for Journals by Title or ISSN
for Articles by Keywords
help

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2     

  Subjects -> WATER RESOURCES (Total: 137 journals)
Acta Limnologica Brasiliensia     Open Access   (Followers: 1)
Advances in Environmental Protection     Open Access  
Advances in Oceanography and Limnology     Partially Free   (Followers: 10)
Advances in Water Resource and Protection     Open Access   (Followers: 4)
Advances in Water Resources     Hybrid Journal   (Followers: 21)
African Journal of Aquatic Science     Hybrid Journal   (Followers: 13)
Agricultural Water Management     Hybrid Journal   (Followers: 17)
American Journal of Water Resources     Open Access   (Followers: 1)
American Water Works Association     Hybrid Journal   (Followers: 15)
Anales de Hidrología Médica     Open Access  
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation     Open Access   (Followers: 2)
Annual Review of Marine Science     Full-text available via subscription   (Followers: 11)
Applied Water Science     Open Access   (Followers: 6)
Aquacultural Engineering     Hybrid Journal   (Followers: 7)
Aquaculture     Hybrid Journal   (Followers: 30)
Aquaculture Research     Hybrid Journal   (Followers: 25)
Aquatic Conservation Marine and Freshwater Ecosystems     Hybrid Journal   (Followers: 21)
Aquatic Geochemistry     Hybrid Journal   (Followers: 1)
Aquatic Living Resources     Hybrid Journal   (Followers: 11)
Aquatic Procedia     Open Access  
Aquatic Science and Technology     Open Access   (Followers: 1)
Aquatic Sciences     Hybrid Journal   (Followers: 11)
Asian Journal of Earth Sciences     Open Access   (Followers: 18)
Asian Journal of Rural Development     Open Access   (Followers: 10)
Australian Journal of Water Resources     Full-text available via subscription   (Followers: 7)
Bubble Science, Engineering & Technology     Hybrid Journal  
Canadian Water Resources Journal     Hybrid Journal   (Followers: 20)
Civil and Environmental Research     Open Access   (Followers: 13)
CLEAN - Soil, Air, Water     Hybrid Journal   (Followers: 17)
Computational Water, Energy, and Environmental Engineering     Open Access   (Followers: 2)
Cost Effectiveness and Resource Allocation     Open Access   (Followers: 5)
Desalination     Hybrid Journal   (Followers: 11)
Desalination and Water Treatment     Hybrid Journal   (Followers: 10)
Developments in Water Science     Full-text available via subscription   (Followers: 7)
Ecological Chemistry and Engineering S     Open Access   (Followers: 2)
Environmental Toxicology     Hybrid Journal   (Followers: 8)
EQA - International Journal of Environmental Quality     Open Access   (Followers: 1)
European journal of water quality - Journal européen d'hydrologie     Full-text available via subscription   (Followers: 5)
Ground Water Monitoring & Remediation     Hybrid Journal   (Followers: 11)
Grundwasser     Hybrid Journal  
Human Resources for Health     Open Access   (Followers: 4)
Hydro Nepal : Journal of Water, Energy and Environment     Open Access   (Followers: 1)
Hydrology Research     Partially Free   (Followers: 9)
Hydrology: Current Research     Open Access   (Followers: 10)
Ingeniería del agua     Open Access  
International Journal of Climatology     Hybrid Journal   (Followers: 14)
International Journal of Hydrology Science and Technology     Hybrid Journal   (Followers: 5)
International Journal of Nuclear Desalination     Hybrid Journal   (Followers: 2)
International Journal of River Basin Management     Hybrid Journal   (Followers: 1)
International Journal of Salt Lake Research     Hybrid Journal   (Followers: 2)
International Journal of Waste Resources     Open Access   (Followers: 5)
International Journal of Water     Hybrid Journal   (Followers: 11)
International Journal of Water Resources and Environmental Engineering     Open Access   (Followers: 1)
International Journal of Water Resources Development     Hybrid Journal   (Followers: 15)
Irrigation and Drainage     Hybrid Journal   (Followers: 4)
Irrigation Science     Hybrid Journal   (Followers: 3)
Journal of Aquatic Sciences     Full-text available via subscription  
Journal of Contemporary Water Resource & Education     Hybrid Journal   (Followers: 2)
Journal of Environmental Health Science & Engineering     Open Access   (Followers: 1)
Journal of Fisheries and Aquatic Science     Open Access   (Followers: 4)
Journal of Geophysical Research : Oceans     Partially Free   (Followers: 15)
Journal of Hydro-environment Research     Full-text available via subscription   (Followers: 6)
Journal of Hydroinformatics     Full-text available via subscription   (Followers: 2)
Journal of Hydrology (New Zealand)     Full-text available via subscription   (Followers: 2)
Journal of Hydrology and Hydromechanics     Open Access   (Followers: 1)
Journal of Hydrometeorology     Full-text available via subscription   (Followers: 4)
Journal of Limnology     Open Access   (Followers: 6)
Journal of the American Water Resources Association     Hybrid Journal   (Followers: 18)
Journal of Water and Climate Change     Partially Free   (Followers: 26)
Journal of Water and Health     Partially Free   (Followers: 1)
Journal of Water Chemistry and Technology     Hybrid Journal   (Followers: 7)
Journal of Water Process Engineering     Full-text available via subscription  
Journal of Water Resource and Hydraulic Engineering     Open Access   (Followers: 4)
Journal of Water Resource and Protection     Open Access   (Followers: 5)
Journal of Water Resource Engineering and Management     Full-text available via subscription  
Journal of Water Resources Planning and Management     Full-text available via subscription   (Followers: 26)
Journal of Water Reuse and Desalination     Partially Free   (Followers: 6)
Journal of Water Supply : Research and Technology - Aqua     Partially Free   (Followers: 10)
Journal of Water, Sanitation and Hygiene for Development     Open Access   (Followers: 3)
La Houille Blanche     Full-text available via subscription   (Followers: 1)
Lake and Reservoir Management     Hybrid Journal   (Followers: 4)
Lakes & Reservoirs Research & Management     Hybrid Journal   (Followers: 15)
Large Marine Ecosystems     Full-text available via subscription   (Followers: 1)
Mangroves and Salt Marshes     Hybrid Journal   (Followers: 3)
Marine and Freshwater Behaviour and Physiology     Hybrid Journal   (Followers: 2)
Marine and Freshwater Living Resources     Open Access  
Marine Ecosystem Stressor Response     Open Access  
Methods in Oceanography : An International Journal     Hybrid Journal   (Followers: 2)
Michigan Journal of Sustainability     Open Access  
New Zealand Journal of Marine and Freshwater Research     Hybrid Journal   (Followers: 4)
Open Journal of Modern Hydrology     Open Access   (Followers: 3)
Osterreichische Wasser- und Abfallwirtschaft     Hybrid Journal  
Ozone Science & Engineering     Hybrid Journal   (Followers: 1)
Paddy and Water Environment     Hybrid Journal   (Followers: 1)
Research Journal of Environmental Toxicology     Open Access   (Followers: 2)
Reviews in Aquaculture     Hybrid Journal   (Followers: 10)
Revue des sciences de l'eau / Journal of Water Science     Full-text available via subscription   (Followers: 1)
Riparian Ecology and Conservation     Open Access   (Followers: 3)
River Research and Applications     Hybrid Journal   (Followers: 5)
River Systems     Full-text available via subscription   (Followers: 3)

