for Journals by Title or ISSN
for Articles by Keywords

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> WATER RESOURCES (Total: 148 journals)
Showing 1 - 47 of 47 Journals sorted alphabetically
Acque Sotterranee - Italian Journal of Groundwater     Open Access  
Acta Limnologica Brasiliensia     Open Access   (Followers: 2)
Advances in Oceanography and Limnology     Open Access   (Followers: 10)
Advances in Water Resource and Protection     Open Access   (Followers: 7)
Advances in Water Resources     Hybrid Journal   (Followers: 30)
African Journal of Aquatic Science     Hybrid Journal   (Followers: 12)
Agricultural Water Management     Hybrid Journal   (Followers: 28)
American Journal of Water Resources     Open Access   (Followers: 4)
American Water Works Association     Hybrid Journal   (Followers: 18)
Anales de Hidrología Médica     Open Access  
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation     Open Access  
Annual Review of Marine Science     Full-text available via subscription   (Followers: 10)
Applied Water Science     Open Access   (Followers: 5)
Aquacultural Engineering     Hybrid Journal   (Followers: 6)
Aquaculture     Hybrid Journal   (Followers: 31)
Aquaculture Environment Interactions     Open Access   (Followers: 2)
Aquaculture Research     Hybrid Journal   (Followers: 30)
Aquatic Conservation Marine and Freshwater Ecosystems     Hybrid Journal   (Followers: 34)
Aquatic Geochemistry     Hybrid Journal   (Followers: 3)
Aquatic Living Resources     Hybrid Journal   (Followers: 11)
Aquatic Procedia     Open Access  
Aquatic Science and Technology     Open Access   (Followers: 3)
Aquatic Sciences     Hybrid Journal   (Followers: 12)
Asian Journal of Rural Development     Open Access   (Followers: 7)
Australian Journal of Water Resources     Full-text available via subscription   (Followers: 6)
Canadian Water Resources Journal     Hybrid Journal   (Followers: 20)
Civil and Environmental Research     Open Access   (Followers: 16)
CLEAN - Soil, Air, Water     Hybrid Journal   (Followers: 18)
Computational Water, Energy, and Environmental Engineering     Open Access   (Followers: 4)
Cost Effectiveness and Resource Allocation     Open Access   (Followers: 5)
Desalination     Hybrid Journal   (Followers: 6)
Desalination and Water Treatment     Hybrid Journal   (Followers: 9)
Developments in Water Science     Full-text available via subscription   (Followers: 8)
Ecological Chemistry and Engineering S     Open Access   (Followers: 2)
Environmental Science : Water Research & Technology     Full-text available via subscription   (Followers: 2)
Environmental Toxicology     Hybrid Journal   (Followers: 7)
EQA - International Journal of Environmental Quality     Open Access   (Followers: 1)
European journal of water quality - Journal européen d'hydrologie     Full-text available via subscription   (Followers: 5)
Ground Water Monitoring & Remediation     Hybrid Journal   (Followers: 17)
Groundwater for Sustainable Development     Full-text available via subscription  
Grundwasser     Hybrid Journal  
Hydro Nepal : Journal of Water, Energy and Environment     Open Access   (Followers: 3)
Hydrology Research     Partially Free   (Followers: 11)
Hydrology: Current Research     Open Access   (Followers: 10)
IDA Journal of Desalination and Water Reuse     Hybrid Journal   (Followers: 1)
Ingeniería del agua     Open Access  
International Journal of Climatology     Hybrid Journal   (Followers: 24)
International Journal of Hydrology Science and Technology     Hybrid Journal   (Followers: 5)
International Journal of Nuclear Desalination     Hybrid Journal  
International Journal of River Basin Management     Hybrid Journal   (Followers: 2)
International Journal of Salt Lake Research     Hybrid Journal   (Followers: 2)
International Journal of Waste Resources     Open Access   (Followers: 3)
International Journal of Water     Hybrid Journal   (Followers: 12)
International Journal of Water Resources and Environmental Engineering     Open Access   (Followers: 6)
International Journal of Water Resources Development     Hybrid Journal   (Followers: 22)
International Soil and Water Conservation Research     Open Access  
Irrigation and Drainage     Hybrid Journal   (Followers: 10)
Irrigation Science     Hybrid Journal   (Followers: 3)
Journal of Aquatic Sciences     Full-text available via subscription   (Followers: 2)
Journal of Contemporary Water Resource & Education     Hybrid Journal   (Followers: 3)
Journal of Environmental Health Science & Engineering     Open Access   (Followers: 1)
Journal of Fisheries and Aquatic Science     Open Access   (Followers: 6)
Journal of Geophysical Research : Oceans     Partially Free   (Followers: 42)
Journal of Hydro-environment Research     Full-text available via subscription   (Followers: 9)
Journal of Hydroinformatics     Full-text available via subscription   (Followers: 1)
Journal of Hydrology (New Zealand)     Full-text available via subscription   (Followers: 1)
Journal of Hydrology and Hydromechanics     Open Access   (Followers: 1)
Journal of Hydrometeorology     Full-text available via subscription   (Followers: 5)
Journal of Limnology     Open Access   (Followers: 6)
Journal of the American Water Resources Association     Hybrid Journal   (Followers: 28)
Journal of Water and Climate Change     Partially Free   (Followers: 35)
Journal of Water and Health     Partially Free   (Followers: 3)
Journal of Water Chemistry and Technology     Hybrid Journal   (Followers: 8)
Journal of Water Process Engineering     Full-text available via subscription   (Followers: 4)
Journal of Water Resource and Hydraulic Engineering     Open Access   (Followers: 7)
Journal of Water Resource and Protection     Open Access   (Followers: 9)
Journal of Water Resource Engineering and Management     Full-text available via subscription   (Followers: 2)
