication of the BUGA Wood Pavilion—a large-scale production case study of robotic timber construction. Latest research in architectural robotics often focuses on the advancement of singular aspects of integrated digital fabrication and computational design techniques. Few researchers discuss how a multitude of different robotic processes can come together into seamless, collaborative robotic fabrication workflows and how a high level of interaction within larger teams of computational design and robotic fabrication experts can be achieved. It will be increasingly important to discuss suitable methods for the management of robotics and computational design in construction for the successful implementation of robotic fabrication systems in the context of the industry. We present here how a co-design approach enabled the organization of computational design decisions in reciprocal feedback with the fabrication planning, simulation and robotic code generation. We demonstrate how this approach can implement direct and curated reciprocal feedback between all planning domains—paving the way for fast-paced integrative project development. Furthermore, we discuss how the modularization of computational routines simplify the management and computational control of complex robotic construction efforts on a per-project basis and open the door for the flexible reutilization of developed digital technologies across projects and building systems.
      PubDate: 2020-11-03
  • Robotic vault: a cooperative robotic assembly method for brick vault
    • Abstract: Abstract Geometrically complex masonry structures built with traditional techniques typically require either temporary scaffolding or skilled masons. This paper presents a novel fabrication process for the assembly of full-scale masonry vaults without the use of falsework. The fabrication method is based on a cooperative assembly approach in which two robots alternate between placement and support to first build a stable central arch. Subsequently, the construction is continued individually by the robots - building out from the central arch based on an interlocking diagonal brick sequence. This proposed method is validated through its successful implementation in a full-scale vault structure consisting of 256 glass and concrete standardized bricks. The paper includes strategies for developing the design, sequencing, and robotic assembly methods used to build the vault.
      PubDate: 2020-11-02
  • Interactive design to fabrication, immersive visualization and automation
           in construction
    • Abstract: Abstract The presented research showcases a custom design-to-fabrication workflow leveraging virtual reality (VR), augmented reality (AR), and automated robotic fabrication. The process and custom platform demonstrate how these technologies can work together to create intuitive direct-to-fabrication workflows for the design and construction industry. The main focus of the research is developed in four different stages corresponding to the workflow. In stage one, a custom VR platform provides users an intuitive design space in full scale while accounting for fabrication constraints. Second, the modelled information is translated through a cloud -based service into 3d modeling software, in real time. In the third stage, within the 3d modeling software, a custom software solution calculates the required notching for the construction system while aligning assembly order to fabrication order. Through this platform, the programming data for robotic milling and pick-and-place operations is generated, and fabrication through industrial robotic arms is enabled. Fourth, using QR codes on fabricated components, an AR overlay aids in constructing the designed demonstrator, keeping track of pieces, and providing the right assembly order.
      PubDate: 2020-10-19
  • The smart robot crafting approach to computing materials
    • Abstract: Abstract This study presents a universal method that combines robotic/mechanical automation with image processing and artificial intelligence (AI) to generate material models without any pre-existing knowledge of the material itself. Inspired by the “hand-eye-mind” process, used typically in designing and crafting, this study proposed a digital version of the process that is capable of automatically conducting a large number of material experiments, observing them using image recognition, and subsequently training AI. The proposed method generates neural network models for common digital design environments that help to bridge a wide range of design intentions, fabrication controls, and dynamic material behaviors. In this study, two different experiments were conducted using the same method. The first one generated a material model for the bending behavior of non-linear synthetic rubber, and the other involved the dynamic control of the form-finding process of thermoplastics based on dynamic annealing, which contributed to a new 3D printing method. With current progress, we are able to prove that such a workflow is a widely adaptable method that encompasses a large variety of material properties and fabrication methods. It enables design and construction using complex material behaviors without the support of existing material/structure models.