        1 2     

Journal Cover   Journal of the American Water Resources Association
  [SJR: 1.072]   [H-I: 61]   [20 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1093-474X - ISSN (Online) 1752-1688
   Published by John Wiley and Sons Homepage  [1611 journals]
  • Variable Source Area Hydrology Modeling with the Water Erosion Prediction
           Project Model
    • Authors: Jan Boll; Erin S. Brooks, Brian Crabtree, Shuhui Dun, Tammo S. Steenhuis
      Pages: n/a - n/a
      Abstract: In nondegraded watersheds of humid climates, subsurface flow patterns determine where the soil saturates and where surface runoff is occurring. Most models necessarily use infiltration‐excess (i.e., Hortonian) runoff for predicting runoff and associated constituents because subsurface flow algorithms are not included in the model. In this article, we modify the Water Erosion Prediction Project (WEPP) model to simulate subsurface flow correctly and to predict the spatial and temporal location of saturation, the associated lateral flow and surface runoff, and the location where the water can re‐infiltrate. The modified model, called WEPP‐UI, correctly simulated the hillslope drainage data from the Coweeta Hydrologic Laboratory hillslope plot. We applied WEPP‐UI to convex, concave, and S‐shaped hillslope profiles, and found that multiple overland flow elements are needed to simulate distributed lateral flow and runoff well. Concave slopes had the greatest runoff, while convex slopes had the least. Our findings concur with observations in watersheds with saturation‐excess overland flow that most surface runoff is generated on lower concave slopes, whereas on convex slopes runoff infiltrates before reaching the stream. Since the WEPP model is capable of simulating both saturation‐excess and infiltration‐excess runoff, we expect that this model will be a powerful tool in the future for managing water quality.
      PubDate: 2015-03-19T10:09:45.59991-05:0
      DOI: 10.1111/1752-1688.12294
       
  • Assessing BMP Effectiveness and Guiding BMP Planning Using
           Process‐Based Modeling
    • Authors: E.S. Brooks; S.M. Saia, J. Boll, L. Wetzel, Z.M. Easton, T.S. Steenhuis
      Pages: n/a - n/a
      Abstract: There is an increasing need for improved process‐based planning tools to assist watershed managers in the selection and placement of effective best management practices (BMPs). In this article, we present an approach, based on the Water Erosion Prediction Project model and a pesticide transport model, to identify dominant hydrologic flow paths and critical source areas for a variety of pollutant types. We use this approach to compare the relative impacts of BMPs on hydrology, erosion, sediment, and pollutant delivery within different landscapes. Specifically, we focus on using this approach to understand what factors promoted and/or hindered BMP effectiveness at three Conservation Effects Assessment Project watersheds: Paradise Creek Watershed in Idaho, Walnut Creek Watershed in Iowa, and Goodwater Creek Experimental Watershed in Missouri. These watersheds were first broken down into unique land types based on soil and topographic characteristics. We used the model to assess BMP effectiveness in each of these land types. This simple process‐based modeling approach provided valuable insights that are not generally available to planners when selecting and locating BMPs and helped explain fundamental reasons why long‐term improvement in water quality of these three watersheds has yet to be completely realized.
      PubDate: 2015-03-19T10:04:44.288098-05:
      DOI: 10.1111/1752-1688.12296
       
  • Featured Collection Introduction: Synthesis and Analysis of Conservation
           Effects Assessment Projects for Improved Water Quality
    • Authors: Jan Boll; Tammo S. Steenhuis, Erin S. Brooks, Lyubov A. Kurkalova, Rebecca A. Rittenburg, Audrey L. Squires, George Vellidis, Zachary M. Easton, J.D. Wulfhorst
      Pages: n/a - n/a
      PubDate: 2015-03-19T09:55:30.070227-05:
      DOI: 10.1111/1752-1688.12297
       
  • Cost‐Effective Placement of Best Management Practices in a
           Watershed: Lessons Learned from Conservation Effects Assessment Project
    • Authors: Lyubov A. Kurkalova
      Pages: n/a - n/a
      Abstract: This article reviews the key, cross‐cutting findings concerning watershed‐scale cost‐effective placement of best management practices (BMPs) emerging from the National Institute of Food and Agriculture Conservation Effects Assessment Project (CEAP) competitive grants watershed studies. The synthesis focuses on two fundamental aspects of the cost‐effectiveness problem: (1) how to assess the location‐ and farmer‐specific costs of BMP implementation, and (2) how to decide on which BMPs need to be implemented and where within a given watershed. Major lessons learned are that (1) data availability remains a significant limiting factor in capturing within‐watershed BMP cost variability; (2) strong watershed community connections help overcome the cost estimation challenges; (3) detailing cost components facilitates the transferability of estimates to alternative locations and/or economic conditions; and (4) implicit costs vary significantly across space and farmers. Furthermore, CEAP studies showed that (5) evolutionary algorithms provide workable ways to identify cost‐effective BMP placements; (6) tradeoffs between total conservation costs and watershed‐scale cost‐effective water quality improvements are commonly large; (7) quality baseline information is essential to solving cost‐effectiveness problem; and (8) systemic and modeling uncertainties alter cost‐effective BMP placements considerably.
      PubDate: 2015-03-19T09:55:24.99963-05:0
      DOI: 10.1111/1752-1688.12295
       
  • Robust Prioritization of Climate Change Adaptation Strategies Using the
           VIKOR Method with Objective Weights
    • Authors: Yeonjoo Kim; Eun‐Sung Chung
      Pages: n/a - n/a
      Abstract: This study proposes a robust prioritization framework for climate change adaptation strategies under uncertain climate change scenarios, using the VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method, a multi‐criteria decision‐making approach, together with the Shannon entropy‐based weights. The VIKOR method allows us to find a compromise solution between two decision strategies of maximizing group utility and minimizing individual regret, and the Shannon entropy is used to determine objective weights among multiple climate change scenarios. The proposed methodology was applied to the problem of selecting locations of subwatersheds for reusing treated wastewater (TWW) in a Korean urban watershed. Selected based on the sustainability concept, hydro‐environmental and socioeconomic indicators were used to evaluate the sustainability of TWW reuse under multiple climate change scenarios, using the hydrologic simulation model results and statistical data. Finally, sustainability scores under multiple scenarios were aggregated using the VIKOR together with the Shannon entropy‐based weights for the robust prioritization of adaptation strategies. According to the different levels of regret aversion or affinity, our results for water quality showed different sets of adaptation strategies as the best options, suggesting that our framework would help stakeholders seeking the robust options considering both the utility and regret.
      PubDate: 2015-03-16T23:22:25.292191-05:
      DOI: 10.1111/jawr.12291
       