Journal of Water Resources Planning and Management     Full-text available via subscription   (Followers: 41)
Journal of Water Reuse and Desalination     Partially Free   (Followers: 7)
Journal of Water Science & Environment Technologies     Open Access  
Journal of Water Security     Open Access   (Followers: 1)
Journal of Water Supply : Research and Technology - AQUA     Partially Free   (Followers: 7)
Journal of Water, Sanitation and Hygiene for Development     Open Access   (Followers: 4)
La Houille Blanche     Full-text available via subscription   (Followers: 1)
Lake and Reservoir Management     Hybrid Journal   (Followers: 6)
Lakes & Reservoirs Research & Management     Hybrid Journal   (Followers: 14)
Large Marine Ecosystems     Full-text available via subscription  
Liquid Waste Recovery     Open Access  
Mangroves and Salt Marshes     Hybrid Journal   (Followers: 2)
Marine and Freshwater Behaviour and Physiology     Hybrid Journal   (Followers: 1)
Marine Ecology Progress Series MEPS     Hybrid Journal   (Followers: 22)
Marine Ecosystem Stressor Response     Open Access  
Methods in Oceanography : An International Journal     Hybrid Journal   (Followers: 5)
New Zealand Journal of Marine and Freshwater Research     Hybrid Journal   (Followers: 6)
Open Journal of Modern Hydrology     Open Access   (Followers: 4)
Osterreichische Wasser- und Abfallwirtschaft     Hybrid Journal  
Ozone Science & Engineering     Hybrid Journal   (Followers: 1)
Paddy and Water Environment     Hybrid Journal   (Followers: 8)
Research Journal of Environmental Toxicology     Open Access   (Followers: 2)
Reviews in Aquaculture     Hybrid Journal   (Followers: 10)
Revue des sciences de l'eau / Journal of Water Science     Full-text available via subscription   (Followers: 2)
RIBAGUA - Revista Iberoamericana del Agua     Open Access  
Riparian Ecology and Conservation     Open Access   (Followers: 6)
River Research and Applications     Hybrid Journal   (Followers: 15)
River Systems     Full-text available via subscription   (Followers: 3)
SA Irrigation = SA Besproeiing     Full-text available via subscription  
SABI Magazine - Tydskrif     Full-text available via subscription  
San Francisco Estuary and Watershed Science     Open Access   (Followers: 1)
Sciences Eaux & Territoires : la Revue du Cemagref     Open Access  
Scientia Marina     Open Access   (Followers: 2)
Society & Natural Resources: An International Journal     Hybrid Journal   (Followers: 16)
Sri Lanka Journal of Aquatic Sciences     Open Access   (Followers: 1)
Sustainability of Water Quality and Ecology     Hybrid Journal   (Followers: 2)
Sustainable Technologies, Systems & Policies     Open Access   (Followers: 9)
Tecnología y Ciencias del Agua     Open Access  
Texas Water Journal     Open Access   (Followers: 2)
Urban Water Journal     Hybrid Journal   (Followers: 13)
Waste Technology     Open Access   (Followers: 3)
Water     Open Access   (Followers: 6)
Water & Sanitation Africa     Full-text available via subscription   (Followers: 3)
Water and Environment Journal     Hybrid Journal   (Followers: 18)
Water Environment and Technology     Full-text available via subscription   (Followers: 15)
Water Environment Research     Full-text available via subscription   (Followers: 37)
Water International     Hybrid Journal   (Followers: 12)
Water Policy     Partially Free   (Followers: 7)
Water Practice     Full-text available via subscription   (Followers: 3)
Water Practice and Technology     Full-text available via subscription   (Followers: 12)
Water Quality Research Journal of Canada     Full-text available via subscription   (Followers: 5)
Water Research     Hybrid Journal   (Followers: 49)
Water Resources     Hybrid Journal   (Followers: 17)
Water Resources and Economics     Hybrid Journal   (Followers: 3)
Water Resources and Industry     Open Access   (Followers: 3)
Water Resources and Rural Development     Hybrid Journal   (Followers: 2)
Water Resources Management     Hybrid Journal   (Followers: 28)
Water Resources Research     Full-text available via subscription   (Followers: 70)
Water SA     Open Access  
Water Science & Technology     Partially Free   (Followers: 24)
Water Science : The National Water Research Center Journal     Open Access   (Followers: 5)
Water Science and Engineering     Open Access   (Followers: 7)
Water Science and Technology : Water Supply     Partially Free   (Followers: 21)
Water Wheel     Open Access   (Followers: 2)
Water, Air, & Soil Pollution     Hybrid Journal   (Followers: 22)
Water21     Full-text available via subscription  
Waterlines     Full-text available via subscription   (Followers: 2)
Western Indian Ocean Journal of Marine Science     Open Access   (Followers: 1)
Wetlands Ecology and Management     Hybrid Journal   (Followers: 22)
Wiley Interdisciplinary Reviews : Water     Hybrid Journal  
WMU Journal of Maritime Affairs     Hybrid Journal   (Followers: 2)

              [Sort by number of followers]   [Restore default list]

Journal Cover Journal of the American Water Resources Association
  [SJR: 0.771]   [H-I: 76]   [28 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1093-474X - ISSN (Online) 1752-1688
   Published by John Wiley and Sons Homepage  [1611 journals]
  • AutoRAPID: A Model for Prompt Streamflow Estimation and Flood Inundation
           Mapping over Regional to Continental Extents
    • Authors: Michael L. Follum; Ahmad A. Tavakoly, Jeffrey D. Niemann, Alan D. Snow
      Abstract: This article couples two existing models to quickly generate flow and flood-inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April-June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000-km2 area in the Midwest and a 109,500-km2 area in the Mississippi Delta into thirty-nine 1° by 1° tiles, AutoRoute simulated a high-resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F-statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.