      PubDate: 2020-10-16
  • Augmented bricklaying
    • Abstract: Abstract Augmented bricklaying explores the manual construction of intricate brickwork through visual augmentation, and applies and validates the concept in a real-scale building project—a fair-faced brickwork facade for a winery in Greece. As shown in previous research, robotic systems have proven to be very suitable to achieve various differentiated brickwork designs with high efficiency but show certain limitations, for example, in regard to spatial freedom or the usage of mortar on site. Hence, this research aims to show that through the use of a craft-specific augmented reality system, the same geometric complexity and precision seen in robotic fabrication can be achieved with an augmented manual process. Towards this aim, a custom-built augmented reality system for in situ construction was established. This process allows bricklayers to not depend on physical templates, and it enables enhanced spatial freedom, preserving and capitalizing on the bricklayer’s craft of mortar handling. In extension to conventional holographic representations seen in current augmented reality fabrication processes that have limited context-awareness and insufficient geometric feedback capabilities, this system is based on an object-based visual–inertial tracking method to achieve dynamic optical guidance for bricklayers with real-time tracking and highly precise 3D registration features in on-site conditions. By integrating findings from the field of human–computer interfaces and human–machine communication, this research establishes, explores, and validates a human–computer interactive fabrication system, in which explicit machine operations and implicit craftsmanship knowledge are combined. In addition to the overall concept, the method of implementation, and the description of the project application, this paper also quantifies process parameters of the applied augmented reality assembly method concerning building accuracy and assembly speed. In the outlook, this paper aims to outline future directions and potential application areas of object-aware augmented reality systems and their implications for architecture and digital fabrication.
      PubDate: 2020-10-14
  • Autonomous dry stone
    • Abstract: Abstract On-site robotic construction not only has the potential to enable architectural assemblies that exceed the size and complexity practical with laboratory-based prefabrication methods, but also offers the opportunity to leverage context-specific, locally sourced materials that are inexpensive, abundant, and low in embodied energy. We introduce a process for constructing dry stone walls in situ, facilitated by a customized autonomous hydraulic excavator. Cabin-mounted LiDAR sensors provide for terrain mapping, stone localization and digitization, and a planning algorithm determines the placement position of each stone. As the properties of the materials are unknown at the beginning of construction, and because error propagation can hinder the efficacy of pre-planned assemblies with non-uniform components, the structure is planned on-the-fly: the desired position of each stone is computed immediately before it is placed, and any settling or unexpected deviations are accounted for. We present the first result of this geometric- and motion-planning process: a 3-m-tall wall composed of 40 stones with an average weight of 760 kg.
      PubDate: 2020-09-29
  • Spatial winding: cooperative heterogeneous multi-robot system for fibrous
    • Abstract: Abstract This research presents a cooperative heterogeneous multi-robot fabrication system for the spatial winding of filament materials. The system is based on the cooperation of a six-axis robotic arm and a customized 2 + 2 axis CNC gantry system. Heterogeneous multi-robot cooperation allows to deploy the strategy of Spatial Winding: a new method of sequential spatial fiber arrangement, based on directly interlocking filament-filament connections, achieved through wrapping one filament around another. This strategy allows to create lightweight non-regular fibrous space frame structures. The new material system was explored through physical models and digital simulations prior to deployment with the proposed robotic fabrication process. An adaptable frame setup was developed which allows the fabrication of a variety of geometries within the same frame. By introducing a multi-step curing process that integrates with the adaptable frame, the iterative production of continuous large-scale spatial frame structures is possible. This makes the structure’s scale agnostic of robotic reach and reduces the necessary formwork to the bare minimum. Through leveraging the capacities of two cooperating machines, the system allows to counteract some of their limitations. A flexible, dynamic and collaborative fabrication system is presented as a strategy to tailor the fiber in space and expand the design possibilities of lightweight fiber structures. The artifact of the proposed fabrication process is a direct expression of the material tectonics and the robotic fabrication system.
      PubDate: 2020-09-21
  • Editorial
    • PubDate: 2020-06-01
  • Rock print Pavilion: robotically fabricating architecture from rock and
    • Abstract: Abstract In this paper, we present novel techniques and tools for mobile robotic in situ fabrication of fibre reinforced granular structures outdoors. The research focuses on Jammed Architectural Structures (JAS), a material system that combines granular jamming with strategically placed reinforcement creating robust yet fully reversible structures from crushed rock and string. An architectural implementation of robotic fabrication of JAS requires research on the material system to optimize fabrication speed and on the robotic fabrication method to adapt it for mobile robotic fabrication on uneven ground. There is also a need for building strategies to protect the structure from weathering and making it safe for the public. A novel robotic fabrication method with a fabrication speed that is acceptable for experimental construction and enables fabrication of building-scale dimensions on uneven ground is presented. The presented research consists of three experiments: a column built with a novel reinforcement pattern, a wall element built with a novel end-effector and a building that incorporates the findings from the two first experiments built in situ outdoors with a mobile robot. The conclusion is that robotic fabrication of JAS is suitable for outdoor constructions, that it can be used to create enclosed space that is geometrically articulated and allows for openings and that it is suitable for structural and load-bearing elements. Finally, future work on how to increase the lifespan of the material system and how to increase the fabrication speed further is outlined and discussed.