  • Introducing a Low‐Head Dam Fatality Database and Internet
           Information Portal
    • Authors: Edward W. Kern; Rollin H. Hotchkiss, Daniel P. Ames
      Pages: n/a - n/a
      Abstract: Low‐head dams can cause dangerous currents near the downstream face of the structure. Fatalities at low‐head dams with such currents, often referred to as “drowning machines,” are poorly documented. This technical note presents a new database of fatalities at low‐head dams in the United States together with an interactive map and web‐based user interface. The primary purpose of the system is to raise awareness, generate interest, and educate the general public and decision makers regarding these dangerous structures and the need for remediation. The database was designed as a normalized relational database of event dates, severity, location, reporter, and other circumstances. The open‐access user interface allows the general public to browse fatal incidents by geographic location and to read incident circumstances. The system allows submission of new contributions from users including all metadata needed to characterize the incident. The database is structured to include documentation verifying each entry. The site can be viewed at http://dams.byu.edu/.
      PubDate: 2015-03-16T00:22:48.335023-05:
      DOI: 10.1111/jawr.12289
       
  • Temporal Changes in Streamflow and Attribution of Changes to Climate and
           Landuse in Wisconsin Watersheds
    • Authors: Rabi Gyawali; Steve Greb, Paul Block
      Pages: n/a - n/a
      Abstract: Previous historic trends analyses on 21st Century hydrologic data in the United States generally focus on annual flow statistics and have continued to use USGS hydro‐climatic data network (HCDN) stations, although post‐1988 diversions and runoff regulations are not reflected in the HCDN. Using a more recent dataset, Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES II), compiled by Falcone (2012), which includes more watersheds with reference conditions, a comprehensive analysis of changes in seasonal, and annual streamflow in Wisconsin watersheds is demonstrated. Given the pronounced influence of seasonal hydrology in Wisconsin watersheds, the objective of this study is to elucidate the nature of temporal (annual, seasonal, and monthly) changes in runoff. Considerable temporal and regional variability was found in annual and seasonal streamflow changes between the two historic periods 1951‐1980 and 1981‐2010 considered in the study. For example, the northern watersheds show relatively small changes in streamflow discharge ranging from −6.0 to 4.2%, while the southern watersheds show relatively large increases in streamflow discharge ranging from 13.1 to 18.2%. To apportion streamflow changes to climate and nonclimatic factors, a method based on potential evapotranspiration changes is demonstrated. Results show that nonclimatic factors account for more than 60% of changes in annual runoff in Wisconsin watersheds considered in the study.
      PubDate: 2015-03-16T00:22:34.582755-05:
      DOI: 10.1111/jawr.12290
       
  • Book Reviews
    • Authors: Daniel Moscovici; Robert M. Hordon, Cindy Dyballa, Xuan Yu
      Pages: n/a - n/a
      PubDate: 2015-03-16T00:21:59.003466-05:
      DOI: 10.1111/1752-1688.12298
       
  • Streamside Management Zones Compromised by Stream Crossings, Legacy
           Gullies, and Over‐Harvest in the Piedmont
    • Authors: A.J. Lang; W.M. Aust, M.C. Bolding, S.M. Barrett, K.J. McGuire, W.A. Lakel
      Pages: n/a - n/a
      Abstract: Streamside management zone (SMZ) breakthroughs were identified and characterized to determine frequency and potential causes, in order to provide enhanced guidance for future water quality protection. Ten kilometers of SMZs were carefully examined for partial or complete breakthroughs. With partial breakthroughs the SMZ trapped sediment before it reached the stream, while complete breakthroughs appeared to have allowed sediment to have passed through with minimal restriction. A total of 41 breakthroughs occurred (33 complete, 8 partial) across 16 sites, averaging 1 complete breakthrough per 0.3 km of SMZ length. The most common complete breakthroughs were caused by stream crossings (42%), reactivation of legacy agricultural gullies (27%), and harvest related soil disturbances near/within SMZs (24%). Pearson correlations of site characteristics at breakthroughs indicated no strong relationships between breakthrough sites, representing the variable nature of these unique circumstances. Stream crossings are an intentional breakthrough for access purposes, but resulting environmental impacts can be reduced with best management practice implementation. Current recommendations for SMZs tend to work in most situations, yet further research is needed to identify causal factors and quantify breakthrough severity.
      PubDate: 2015-03-16T00:21:57.149606-05:
      DOI: 10.1111/jawr.12292
       
  • Drainage Impacts on Surficial Water Retention Capacity of a Prairie
           Pothole Watershed
    • Authors: Andrew C. Kessler; Satish C. Gupta
      Pages: n/a - n/a
      Abstract: Wetland restoration has been proposed as a tool to mitigate excess runoff and associated nonpoint source pollution in the Upper Midwestern United States. This study quantified the surficial water retention capacity of existing and drained wetlands for the Greater Blue Earth River Basin (GBERB), an intensively drained agricultural watershed. Using airborne light detection and ranging, the historic depressional storage was determined to be 152 mm. Individual depression analysis suggested that the restoration of most drained areas would have little impact on the storage capacity of the GBERB because the majority (53%) of retention capacity was in large depressions (>40 ha) which comprised only a small proportion (40 ha) depressions.
      PubDate: 2015-02-26T08:48:18.220205-05:
      DOI: 10.1111/jawr.12288
       
  • Assessment of Flood Vulnerability Based on CMIP5 Climate Projections in
           South Korea
    • Authors: Jihoon Park; Moon Seong Kang, Inhong Song
      Pages: n/a - n/a
      Abstract: The objective of this article was to assess flood vulnerability based on the representative concentration pathways (RCP) scenarios at city and county levels. A quantile mapping method was adopted to correct bias that is inherent in climate change scenarios. A series of proxy variables related to climate exposure, sensitivity, and adaptive capacity were chosen to assess flood vulnerability. Proxy variables were standardized using the Z‐score method. Principal component analysis was carried out to calculate the weighting of proxy variables. The study area was the Korean peninsula. The spatial resolution was on a city and county basis and the temporal resolution was 1990s, 2025s, 2055s, and 2085s (divided into 1976‐2005, 2011‐2040, 2041‐2070, and 2071‐2100). In the spatial comparison, we found that the areas with high‐level flood vulnerability increased over time in the central region, including metropolitan areas, and near the southern coast. In the temporal comparison, we found that the RCP4.5 scenario showed a tendency to increase steadily and the RCP8.5 scenario showed a tendency to decrease in the 2055s slightly and increase again in the 2085s. The study findings may provide useful data for the determination of priority for countermeasure development, though robustness of these findings with additional future projections should be established.
      PubDate: 2015-02-18T00:20:33.64186-05:0
      DOI: 10.1111/jawr.12283
       