      PubDate: 2016-10-21T08:25:38.622851-05:
      DOI: 10.1111/1752-1688.12476
  • Erratum
    • Authors: Julia E. Kelso; Michelle A. Baker
      PubDate: 2016-10-21T07:45:22.033643-05:
      DOI: 10.1111/1752-1688.12480
  • Conceptual Framework for the National Flood Interoperability Experiment
    • Authors: David R. Maidment
      Abstract: The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June-July 2015, a demonstration version of a near real-time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high-resolution flood forecasting with real-time observations and flood inundation mapping and planning for local flood emergency response.
      PubDate: 2016-10-20T08:45:23.530766-05:
      DOI: 10.1111/1752-1688.12474
  • The Role of Wetlands for Mitigating Economic Damage from Hurricanes
    • Authors: J. Luke Boutwell; John V. Westra
      Abstract: Coastal communities along the United States coast often experience significant economic damage resulting from the impacts of tropical storms and hurricanes. Research suggests that certain factors that affect economic damages are increasing the vulnerability of coastal communities. Population growth, which increases vulnerability by placing valuable lives and assets in the path of storms, is expected to increase. Climate change has the potential to cause more frequent and intense storms, and coastal wetland loss is contributing to the vulnerability of coastal populations. Wetlands conservation and restoration is often advocated for as a means of reducing the impacts of coastal storms. The relationship between wetlands and storm surge energy is understood relatively well in physical terms, but very little economic analysis has been conducted to estimate the degree to which wetlands reduce economic impacts. Using factor analysis, the relationships among coastal populations, wetlands, storm intensity, and economic damage are explored. The factor analysis suggests that wetland presence is associated with a reduction in economic damages from coastal storms. Factor score analysis suggests that the proportion of damage explained by wetland presence is smaller for more intense storms. These results are consistent with those found in the physical science literature and have potentially large consequences for how wetlands are used in risk reduction.
      PubDate: 2016-10-04T10:41:30.783658-05:
      DOI: 10.1111/1752-1688.12473
  • Temporal and Spatial Trends in Nutrient and Sediment Loading to Lake
           Tahoe, California-Nevada, USA
    • Authors: Robert Coats; Jack Lewis, Nancy Alvarez, Patricia Arneson
      Abstract: Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.
      PubDate: 2016-10-04T10:11:43.790657-05:
      DOI: 10.1111/1752-1688.12461
  • Issue Information
    • PubDate: 2016-10-03T08:34:56.342838-05:
      DOI: 10.1111/1752-1688.12361
  • Modeling the Effects of Tile Drain Placement on the Hydrologic Function of
           Farmed Prairie Wetlands
    • Authors: Brett Werner; John Tracy, W. Carter Johnson, Richard A. Voldseth, Glenn R. Guntenspergen, Bruce Millett
      Abstract: The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.
      PubDate: 2016-09-29T13:20:34.555448-05:
      DOI: 10.1111/1752-1688.12471
  • An Analysis of Patterns and Trends in United States Stormwater Utility
    • Authors: Kandace Kea; Randel Dymond, Warren Campbell
      Abstract: Several factors, such as municipality location and population, are thought to influence trends among stormwater utilities (SWUs); however, no analysis of the relationship between these factors and SWU characteristics has been performed. This article corroborates hypothesized relationships and identifies trends and patterns in the establishment, funding mechanism, and magnitude of SWUs by analyzing location, population density, home value, and year of establishment for a comprehensive national SWU database with data for 1,490 SWUs. The equivalent residential unit (ERU), a SWU that charges based on impervious area, was the most prevalent funding mechanism in all National Oceanic and Atmospheric Administration Climate Regions of the United States except the West and West-North-Central. The ERU was also found in larger cities with high population densities, whereas the Flat Fee, a SWU that charges a single rate for all properties, was found in smaller towns. Higher home values were correlated with higher monthly fees for 28% of the municipalities analyzed. The residential equivalence factor, a SWU that charges based on runoff produced, was popular in municipalities with higher home values, whereas the Flat Fee was popular in municipalities with lower home values. The number of SWUs established increased with Phase I municipal separate stormwater and sewer system (MS4) permit and Phase II small MS4 permit deadlines. Summary tables provide guidance to aid municipalities considering a SWU.
      PubDate: 2016-09-29T12:02:12.040392-05:
      DOI: 10.1111/1752-1688.12462
  • Water Management Decision Making in the Face of Multiple Forms of
           Uncertainty and Risk
    • Authors: Morey Burnham; Zhao Ma, Joanna Endter-Wada, Tim Bardsley
      Abstract: In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long-term sustainability of the region's water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah's water future, as well as potential solutions. The study identifies the water management adaptation decision-making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft-path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks.