      PubDate: 2020-06-01
  • Precise imprecision: flexible construction with robotics
    • Abstract: Abstract This research demonstrates a new methodology—stack casting, which combines fabric formwork and robotic assembly. In the following research, a robot placed a textile mold on top of a precast environment to erect a significant architectural object. Through this method the robotic casting process obtained further contextual information to create highly customized assemblies. The natural form-fit boundary of the fabric strengthened the identification between global and local systems. As the digital method met the natural form-finding process, an interactive tectonic was generated—calibrating itself for any composition and accommodating deviations in geometry. Driven by the correspondence between digital and physical, the technique extended the building method of a dry-fitted cast in situ wall. To build a full-scale prototype, robotic stack casting collaborated with other versatile methods to invent new set-up strategies, which link to both on-and off-site construction. This research is part of a bigger picture rising in soft robotics. By interpreting unique forming into the computational design, precise and imprecise fabrication were redefined in a playful phenomenon. In traditional robotic stacking, the robot bridges the digital and physical world but its lack of adaptivity causes problem when placing imprecise objects. In this research’s process, the use of inexact fabric molds fixed the tolerance and found centers of gravity through relative reactions. They adjusted to the unique personal properties of their surroundings and compensated for discrepancies in material. As an alternative to the application of sensor feedback for accommodating tolerance in material, the use of stack casting digital formwork instead adjusts and reshapes the non-ideal masonry from the real-time architectural context. This playful process opens the door to further imaginations from design to build.
      PubDate: 2020-06-01
  • Robotic processing of crooked sawlogs for use in architectural
    • Abstract: Abstract In this paper, ideas and methods for utilising crooked sawlogs in construction are presented. The paper discusses a current problematic reality and, through a selected scenario, proposes a workflow that handles a series of challenges that arises when working with irregular wood. Through an investigative working method and by utilising computation and digital manufacturing technologies, the workflow integrates material properties with architectural design tools. The research focusses on oak logs which have been discarded by the timber industry due to their irregular shapes. Oak is a hardwood with structural properties, but often grows into crooked geometries. Through procedures for 3D-scanning, data handling, analysis, and evaluation methods, informed machining and utilisation of the logs are made possible. Numerous crooked sawlogs are handled in parallel physical and digital stockpiles. The digital stockpile holds layers of information generated from the sawlogs. When given an input geometry, the workflow matches the geometry with sawlogs found in the digital stockpile, and using procedures for developing and detailing, a realised version of the geometry can be machined and constructed using digital fabrication methods. The workflow includes multiple custom-made methods and algorithms for handling the complex and different shapes and data of crooked sawlogs in a highly digitised machining and fabrication environment. A constant link and the dialogue between digital data and physical reality are maintained and used actively in both design and fabrication strategy. The suggested up-cycling of irregular sawlogs using non-standard methods is a critical articulation of today’s linear material economy as the research illustrates how the natural forms and properties of materials can be used to rethink existing design and material practise. This paper is an expansion and further development of work presented at ACADIA 2019 (Larsen et al. in Ubiquity and autonomy, The University of Texas at Austin School of Architecture, Austin, 2019).
      PubDate: 2020-06-01
  • Highly accessible platform technologies for vision-guided, closed-loop
           robotic assembly of unitized enclosure systems
    • Abstract: Abstract Equipping robotics with the capacity to make decisions based on real-time information about their physical environment is crucial to the success of in situ robotics and offers many process advantages in prefabrication scenarios as well. However, the perceived technical challenges of producing environmentally-aware closed-loop robotics have limited their use in construction and design applications. To address this challenge, a low-cost and largely open-source computer vision-guided closed-loop robotic control paradigm is developed. The system is used here to identify construction materials in the workspace and calculate their position in space and determine their place in the facade panel assembly. The industrial robot arm is equipped with an RGB-depth camera in an eye-in-hand configuration to give control over the positioning of the camera for greatest accuracy. The control system relies on a simple TCP client/server connection between the robot and a central control computer to pass information and instructions from the computer vision system to the robot and vice versa. This setup delivers process flexibility, enabling pick-and-place procedures of the material positioned randomly within the workspace. In this work, the technologies are deployed in a factory-type setting but would also be necessary for any on-site robotic construction system, building towards an on-site robotics future. The final product of this research is a unitized spandrel panel wherein the vision-guided robot finds and places the insulation, cement board, and masonry cladding materials.
      PubDate: 2020-06-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-