  • Interpolating SRTM Elevation Data to Higher Resolution to Improve
           Hydrologic Analysis
    • Authors: Younggu Her; Conrad D. Heatwole, Moon S. Kang
      Pages: n/a - n/a
      Abstract: The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been a valuable resource for hydrological analysis, providing elevation data at a consistent resolution on a near‐global scale. However, its resolution (three arc‐second or 90 m) is sometimes too low to obtain the desired level of accuracy and precision for hydrologic analysis. We evaluated the performance of several methods for interpolating SRTM three arc‐second data to a 30‐m resolution grid to better represent topography and derive terrain characteristics of the landscape. STRM data were interpolated to 30‐m DEMs on a common grid using spline, inverse distance weighting (IDW), kriging (KR), natural neighbor methods, and cubic convolution (CC) resampling. Accuracy of the methods was assessed by comparing interpolated and resampled 30‐m grids with the reference data. Slope, aspect, sinks, and stream networks were derived for the 30‐m grids and compared on a cell‐by‐cell basis to evaluate their performance in reproducing the derivatives. The comparisons identify spline and KR as the most accurate interpolation methods, of which spline is preferred because of its relative simplicity. IDW provided the greatest bias in all methods with artifacts evident in slope and aspect maps. The performance of CC projection directly to a 30‐m resolution was comparable to spline interpolation, thus is recommended as the most convenient method for interpolating SRTM to a higher resolution.
      PubDate: 2015-02-18T00:20:12.930695-05:
      DOI: 10.1111/jawr.12287
       
  • Development and Evaluation of Bankfull Hydraulic Geometry Relationships
           for the Physiographic Regions of the United States
    • Authors: Katrin Bieger; Hendrik Rathjens, Peter M. Allen, Jeffrey G. Arnold
      Pages: n/a - n/a
      Abstract: Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even though studies have shown that the use of regional curves can improve the reliability of predictions considerably. In this study, regional regression equations predicting bankfull width, depth, and cross‐sectional area as a function of drainage area are developed for the Physiographic Divisions and Provinces of the U.S. and compared to a nationwide equation. Results show that the regional curves at division level are more reliable than the nationwide curve. Reliability of the curves depends largely on the number of observations per region and how well the sample represents the population. Regional regression equations at province level yield even better results than the division‐level models, but because of small sample sizes, the development of meaningful regression models is not possible in some provinces. Results also show that drainage area is a less reliable predictor of bankfull channel dimensions than bankfull discharge. It is likely that the regional curves can be improved using multiple regression models to incorporate additional explanatory variables.
      PubDate: 2015-02-18T00:19:58.333292-05:
      DOI: 10.1111/jawr.12282
       
  • The Mass and Energy Exchange of a Tibetan Glacier: Distributed Modeling
           and Climate Sensitivity
    • Authors: Binquan Li; Kumud Acharya, Zhongbo Yu, Zhongmin Liang, Fengge Su
      Pages: n/a - n/a
      Abstract: Most glaciers in the Tibetan Plateau (TP) are not closely monitored for mass balance (MB) due to their inaccessibility, which makes it difficult to better understand the dynamics of glacial advancement or retreat. Surface energy budget, MB, and the resulting melt runoff were calculated for Zhadang glacier (5,710 m above sea level) of the central TP. Energy balance was calculated on 30‐m square grids for the summers of 2007 and 2008. On average, net radiation dominated the total energy source (66%) while the residual was supplied by sensible heat flux. More than 67% of the energy sink was available for melting on the glacier. Thus, less than 33% of the total energy was consumed by latent heat flux. A large and a slightly negative summer MB were calculated for the 2007 and 2008 summers, respectively. The high sensitivity of the glacier to air temperature may indicate that the lower than average seasonal temperature was more important than the increased precipitation for the slightly negative MB in the summer of 2008. Comparisons of glacial melt runoff indicated that rainfall and snowmelt were the dominant contribution to total runoff in the glacierized basin and the ice melting is also very important. Glacial melt calculation provides a basis for quantifying glacial melt‐runoff contribution to the river streamflow in the TP.
      PubDate: 2015-02-18T00:19:52.227364-05:
      DOI: 10.1111/jawr.12286
       
  • Calibrating a Basin‐Scale Groundwater Model to Remotely Sensed
           Estimates of Groundwater Evapotranspiration
    • Authors: Rosemary W.H. Carroll; Greg M. Pohll, Charles G. Morton, Justin L. Huntington
      Pages: n/a - n/a
      Abstract: Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.
      PubDate: 2015-02-17T00:29:39.607744-05:
      DOI: 10.1111/jawr.12285
       
  • A Hierarchical Model for Estimating Long‐Term Trend of Atrazine
           Concentration in the Surface Water of the Contiguous U.S.
    • Authors: Jian Yun; Song S. Qian
      Pages: n/a - n/a
      Abstract: Atrazine is a herbicide frequently detected in both surface and groundwater in the United States (U.S.), but its spatiotemporal distribution and concentration trends have only been analyzed recently at regional or local scales. We employed a Bayesian hierarchical modeling approach to assess spatial and seasonal variation in atrazine concentration trends between 1990 and 2010 for the contiguous U.S. A Markov chain Monte Carlo simulation algorithm was used to address the problem of left‐censored data (i.e., atrazine concentration values below method reporting levels). We observed opposing temporal trends in the northern (flat or decreasing) and southern (increasing) regions of the U.S. This spatial variation in temporal trends can be partially explained by the relative amount of cropland in the region. Flat or decreasing trends in the north are more likely in regions with high cropland coverage while positive trends in the south are more likely in regions with low cropland coverage.
      PubDate: 2015-02-17T00:25:36.763974-05:
      DOI: 10.1111/jawr.12284
       
  • The Impact of Dynamic Environmental Flow Releases on Hydropower Production
           in the Zambezi River Basin
    • Authors: F.F. Nyatsanza; S. Graas, P. Zaag
      Pages: n/a - n/a
      Abstract: Incorporation of environmental flow releases from reservoirs has proven to be challenging due to fear of losses to existing water uses. Moreover environmental flow requirements (EFR) have not often been operationalized. This study compares the possibility of implementing dynamic EFR based on natural flows lagged against an upstream unregulated gauging point with static EFR. It simulates different scenarios with a high flow release in the wet season and analyses its impacts on hydropower production. This method accounts fully for the natural variability of environmental flows, implying less pressure on existing water uses during relatively dry years. Joint operation of two cascading dams vs. individual operation for EFR was also explored. These approaches were tested for the Zambezi River basin in Southern Africa using a water resources model, WAFLEX. Historic data on reservoir water levels, releases and power generation of the hydropower schemes were synthesized. Combining these yielded a validated series of monthly flow data for a 28 year period (1982‐2010). The results show that Kariba and Cahora Bassa reservoirs face a reduction in power produced when they would annually release an environmental flow. However, the dynamic EFR method entails smaller hydropower losses. Joint environmental flow operations will reduce overall basin power production more than if Cahora Bassa alone would release an environmental flow. However, such joint operation would be more beneficial to the ecosystem.
      PubDate: 2015-02-17T00:24:29.806185-05:
      DOI: 10.1111/jawr.12280
       