      PubDate: 2016-09-29T11:45:40.259187-05:
      DOI: 10.1111/1752-1688.12459
  • Characterizing Runoff and Water Yield for Headwater Catchments in the
           Southern Sierra Nevada
    • Authors: Mohammad Safeeq; Carolyn T. Hunsaker
      Abstract: In a Mediterranean climate where much of the precipitation falls during winter, snowpacks serve as the primary source of dry season runoff. Increased warming has led to significant changes in hydrology of the western United States. An important question in this context is how to best manage forested catchments for water and other ecosystem services? Answering this basic question requires detailed understanding of hydrologic functioning of these catchments. Here, we depict the differences in hydrologic response of 10 catchments. Size of the study catchments ranges from 50 to 475 ha, and they span between 1,782 and 2,373 m elevation in the rain-snow transitional zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments, resulting in a 49 mm streamflow increase per 100 m (R2 = 0.79) elevation gain, despite similar precipitation across the 10 catchments. Although high elevation Bull catchments received significantly more precipitation as snow and thus experienced a delayed melt, this increase in streamflow with elevation was mainly due to a reduction in evapotranspiration (ET) with elevation (45 mm/100 m, R2 = 0.65). The reduction in ET was attributed to decline in vegetation density, growing season, and atmospheric demand with increasing elevation. These findings suggest changes in streamflow in response to climate warming may likely depend on how vegetation responds to those changes in climate.
      PubDate: 2016-09-26T08:15:24.243439-05:
      DOI: 10.1111/1752-1688.12457
  • Pairing Modern and Paleolimnological Approaches to Evaluate the Nutrient
           Status of Lakes in Upper Midwest National Parks
    • Authors: David D. VanderMeulen; Brenda Moraska Lafrancois, Mark B. Edlund, Joy M. Ramstack Hobbs, Richard Damstra
      Abstract: Understanding what constitutes a reference (background) nutrient condition for lakes is important for National Park Service managers responsible for preserving and protecting aquatic resources. For this study we characterize water quality conditions in 29 lakes across four national parks, and compare their nutrient status to U.S. Environmental Protection Agency (USEPA) nutrient reference criteria and alternative criteria recently proposed by others. Where appropriate we also compare the nutrient status of these 29 lakes to state or tribal nutrient reference criteria or standards. For lakes that exceed reference criteria we investigate physical and chemical patterns, and for a subset of lakes compare modern nutrient conditions to paleolimnological (i.e., diatom-inferred [DI]) nutrient reconstructions. Many lakes exceeded USEPA nutrient reference criteria, but met alternative less restrictive criteria. Modern nutrient conditions were also largely consistent with DI historic (pre-1900) nutrient conditions. Lakes exceeding alternative nutrient criteria and with elevated nutrient levels relative to DI historic conditions were mostly small, shallow, and dystrophic; continued attention to their nutrient dynamics and biological response is warranted. Coupling modern and paleolimnological data offer an innovative and scientifically defensible approach to understand long-term nutrient trends and provide greater context for comparison with reference conditions.
      PubDate: 2016-09-26T08:05:24.299484-05:
      DOI: 10.1111/1752-1688.12458
  • Development and Comparison of Multiple Regression Models to Predict
           Bankfull Channel Dimensions for Use in Hydrologic Models
    • Authors: Katrin Bieger; Hendrik Rathjens, Jeffrey G. Arnold, Indrajeet Chaubey, Peter M. Allen
      Abstract: Channel dimensions are important input variables for many hydrologic models. As measurements of channel geometry are not available in most watersheds, they are often predicted using bankfull hydraulic geometry relationships. This study aims at improving existing equations that relate bankfull width, depth, and cross‐sectional area to drainage area (DA) without limiting their use to well‐gauged watersheds. We included seven additional variables in the equations that can be derived from data that are generally required by hydrologic models anyway and conducted several multiple regression analyses to identify the ideal combination of additional variables for nationwide and regional models for each Physiographic Division of the United States (U.S.). Results indicate that including the additional variables in the regression equations generally improves predictions considerably. The selection of relevant variables varies by Physiographic Division, but average annual precipitation (PCP) and temperature (TMP) were generally found to improve the models the most. Therefore, we recommend using regression equations with three independent variables (DA, PCP, and TMP) to predict bankfull channel dimensions for hydrologic models. Furthermore, we recommend using the regional equations for watersheds within regions from which data were used for model development, whereas in all other parts of the U.S. and the rest of the world, the nationwide equations should be given preference.
      PubDate: 2016-09-23T09:45:27.200134-05:
      DOI: 10.1111/1752-1688.12460
  • Institutional Constraints on Cost‐Effective Water Management: Selenium
           Contamination in Colorado's Lower Arkansas River Valley
    • Authors: Misti D. Sharp; Dana L.K. Hoag, Ryan T. Bailey, Erica C. Romero, Timothy K. Gates
      Abstract: Ground and surface water selenium (Se) contamination is problematic throughout the world, leading to harmful impacts on aquatic life, wildlife, livestock, and humans. A groundwater reactive transport model was applied to a regional‐scale irrigated groundwater system in the Lower Arkansas River Basin in southeastern Colorado to identify management practices that remediate Se contamination. The system has levels of surface water and groundwater Se concentrations exceeding the respective chronic standard and guidelines. We evaluate potential solutions by combining the transport model with an assessment of the cost to employ those practices. We use a framework common in economics and engineering fields alike, the Pareto frontier, to show the impact of four different best management practices on the tradeoffs between Se and cost objectives. We then extend that analysis to include institutional constraints that affect the economic feasibility associated with each practice. Results indicate that although water‐reducing strategies have the greatest impact on Se, they are the hardest for farmers to implement given constraints common to western water rights institutions. Therefore, our analysis shows that estimating economic and environmental tradeoffs, as is typically done with a Pareto frontier, will not provide an accurate picture of choices available to farmers where institutional constraints should also be considered.