  • Climate Trends but Little Net Water Supply Shift in One of Canada's Most
           Water‐Stressed Regions over the Last Century
    • Authors: S.W. Fleming; M. Barton
      Pages: n/a - n/a
      Abstract: The southern interior ecoprovince (SIE) of British Columbia, Canada represents the northernmost extent of the great western North American deserts, it is experiencing some of the nation's fastest economic and population growth making it one of Canada's most water‐stressed regions, and it includes two headwater basins of the transboundary (Canada‐US) Columbia River. Statistical trend analyses were performed on 90‐year regional indicator time series for annual conditions in observed temperature, precipitation, and streamflow reflecting the three major SIE river basins: the Thompson, and transboundary Okanagan and Similkameen. Results suggest that regional climate has grown warmer and wetter, but with little net impact on total water supply availability. The outcome might reflect mutual cancellation of increases in precipitation inputs vs. evapotranspiration losses. Conclusions appeared largely insensitive to low‐pass data filtering, Pacific Decadal Oscillation effects, or solar output variability. Ensemble historical global climate model runs over the same time interval support this absence of appreciable trend in regionally integrated annual runoff volume, but a possible mismatch in precipitation results suggests a direction for further study. Overall, while important changes in hydrologic timing and extremes are likely occurring here, there is limited evidence for a net change in overall water supply availability over the last century.
      PubDate: 2015-02-17T00:23:41.842032-05:
      DOI: 10.1111/jawr.12281
       
  • Geomorphic and Ecological Consequences of Riprap Placement in River
           Systems
    • Authors: David Reid; Michael Church
      Pages: n/a - n/a
      Abstract: Riprap, consisting of large boulders or concrete blocks, is extensively used to stabilize streambanks and to inhibit lateral erosion of rivers, yet its effect on river morphology and its ecological consequences have been relatively little studied. In this paper, we review the available information, most of it culled from the “grey” literature. We use a simple one‐dimensional morphodynamic model as a conceptual tool to illustrate potential morphological effects of riprap placement in a gravel‐bed river, which include inhibition of local sediment supply to the channel and consequent channel bed scour and substrate coarsening, and downstream erosion. Riprap placement also tends to sever organic material input from the riparian zone, with loss of shade, wood input, and input of finer organic material. Available information on the consequences for the aquatic ecosystem mainly concerns effects on commercially and recreationally important fishes. The preponderance of studies report unfavorable effects on local numbers, but habitat niches created by openings in riprap can favorably affect invertebrates and some small fishes. There is a need for much more research on both morphological and ecosystem effects of riprap placement.
      PubDate: 2015-02-17T00:22:27.633083-05:
      DOI: 10.1111/jawr.12279
       
  • Empirical Estimation of Stream Discharge Using Channel Geometry in
           Low‐Gradient, Sand‐Bed Streams of the Southeastern Plains
    • Authors: Stephen A. Sefick; Latif Kalin, Ely Kosnicki, Brad P. Schneid, Miller S. Jarrell, Chris J. Anderson, Michael H. Paller, Jack W. Feminella
      Pages: n/a - n/a
      Abstract: Manning's equation is used widely to predict stream discharge (Q) from hydraulic variables when logistics constrain empirical measurements of in‐bank flow events. Uncertainty in Manning's roughness (nM) is the major source of error in natural channels, and sand‐bed streams pose difficulties because flow resistance is affected by flow‐dependent bed configuration. Our study was designed to develop and validate models for estimating Q from channel geometry easily derived from cross‐sectional surveys and available GIS data. A database was compiled consisting of 484 Q measurements from 75 sand‐bed streams in Alabama, Georgia, South Carolina, North Carolina (Southeastern Plains), and Florida (Southern Coastal Plain), with six New Zealand streams included to develop statistical models to predict Q from hydraulic variables. Model error characteristics were estimated with leave‐one‐site‐out jackknifing. Independent data of 317 Q measurements from 55 Southeastern Plains streams indicated the model (Q = AcRH0.6906S0.1216; where Ac is the channel area, RH is the hydraulic radius, and S is the bed slope) best predicted Q, based on Akaike's information criterion and root mean square error. Models also were developed from smaller Q range subsets to explore if subsets increased predictive ability, but error fit statistics suggested that these were not reasonable alternatives to the above equation. Thus, we recommend the above equation for predicting in‐bank Q of unbraided, sandy streams of the Southeastern Plains.
      PubDate: 2015-02-16T23:56:37.311797-05:
      DOI: 10.1111/jawr.12278
       
  • Calibration and Verification of SWMM for Low Impact Development
    • Authors: David J. Rosa; John C. Clausen, Michael E. Dietz
      Pages: n/a - n/a
      Abstract: The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.
      PubDate: 2015-01-30T08:08:22.309638-05:
      DOI: 10.1111/jawr.12272
       
  • Climate Change Impacts and Uncertainties on Spring Flooding of Lake
           Champlain and the Richelieu River
    • Authors: Philippe Riboust; François Brissette
      Pages: n/a - n/a
      Abstract: The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.
      PubDate: 2015-01-30T08:08:16.677304-05:
      DOI: 10.1111/jawr.12271
       
  • Identifying and Evaluating a Suitable Index for Agricultural Drought
           Monitoring in the Texas High Plains
    • Authors: Jerry E. Moorhead; Prasanna H. Gowda, Vijay P. Singh, Dana O. Porter, Thomas H. Marek, Terry A. Howell, B.A. Stewart
      Pages: n/a - n/a
      Abstract: Drought is a complex and highly destructive natural phenomenon that affects portions of the United States almost every year, and severe water deficiencies can often become catastrophic for agricultural production. Evapotranspiration (ET) by crops is an important component in the agricultural water budget; thus, it is advantageous to include ET in agricultural drought monitoring. The main objectives of this study were to (1) conduct a literature review of drought indices with a focus to identify a simple but simultaneously adequate drought index for monitoring agricultural drought in a semiarid region and (2) using the identified drought index method, develop and evaluate time series of that drought index for the Texas High Plains. Based on the literature review, the Standardized Precipitation‐Evapotranspiration Index (SPEI) was found to satisfy identified constraints for assessing agricultural drought. However, the SPEI was revised by replacing reference ET with potential crop ET to better represent actual water demand. Data from the Texas High Plains Evapotranspiration network was used to calculate SPEIs for the major irrigated crops. Trends and magnitudes of crop‐specific, time‐series SPEIs followed crop water demand patterns for summer crops. Such an observation suggests that a modified SPEI is an appropriate index to monitor agricultural drought for summer crops, but it was found to not account for soil water stored during the summer fallow period for winter wheat.
      PubDate: 2015-01-30T08:07:49.025756-05:
      DOI: 10.1111/jawr.12275
       
  • Analysis of Meteorological Drought Pattern During Different Climatic and
           Cropping Seasons in Bangladesh
    • Authors: Mahiuddin Alamgir; Shamsuddin Shahid, Manzul Kumar Hazarika, Syams Nashrrullah, Sobri Bin Harun, Supiah Shamsudin
      Pages: n/a - n/a
      Abstract: Drought is one of the most frequent natural disasters in Bangladesh which severely affect agro‐based economy and people's livelihood in almost every year. Characterization of droughts in a systematic way is therefore critical in order to take necessary actions toward drought mitigation and sustainable development. In this study, standardized precipitation index is used to understand the spatial distribution of meteorological droughts during various climatic seasons such as premonsoon, monsoon, and winter seasons as well as cropping seasons such as Pre‐Kharif (March‐May), Kharif (May‐October), and Rabi (December‐February). Rainfall data collected from 29 rainfall gauge stations located in different parts of the country were used for a period of 50 years (1961‐2010). The study reveals that the spatial characteristics of droughts vary widely according to season. Premonsoon droughts are more frequent in the northwest, monsoon droughts mainly occur in the west and northwest, winter droughts in the west, and the Rabi and Kharif droughts are more frequent in the north and northwest of Bangladesh. It is expected that the findings of the study will support drought monitoring and mitigation activities in Bangladesh.
      PubDate: 2015-01-30T08:07:06.834541-05:
      DOI: 10.1111/jawr.12276
       
  • Seeking, Thinking, Acting: Understanding Suburban Resident Perceptions and
           Behaviors Related to Stream Quality
    • Authors: Kristina M. Slagle; Robyn S. Wilson, Alexander Heeren
      Pages: n/a - n/a
      Abstract: Theories in risk, psychology, and communication suggest aiming to inform the public about basic ecological facts may not be enough to influence knowledge of risks or behaviors to mitigate water quality risks. The risk information‐seeking and processing model and the theory of planned behavior suggest several additional variables that are likely to influence risk‐mitigating behaviors. We used data from a survey of watershed residents in Ohio to explore a model of behavioral intentions to positively impact stream health. Residents' informational norms, or the perceived pressure to know about local stream health, strongly predicted their information‐seeking behaviors. Active‐seeking behaviors predicted positive attitudes toward behaviors impacting stream health, which predicted intentions to positively impact stream health. Implications for outreach include couching communication in terms of risk found important to the local community, here wildlife were seen as negatively influenced by water quality, as opposed to plain reports typically provided by utility companies. Increasing social pressure to feel informed by emphasizing the existing knowledge of stream ecology among residents could change the norm for the less informed. A low response rate limits the generalizability of findings here, but leveraging these findings in outreach efforts could prove more successful in engaging the public to improve stream health and support policies to improve stream health.
      PubDate: 2015-01-30T08:06:19.269793-05:
      DOI: 10.1111/jawr.12277
       
  • Development of Sediment and Nutrient Export Coefficients for U.S.
           Ecoregions
    • Authors: Michael White; Daren Harmel, Haw Yen, Jeff Arnold, Marilyn Gambone, Richard Haney
      Pages: n/a - n/a
      Abstract: Water quality impairment due to excessive nutrients and sediment is a major problem in the United States (U.S.). An important step in the mitigation of impairment in any given water body is determination of pollutant sources and amount. The sheer number of impaired waters and limited resources makes simplistic load estimation methods such as export coefficient (EC) methods attractive. Unfortunately ECs are typically based on small watershed monitoring data, which are very limited and/or often based on data collected from distant watersheds with drastically different conditions. In this research, we seek to improve the accuracy of these nutrient export estimation methods by developing a national database of localized EC for each ecoregion in the U.S. A stochastic sampling methodology loosely based on the Monte‐Carlo technique was used to construct a database of 45 million Soil and Water Assessment Tool (SWAT) simulations. These simulations consider a variety of climate, topography, soils, weather, land use, management, and conservation implementation conditions. SWAT model simulations were successfully validated with edge‐of‐field monitoring data. Simulated nutrient ECs compared favorably with previously published studies. These ECs may be used to rapidly estimate nutrient loading for any small catchment in the U.S. provided the location, area, and land‐use distribution are known.
      PubDate: 2015-01-30T07:53:25.743415-05:
      DOI: 10.1111/jawr.12270
       
  • Using Public Participation Geographic Information Systems to Identify
           Places of Watershed Service Provisioning
    • Authors: Cody Cox; Wayde Morse, Christopher Anderson, Luke Marzen
      Pages: n/a - n/a
      Abstract: In this study, we used public participation geographic information systems methods to collect spatial data identifying places that stakeholders in Mobile Bay, Alabama think are important providers of watershed services. These methods allowed us to spatially analyze participatory data from general public respondents and directly compare them with other scientific data in a geographic information systems database. This study identified which places in the region participants believe are important providers of specific watershed services, including fish nurseries, storm protection, flood protection, and water quality protection, which would likely have public support for conservation. Additionally, we assessed the accuracy of participant watershed service identification using land cover data to identify inconsistencies and participant knowledge gaps. This information can be used to target outreach education efforts. We found that the accuracy with which participants correctly identified places with the necessary land cover to provide each service varied considerably. We believe this to be a useful tool for managers to elicit stakeholder input and to identify knowledge gaps regarding the provisioning of watershed services.
      PubDate: 2014-12-16T10:34:35.114382-05:
      DOI: 10.1111/jawr.12269
       
  • Erratum
    • Authors: Gene J.‐Y. You; Ximing Cai
      Pages: n/a - n/a
      PubDate: 2014-12-11T05:51:11.203213-05:
      DOI: 10.1111/jawr.12274
       
  • Characterizing Geomorphic Change from Anthropogenic Disturbances to Inform
           Restoration in the Upper Cache River, Illinois
    • Authors: Kristen L. Bouska; Timothy J. Stoebner
      Pages: n/a - n/a
      Abstract: Over the past century, channelization, agricultural tiling, and land use changes have resulted in significant stream channel degradation of the Cache River in southern Illinois. With the increasing interest in restoration of the watershed's bottomland forests and swamps, we sought to characterize geomorphic change over the past 110 years to inform restoration and management. A previously surveyed stretch of river was resurveyed in the fall of 2011, following a record flood in the spring of that year. Results suggest that the slope of the channel in this section of the river has increased 345% between 1903 and 1972 (p 
      PubDate: 2014-12-08T23:34:48.035087-05:
      DOI: 10.1111/jawr.12266
       
  • Boater Perceptions of Environmental Issues Affecting Lakes in Northern
           Wisconsin
    • Authors: Ben Beardmore
      Pages: n/a - n/a
      Abstract: Understanding public perceptions of the importance of environmental issues is crucial for gauging support for management activities. I present a novel methodological approach to assess the importance boaters placed on 16 water issues in a lake‐rich region of northern Wisconsin. A latent class maximum difference conjoint model was used to examine the relationships between environmental concern and engagement with lake resources. Boaters were grouped to maximize observed heterogeneity in prioritizing issues of concern. Socio‐demographic characteristics, recreation specialization, place attachment, and attitudes concerning aquatic stewardship and invasive species management were then used to predict class membership. This modeling approach identified five groups whose perceptions of issues pertaining to lakes are influenced by their interactions with the lake environment. While anglers were most concerned about fishing quality, sightseers identified lakeshore development and loss of natural habitat. Groups also differed in their socio‐demographic and attitudinal characteristics. The priorities of each group were substantially different from those of the overall sample. Accounting for differences in stakeholders' environmental concerns may improve public involvement in water management initiatives by allowing managers to identify common concerns and prioritize important issues among multiple groups.
      PubDate: 2014-12-08T23:34:37.125132-05:
      DOI: 10.1111/jawr.12265
       