      PubDate: 2016-09-22T11:25:23.221659-05:
      DOI: 10.1111/1752-1688.12463
  • A Comprehensive Python Toolkit for Accessing High‐Throughput Computing
           to Support Large Hydrologic Modeling Tasks
    • Authors: Scott D. Christensen; Nathan R. Swain, Norman L. Jones, E. James Nelson, Alan D. Snow, Herman G. Dolder
      Abstract: The National Flood Interoperability Experiment (NFIE) was an undertaking that initiated a transformation in national hydrologic forecasting by providing streamflow forecasts at high spatial resolution over the whole country. This type of large‐scale, high‐resolution hydrologic modeling requires flexible and scalable tools to handle the resulting computational loads. While high‐throughput computing (HTC) and cloud computing provide an ideal resource for large‐scale modeling because they are cost‐effective and highly scalable, nevertheless, using these tools requires specialized training that is not always common for hydrologists and engineers. In an effort to facilitate the use of HTC resources the National Science Foundation (NSF) funded project, CI‐WATER, has developed a set of Python tools that can automate the tasks of provisioning and configuring an HTC environment in the cloud, and creating and submitting jobs to that environment. These tools are packaged into two Python libraries: CondorPy and TethysCluster. Together these libraries provide a comprehensive toolkit for accessing HTC to support hydrologic modeling. Two use cases are described to demonstrate the use of the toolkit, including a web app that was used to support the NFIE national‐scale modeling.
      PubDate: 2016-09-13T10:15:31.024896-05:
      DOI: 10.1111/1752-1688.12455
  • Continental‐Scale River Flow Modeling of the Mississippi River Basin
           Using High‐Resolution NHDPlus Dataset
    • Authors: Ahmad A. Tavakoly; Alan D. Snow, Cédric H. David, Michael L. Follum, David R. Maidment, Zong‐Liang Yang
      Abstract: As a key component of the National Flood Interoperability Experiment (NFIE), this article presents the continental scale river flow modeling of the Mississippi River Basin (MRB), using high‐resolution river data from NHDPlus. The Routing Application for Parallel computatIon of Discharge (RAPID) was applied to the MRB with more than 1.2 million river reaches for a 10‐year study (2005‐2014). Runoff data from the Variable Infiltration Capacity (VIC) model was used as input to RAPID. This article investigates the effect of topography on RAPID performance, the differences between the VIC‐RAPID streamflow simulations in the HUC‐2 regions of the MRB, and the impact of major dams on the streamflow simulations. The model performance improved when initial parameter values, especially the Muskingum K parameter, were estimated by taking topography into account. The statistical summary indicates the RAPID model performs better in the Ohio and Tennessee Regions and the Upper and Lower Mississippi River Regions in comparison to the western part of the MRB, due to the better performance of the VIC model. The model accuracy also increases when lakes and reservoirs are considered in the modeling framework. In general, results show the VIC‐RAPID streamflow simulation is satisfactory at the continental scale of the MRB.
      PubDate: 2016-09-07T02:15:42.19707-05:0
      DOI: 10.1111/1752-1688.12456
  • Evaluating Flow Diversion Impacts to Groundwater‐Dependent Riparian
           Vegetation with Flow Alteration and Groundwater Model Analysis
    • Authors: Deborah L. Hathaway; Gilbert Barth, Katie Kirsch
      Abstract: An approach for assessing the potential ecologic response of groundwater‐dependent riparian vegetation to flow alteration is developed, focusing on change to groundwater. Groundwater requirements for riparian vegetation are reviewed in conjunction with flow alteration statistics. Where flow alteration coincides with groundwater‐related vegetation sensitivities, scenarios are developed for groundwater simulation. Groundwater depths and recession rates in the riparian zone are simulated for baseline and altered stream hydrographs, with changes to river stage and width represented with a transient, flow‐dependent boundary condition. Potential flow diversion from the Upper Gila River in New Mexico is examined. Statistical flow alteration analysis, applying prospective diversions to a 76‐year record of daily flow, shows that flows in the winter‐spring months and within the high‐pulse to small flood range are subject to greatest potential change. Groundwater simulation scenarios are developed for these flow conditions in representative dry, near‐average, and wet years. Differences in groundwater elevations, generally less than 0.25 m during the flow alteration period, dissipate rapidly following cessation of diversion. Relating groundwater depth, recession rates and range of fluctuations to riparian vegetation needs, we find adverse ecological response is not expected from groundwater impacts for the flow alteration examined.
      PubDate: 2016-09-01T09:10:27.204548-05:
      DOI: 10.1111/1752-1688.12454
  • Synthesis of Common Management Concerns Associated with Dam Removal
    • Authors: Desirée D. Tullos; Mathias J. Collins, J. Ryan Bellmore, Jennifer A. Bountry, Patrick J. Connolly, Patrick B. Shafroth, Andrew C. Wilcox
      Abstract: Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether these concerns are warranted at a particular site. We used a dam‐removal science database supplemented with other information sources to explore seven frequently raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are the following: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by nonnative plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors such as natural watershed variability and disturbance history.
      PubDate: 2016-09-01T08:55:46.234669-05:
      DOI: 10.1111/1752-1688.12450
  • Who Should Be an Author?