  • Variable Irrigation District Action in Water Trading
    • Authors: Narishwar Ghimire; Ronald C. Griffin
      Pages: n/a - n/a
      Abstract: Irrigation districts (IDs) in the American west are highly diverse in their economic attributes and local water scarcity circumstances. This diversity may affect reallocative action via water transactions as scarcity rises. The institutional background defining and constraining IDs is described here. For a Texas study region the progress of permanent water right transfers involving IDs is documented and examined. An econometric analysis of multiple decades of ID water transfer activities in the Lower Rio Grande Valley finds that IDs with larger initial water right holdings and higher populations in nearby cities are more likely to participate in agricultural‐to‐municipal water transfer activities. The findings suggest that consolidation of smaller water right holding IDs may be an avenue for quickening the pace of reallocation, especially in more populated areas.
      PubDate: 2014-12-08T23:33:58.123924-05:
      DOI: 10.1111/jawr.12267
       
  • Seasonal and Regional Patterns in Performance for a Baltic Sea Drainage
           Basin Hydrologic Model
    • Authors: Steve W. Lyon; Roya Meidani, Ype Velde, Helen E. Dahlke, Dennis P. Swaney, Carl‐Magnus Mörth, Christoph Humborg
      Pages: n/a - n/a
      Abstract: This study evaluates the ability of the Catchment SIMulation (CSIM) hydrologic model to describe seasonal and regional variations in river discharge over the entire Baltic Sea drainage basin (BSDB) based on 31 years of monthly simulation from 1970 through 2000. To date, the model has been successfully applied to simulate annual fluxes of water from the catchments draining into the Baltic Sea. Here, we consider spatiotemporal bias in the distribution of monthly modeling errors across the BSDB since it could potentially reduce the fidelity of predictions and negatively affect the design and implementation of land‐management strategies. Within the period considered, the CSIM model accurately reproduced the annual flows across the BSDB; however, it tended to underpredict the proportion of discharge during high‐flow periods (i.e., spring months) and overpredict during the summer low flow periods. While the general overpredictions during summer periods are spread across all the subbasins of the BSDB, the underprediction during spring periods is seen largely in the northern regions. By implementing a genetic algorithm calibration procedure and/or seasonal parameterization of subsurface water flows for a subset of the catchments modeled, we demonstrate that it is possible to improve the model performance albeit at the cost of increased parameterization and potential loss of parsimony.
      PubDate: 2014-12-08T23:33:51.317057-05:
      DOI: 10.1111/jawr.12268
       
  • Discussion
    • Authors: Francesco D'Asaro; Giovanni Grillone
      Pages: n/a - n/a
      Abstract: Epps et al. (2013) derived Curve Number (CN) values for two forested headwater watersheds in the Lower Coastal Plain of South Carolina during the 2008‐2011 period from rainfall‐runoff data, resulting in 23 events for the Upper Debidue Creek (UDC) watershed and in 20 events for Watershed 80 (WS80). D'Asaro and Grillone analyzed the P, CN data of the UDC watershed finding an evident “complacent” behavior, characterized by a declining CN with increasing P but without approaching a stable value at large storms. In this case, the traditional runoff CN equation does not fit well with the rainfall‐runoff data that indicate a partial source area watershed behavior and are more aptly modeled by the equation introduced by D'Asaro and Grillone (2012), who introduced a C parameter in the well‐known runoff CN formula. The C value, that represents the source area (fraction of drainage area) of the basin that produces runoff with a fixed CN 
      PubDate: 2014-12-08T23:31:20.553972-05:
      DOI: 10.1111/jawr.12264
       
  • A Modeling System to Assess Land Cover Land Use Change Effects on SAV
           Habitat in the Mobile Bay Estuary
    • Authors: Maurice G. Estes; Mohammad Z. Al‐Hamdan, Jean T. Ellis, Chaeli Judd, Dana Woodruff, Ronald M. Thom, Dale Quattrochi, Brian Watson, Hugo Rodriguez, Hoyt Johnson, Tom Herder
      Pages: n/a - n/a
      Abstract: Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.
      PubDate: 2014-11-11T04:54:24.910606-05:
      DOI: 10.1111/jawr.12263
       
  • Development and Operational Testing of a Super‐Ensemble Artificial
           Intelligence Flood‐Forecast Model for a Pacific Northwest River
    • Authors: Sean W. Fleming; Dominique R. Bourdin, Dave Campbell, Roland B. Stull, Tobi Gardner
      Pages: n/a - n/a
      Abstract: Coastal catchments in British Columbia, Canada, experience a complex mixture of rainfall‐ and snowmelt‐driven contributions to flood events. Few operational flood‐forecast models are available in the region. Here, we integrated a number of proven technologies in a novel way to produce a super‐ensemble forecast system for the Englishman River, a flood‐prone stream on Vancouver Island. This three‐day‐ahead modeling system utilizes up to 42 numerical weather prediction model outputs from the North American Ensemble Forecast System, combined with six artificial neural network‐based streamflow models representing various slightly different system conceptualizations, all of which were trained exclusively on historical high‐flow data. As such, the system combines relatively low model development times and costs with the generation of fully probabilistic forecasts reflecting uncertainty in the simulation of both atmospheric and terrestrial hydrologic dynamics. Results from operational testing by British Columbia's flood forecasting agency during the 2013‐2014 storm season suggest that the prediction system is operationally useful and robust.
      PubDate: 2014-11-11T04:54:14.18727-05:0
      DOI: 10.1111/jawr.12259
       
  • Associations between Water Physicochemistry and Prymnesium parvum
           Presence, Abundance, and Toxicity in West Texas Reservoirs
    • Authors: Matthew M. VanLandeghem; Mukhtar Farooqi, Greg M. Southard, Reynaldo Patiño
      Pages: n/a - n/a
      Abstract: Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity‐related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.
      PubDate: 2014-11-11T04:54:09.825794-05:
      DOI: 10.1111/jawr.12262
       
  • Spatiotemporal Associations of Reservoir Nutrient Characteristics and the
           Invasive, Harmful Alga Prymnesium parvum in West Texas
    • Authors: Matthew M. VanLandeghem; Mukhtar Farooqi, Greg M. Southard, Reynaldo Patiño
      Pages: n/a - n/a
      Abstract: Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.
      PubDate: 2014-11-11T04:54:04.768774-05:
      DOI: 10.1111/jawr.12261
       
  • Discussion
    • Authors: Steven E. Pells; William L. Peirson
      Pages: n/a - n/a
      PubDate: 2014-11-11T04:53:56.595319-05:
      DOI: 10.1111/jawr.12260
       
  • Reply to Discussion
    • Authors: Hilda Kwan; Sherman Swanson
      Pages: n/a - n/a
      PubDate: 2014-10-27T08:31:09.675613-05:
      DOI: 10.1111/jawr.12257
       
  • Discussion
    • Authors: David L. Rosgen
      Pages: n/a - n/a
      PubDate: 2014-10-27T08:31:04.424568-05:
      DOI: 10.1111/jawr.12258
       
  • Resolution and Analysis of Spatial Variations and Patterns in an Urban
           Lake with Rapid Profiling Instrumentation
    • Authors: Anthony R. Prestigiacomo; Steven W. Effler, David A. Matthews
      Pages: n/a - n/a
      Abstract: Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3−) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3−, for the effluent of a domestic waste treatment facility and from the addition of NO3− solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.
      PubDate: 2014-10-18T05:10:40.911642-05:
      DOI: 10.1111/jawr.12243
       