    • Authors: Parker J. Wigington
      PubDate: 2016-08-31T08:35:20.479492-05:
      DOI: 10.1111/1752-1688.12464
  • Investigation of the Curve Number Method For Surface Runoff Estimation In
           Tropical Regions
    • Authors: Yihun Taddele Dile; Louise Karlberg, Raghavan Srinivasan, Johan Rockström
      Abstract: This study tests the applicability of the curve number (CN) method within the Soil and Water Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, surface runoff simulated using the CN method was compared with observed runoff in numerous rainfall‐runoff events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method generally performed well in simulating surface runoff in the studied watersheds (Nash‐Sutcliff efficiency [NSE] > 0.7; percent bias [PBIAS] 
      PubDate: 2016-08-22T09:55:52.921213-05:
      DOI: 10.1111/1752-1688.12446
  • Boosted Regression Tree Models to Explain Watershed Nutrient
           Concentrations and Biological Condition
    • Authors: Heather E. Golden; Charles R. Lane, Amy G. Prues, Ellen D'Amico
      Abstract: Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.
      PubDate: 2016-08-22T09:55:49.431846-05:
      DOI: 10.1111/1752-1688.12447
  • Application of Wavelet Coherence Method to Investigate Karst Spring
           Discharge Response to Climate Teleconnection Patterns
    • Authors: Xueli Huo; Liyuan Lei, Zhongfang Liu, Yonghong Hao, Bill X. Hu, Hongbin Zhan
      Abstract: The impact of climate teleconnections on the regional hydrometeorology has been well studied, but very little effort has been made to relate climate teleconnections with groundwater flow variation. In this study, we used a wavelet coherence method to analyze monthly climate indices, precipitation, and spring discharge data, and investigated the relation between major teleconnection patterns (the Arctic Oscillation, North Atlantic Oscillation, Pacific Decadal Oscillation, El Niño‐Southern Oscillation, and Indian Ocean Dipole) and karst hydrological process in Niangziguan Springs Basin, China. The results indicate precipitation and spring discharges correlate well with climate indices at intra‐ and inter‐annual time scales. Further, the climate indices are mainly correlated with precipitation at shorter periodicities, but correlated with spring discharge at longer scales. The difference reflects the modulation of karst aquifers on precipitation‐spring discharge during the processes of precipitation infiltration into the ground, and subsequent transformation into spring discharge. When teleconnection signals are transmitted into spring discharge via precipitation infiltration and groundwater propagation, some high‐frequency climatic signals are likely to be filtered, attenuated, and delayed, thus only low‐frequency climatic signals are preserved in spring discharge.
      PubDate: 2016-08-22T09:55:43.288749-05:
      DOI: 10.1111/1752-1688.12452
  • Quantifying Legacy Phosphorus Using a Mass Balance Approach and
           Uncertainty Analysis
    • Authors: A.R. Mittelstet; D.E. Storm
      Abstract: Classic agricultural‐conservation practices may not address decades of phosphorus (P) accumulation, known as legacy P. Identifying and quantifying legacy P sources are necessary to identify the most cost‐efficient conservation practices. A method was developed to identify and quantify legacy P at the watershed scale using a mass‐balance approach and uncertainty analysis. The method was applied to two nutrient‐rich watersheds in northeast Oklahoma and northwest Arkansas. Each P import and export to and from the two watersheds was identified and quantified using a probability distribution and uncertainty analysis. The P retained in the soils, reservoirs, and stream systems were estimated from 1925 to 2015. Over 8.5 and 6.1 kg/ha/year of P were added to the Illinois River and Eucha‐Spavinaw watersheds with 53 and 55% from poultry production, respectively. Other major historical sources were attributed to human population and commercial fertilizer. Though currently the net addition of P in the watersheds is small due to the export of approximately 90% of the poultry litter, historically only 14‐19% of all P imported to the Illinois River and Eucha‐Spavinaw watersheds was removed via the reservoir spillways, poultry litter, and food exports. The majority of the retained P is located in the soil, 3.6‐5.8 kg/ha/year, and stream systems, 0.01‐3.0 per ha/year.
      PubDate: 2016-08-22T09:55:35.806081-05:
      DOI: 10.1111/1752-1688.12453
  • Integrating Seasonal Information on Nutrients and Benthic Algal Biomass
           into Stream Water Quality Monitoring
    • Authors: Christopher P. Konrad; Mark D. Munn
      Abstract: Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At‐site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at‐site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl a accrued and persisted at levels within 50% of at‐site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross‐site variation in maximum chlorophyll a (adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high‐biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.
      PubDate: 2016-08-22T09:55:28.266741-05:
      DOI: 10.1111/1752-1688.12451
  • Reconstructions of Columbia River Streamflow from Tree‐Ring Chronologies
           in the Pacific Northwest, USA
    • Authors: Jeremy S. Littell; Gregory T. Pederson, Stephen T. Gray, Michael Tjoelker, Alan F. Hamlet, Connie A. Woodhouse
      Abstract: We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.
      PubDate: 2016-08-04T11:15:42.048498-05:
      DOI: 10.1111/1752-1688.12442
  • Toward an Alignment of Stormwater Flow and Urban Space
    • Authors: Bruce K. Ferguson
      Abstract: Urban stormwater practices are individually diverse, but they are components of an overall urban watershed system. This study proposes a conceptual model of that system, including its component spatial areas, their arrangement along the flow route, and their associations with urban land uses and values. The model defines three spatial areas along the flow route which have evolved over time into their present forms: (1) the source area, which is arranged and furnished primarily or entirely for human use, accommodation, and comfort; (2) the perimeter area, where specialized stormwater facilities carry away source‐area runoff or buffer downstream areas from its impacts; and (3) the downstream area, which receives the discharges from the perimeter or directly from the source area. Each area presents a specific combination of stormwater features and human interactions, and excludes others. Considering stormwater flows and functions in the context of physical urban spaces brings into view the spaces’ urban structures and interacting agendas. This model allows practitioners to navigate conceptually through the system, and to focus appropriate objectives and structures on each project site.
      PubDate: 2016-08-04T10:41:19.515964-05:
      DOI: 10.1111/1752-1688.12449
  • Modeling the Highly Dynamic Loading of Mercury Species in the Carson River
           and Lahontan Reservoir System, Nevada
    • Authors: Rosemary W.H. Carroll; John J. Warwick
      Abstract: The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.
      PubDate: 2016-08-04T10:41:09.203206-05:
      DOI: 10.1111/1752-1688.12448
  • Spatial and Temporal Variations in Eastern U.S. Hydrology: Responses to
           Global Climate Variability
    • Authors: Dongmei Feng; Edward Beighley, Randall Hughes, David Kimbro
      Abstract: Coastal ecosystems are dependent on terrestrial freshwater export which is affected by both climate trends and natural climate variability. However, the relative role of these factors is not clear. Here, both climate trends and internal climate variabilities at different time scales are related to variations in terrestrial freshwater export into the eastern United States (U.S.) coastal region. For the recent 35‐year period, the intensified hydro‐meteorological processes (annual precipitation or evapotranspiration) may explain the observed streamflow variability in the northeast. However, in the southeast, streamflow is positively correlated with climate variability induced by the Pacific Ocean conditions (El Nino‐Southern Oscillation [ENSO] and Pacific Decadal Oscillation) rather than Atlantic Ocean conditions (Atlantic Multi‐decadal Oscillation and North Atlantic Oscillation). The centroid location for volume of terrestrial freshwater export integrated along the eastern U.S. has a positive temporal trend and is negatively correlated with ENSO conditions, suggesting the northward trend in freshwater export to U.S. eastern coast may be disturbed by the natural climate variability, especially ENSO conditions, i.e., the center of freshwater mass moves southward (northward) during El Nino (La Nina) years. The results indicate the spatial and temporal variations in freshwater export from the eastern U.S. are affected by both climate change and inter‐annual climate variability during the recent 35‐year period (1980‐2014).
      PubDate: 2016-07-26T05:32:01.639774-05:
      DOI: 10.1111/1752-1688.12445
  • The Influence of the Pacific Decadal Oscillation on Annual Floods in the
           Rivers of Western Canada
    • Authors: Sunil Gurrapu; Jeannine‐Marie St‐Jacques, David J. Sauchyn, Kyle R. Hodder
      Abstract: We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile‐quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large‐scale climate state should be considered prior to the design and construction of infrastructure.
      PubDate: 2016-07-22T07:20:33.931982-05:
      DOI: 10.1111/1752-1688.12433
  • Groundwater Level Trends and Drivers in Two Northern New England Glacial
    • Authors: James B. Shanley; Ann T. Chalmers, Thomas J. Mack, Thor E. Smith, Philip T. Harte
      Abstract: We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p 
      PubDate: 2016-07-19T06:41:27.420756-05:
      DOI: 10.1111/1752-1688.12432
  • Testing and Improving Temperature Thresholds for Snow and Rain Prediction
           in the Western United States
    • Authors: Seshadri Rajagopal; Adrian A. Harpold
      Abstract: The phase of precipitation at the land surface is critical to determine the timing and amount of water available for hydrological and ecological systems. However, there are few techniques to directly observe the precipitation phase and many prediction tools apply a single temperature threshold (e.g., 0°C) to determine phase. In this paper, we asked two questions: (1) what is the accuracy of default and station optimized daily temperature thresholds for predicting precipitation phase and (2) what are the regions and conditions in which typical temperature‐based precipitation phase predictions are most suited. We developed a ground truth dataset of rain vs. snow using an expert decision‐making system based on precipitation, snow depth, and snow water equivalent observations. This dataset was used to evaluate the accuracy of three temperature‐threshold‐based techniques of phase classification. Optimizing the temperature threshold improved the prediction of precipitation phase by 34% compared to using 0°C threshold. Developing a temperature threshold based on station elevation improved the error by 12% compared with using the 0°C temperature threshold. We also found the probability of snow as a function of temperature differed among ecoregions, which suggests a varied response to future climate change. These results highlight a current weakness in our ability to predict the effects of regional warming that could have uneven impacts on water and ecological resources.
      PubDate: 2016-07-18T00:23:52.352421-05:
      DOI: 10.1111/1752-1688.12443
  • Role of Riparian Areas in Atmospheric Pesticide Deposition and Its
           Potential Effect on Water Quality
    • Authors: Clifford P. Rice; Krystyna Bialek, Cathleen J. Hapeman, Gregory W. McCarty
      Abstract: Riparian buffers are known to mitigate hydrologic losses of nutrients and other contaminants as they exit agricultural fields. The vegetation of riparian buffers can also trap atmospheric contaminants, and these pollutants can subsequently be delivered via rain to the riparian buffer floor. These processes, however, are poorly understood especially for pesticide residues. Therefore, we conducted a four‐year study examining stemflow and throughfall to a riparian buffer which was adjacent a cultured Zea mays field treated with atrazine and metolachlor. Stemflow is rain contacting the tree canopy traveling down smaller to larger branches and down the tree trunk, whereas throughfall is rain that may or may not contact leaves and branches and reaches the earth. Stemflow concentrations of the herbicides were larger than throughfall concentrations and accounted for 5‐15% of the atrazine and 6‐66% of the metolachlor depositional fluxes under the canopy. Larger depositional fluxes were measured when leaves were more fully emerged and temperatures and humidity were elevated. Rain collected outside the riparian buffer on the field side and on the back side revealed the trees trapped the herbicide residues. Herbicide loading to the riparian buffer stream was found to be linked to tree canopy deposition and subsequent washoff during rain events. These results indicate that in agricultural areas canopy washoff can be an important source of pesticides to surface waters.
      PubDate: 2016-07-15T08:05:33.448069-05:
      DOI: 10.1111/1752-1688.12444
  • Evaluating Infiltration Requirements for New Development Using Extreme
           Storm Transposition: A Case Study from Dane County, WI
    • Authors: Nicholas G. Hayden; Kenneth W. Potter, David S. Liebl
      Abstract: Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.
      PubDate: 2016-07-15T08:05:29.047352-05:
      DOI: 10.1111/1752-1688.12441
  • A Multi‐Scale Analysis of Low‐Rise Apartment Water Demand through
           Integration of Water Consumption, Land Use, and Demographic Data
    • Authors: Saeed Ghavidelfar; Asaad Y. Shamseldin, Bruce W. Melville
      Abstract: Over the past decades, multi‐unit housing developments have been vastly expanded across urban areas due to the population growth. To properly supply water to this growing sector, it is essential to understand the determinants of its water use. However, this task has largely remained unexplored through the empirical study of water demand mainly due to the scarcity of data in this sector. This study integrated apartment water consumption, property characteristics, weather, water pricing, and census microdata to overcome this issue. Using a rich source of GIS‐based urban databases in Auckland, New Zealand, the study developed a large dataset containing the information of 18,000 low‐rise apartments to evaluate the determinants of water use both in the household scale and aggregated scale. The household‐scale demand analysis helped to assess the heterogeneity in responses to the demand drivers specifically water price across different consumer groups, whereas the aggregated analysis revealed the determinants behind the spatial variation in water demand at the census area unit level. Through applying panel data models, the study revealed the household size as the most important determinant of apartment water use in Auckland, where other socioeconomic factors, building features, and water pricing were not significant determinants. This knowledge of determinants of water demand can help water planners to better manage water demand in the compact urban environments.
      PubDate: 2016-07-15T08:05:25.864232-05:
      DOI: 10.1111/1752-1688.12430
  • Expansion of the MANAGE Database with Forest and Drainage Studies
    • Authors: Daren R. Harmel; Laura E. Christianson, Matthew W. McBroom, Douglas R. Smith, Kori D. Higgs
      Abstract: The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980s compilation of nutrient export (load) data from cultivated and pasture/range land at the field or farm scale. Then in 2008, MANAGE was updated with 15 additional studies, and nitrogen (N) and phosphorus (P) concentrations in runoff were added. Since then, MANAGE has undergone significant expansion adding N and P water quality along with relevant management and site characteristic data from: (1) 30 runoff studies from forested land uses, (2) 91 drainage water quality studies from drained land, and (3) 12 additional runoff studies from cultivated and pasture/range land uses. In this expansion, an application timing category was added to the existing fertilizer data categories (rate, placement, formulation) to facilitate analysis of 4R Nutrient Stewardship, which emphasizes right fertilizer source, rate, time, and place. In addition, crop yield and N and P uptake data were added, although this information was only available for 21 and 7% of studies, respectively. Inclusion of these additional data from cultivated, pasture/range, and forest land uses as well as artificially drained agricultural land should facilitate expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques. The current version is available at
      PubDate: 2016-06-29T00:30:35.740448-05:
      DOI: 10.1111/1752-1688.12438
  • The Great Lakes Hydrography Dataset: Consistent, Binational Watersheds for
           the Laurentian Great Lakes Basin
    • Authors: Danielle K. Forsyth; Catherine M. Riseng, Kevin E. Wehrly, Lacey A. Mason, John Gaiot, Tom Hollenhorst, Craig M. Johnston, Conrad Wyrzykowski, Gust Annis, Chris Castiglione, Kent Todd, Mike Robertson, Dana M. Infante, Lizhu Wang, James E. McKenna, Gary Whelan
      Abstract: Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.
      PubDate: 2016-06-20T23:40:42.439146-05:
      DOI: 10.1111/1752-1688.12435
  • Variability and Trends in Runoff Efficiency in the Conterminous United
    • Authors: Gregory J. McCabe; David M. Wolock
      Abstract: Variability and trends in water‐year runoff efficiency (RE) — computed as the ratio of water‐year runoff (streamflow per unit area) to water‐year precipitation — in the conterminous United States (CONUS) are examined for the 1951 through 2012 period. Changes in RE are analyzed using runoff and precipitation data aggregated to United States Geological Survey 8‐digit hydrologic cataloging units (HUs). Results indicate increases in RE for some regions in the north‐central CONUS and large decreases in RE for the south‐central CONUS. The increases in RE in the north‐central CONUS are explained by trends in climate, whereas the large decreases in RE in the south‐central CONUS likely are related to groundwater withdrawals from the Ogallala aquifer to support irrigated agriculture.
      PubDate: 2016-06-03T22:01:09.828053-05:
      DOI: 10.1111/1752-1688.12431
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016