  • Evaluating Alternative Temporal Survey Designs for Monitoring Wetland Area
           and Detecting Changes over Time in California
    • Authors: Leila G. Lackey; Eric D. Stein
      Pages: n/a - n/a
      Abstract: Evaluation of wetland extent and changes in extent is a foundation of many wetland monitoring and assessment programs. Probabilistic sampling and mapping provides a cost‐effective alternative to comprehensive mapping for large geographic areas. One unresolved challenge for probabilistic or design‐based approaches is how best to monitor both status (e.g., extent at a single point in time) and trends (e.g., changes in extent over time) within a single monitoring program. Existing wetland status and trends (S&T) monitoring programs employ fixed sampling locations; however, theoretical evaluation and limited implementation in other landscape monitoring areas suggest that alternative designs could increase statistical efficiency and overall accuracy. In particular, designs that employ both fixed and nonfixed sampling locations (alternately termed permanent and temporary samples), termed sampling with partial replacement (SPR), are considered to efficiently and effectively balance monitoring current status with detection of trends. This study utilized simulated sampling to assess the performance of fixed sampling locations, SPR, and strictly nonfixed designs for monitoring wetland S&T over time. Modeled changes in wetland density over time were used as inputs for sampling simulations. In contrast to previous evaluations of SPR, the results of this study support the use of a fixed sampling design and show that SPR may underestimate both S&T.
      PubDate: 2014-10-16T15:08:44.445196-05:
      DOI: 10.1111/jawr.12254
       
  • Model‐Based Nitrogen and Phosphorus (Nutrient) Criteria for Large
           Temperate Rivers: 2. Criteria Derivation
    • Authors: Michael W. Suplee; Kyle F. Flynn, Steven C. Chapra
      Pages: n/a - n/a
      Abstract: Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.
      PubDate: 2014-10-16T15:08:35.015841-05:
      DOI: 10.1111/jawr.12252
       
  • Model‐Based Nitrogen and Phosphorus (Nutrient) Criteria for Large
           Temperate Rivers: 1. Model Development and Application
    • Authors: Kyle F. Flynn; Michael W. Suplee, Steven C. Chapra, Hua Tao
      Pages: n/a - n/a
      Abstract: An initial inquiry into model‐based numeric nitrogen and phosphorus (nutrient) criteria for large rivers is presented. Field data collection and associated modeling were conducted on a segment of the lower Yellowstone River in the northwestern United States to assess the feasibility of deriving numeric nutrient criteria using mechanistic water‐quality models. The steady‐state one‐dimensional model QUAL2K and a transect‐based companion model AT2K were calibrated and confirmed against low‐flow conditions at a time when river loadings, water column chemistry, and diurnal indicators were approximately steady state. Predictive simulation was then implemented via nutrient perturbation to evaluate the steady‐state and diurnal response of the river to incremental nutrient additions. In this first part of a two‐part series, we detail our modeling approach, model selection, calibration and confirmation, sensitivity analysis, model outcomes, and associated uncertainty. In the second part (Suplee et al., 2014) we describe the criteria development process using the tools described herein. Both articles provide a fundamental understanding of the process required to develop site‐specific numeric nutrient criteria using models in applied regulatory settings.
      PubDate: 2014-10-16T15:07:05.560474-05:
      DOI: 10.1111/jawr.12253
       
  • Can Rapid Assessment Protocols Be Used to Judge Sediment Impairment in
           Gravel‐Bed Streams? A Commentary
    • Authors: Thomas E. Lisle; John M. Buffington, Peter R. Wilcock, Kristin Bunte
      Pages: n/a - n/a
      Abstract: Land management agencies commonly use rapid assessments to evaluate the impairment of gravel‐bed streams by sediment inputs from anthropogenic sources. We question whether rapid assessment can be used to reliably judge sediment impairment at a site or in a region. Beyond the challenges of repeatable and accurate sampling, we argue that a single metric or protocol is unlikely to reveal causative relations because channel condition can result from multiple pathways, processes, and background controls. To address these concerns, a contextual analysis is needed to link affected resources, causal factors, and site history to reliably identify human influences. Contextual analysis is equivalent in principle to cumulative effects and watershed analyses and has a rich history, but has gradually been replaced by rapid assessment methods. Although the approaches differ, rapid assessment and contextual analysis are complementary and can be implemented in a two‐tiered approach in which rapid assessment provides a coarse (first‐tier) analysis to identify sites that deserve deeper contextual assessment (second‐tier). Contextual analysis is particularly appropriate for site‐specific studies that should be tailored to local conditions. A balance between rapid assessment and contextual analysis is needed to provide the most effective information for management decisions.
      PubDate: 2014-10-16T15:04:40.88187-05:0
      DOI: 10.1111/jawr.12255
       
  • Reducing Nitrogen Export from the Corn Belt to the Gulf of Mexico:
           Agricultural Strategies for Remediating Hypoxia
    • Authors: Eileen McLellan; Dale Robertson, Keith Schilling, Mark Tomer, Jill Kostel, Doug Smith, Kevin King
      Pages: n/a - n/a
      Abstract: SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen‐load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi‐Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen‐load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen‐management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen‐management practices with innovative nitrogen‐removal practices such as tile‐drainage treatment wetlands, drainage–ditch enhancements, stream‐channel restoration, and floodplain reconnection. Combining nitrogen‐management practices with nitrogen‐removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen‐removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen‐management practices at the field scale and diverse nitrogen‐removal practices at the landscape scale.
      PubDate: 2014-10-15T13:34:43.368097-05:
      DOI: 10.1111/jawr.12246
       
  • Prediction of Total Sediment Load in Sand‐Bed Rivers in Korea Using
           Lateral Distribution Method
    • Authors: Sung‐Uk Choi; Jinhwi Lee
      Pages: n/a - n/a
      Abstract: A new method for numerically predicting the total sediment load in a river is proposed. The method can be used to predict the total sediment load with information on channel geometry and slope, flow, and bed materials. The conventional method uses a 1D approach that assumes the channel has a wide rectangular shape. However, the proposed method computes depth‐averaged velocity over the width and predicts the total sediment load based on the flow computations. The new method, therefore, is expected to predict better if the flow changes significantly in the lateral direction. The proposed method was applied to three large sand‐bed rivers in Korea, where information is available regarding suspended sediment. Five formulas were tested of use in making total sediment load computations, namely Engelund‐Hansen's, Ackers‐White's, Yang's, Brownlie's, and Karim's formulas. The predicted total sediment loads are compared not only with measured data but also with results calculated using the 1D approach. Discrepancy ratios between the predicted and measured total sediment loads are given and the results are discussed.
      PubDate: 2014-10-15T13:32:17.582689-05:
      DOI: 10.1111/jawr.12249
       
  • A Spatially Explicit Model for Mapping Headwater Streams
    • Authors: Periann P. Russell; Susan M. Gale, Breda Muñoz, John R. Dorney, Matthew J. Rubino
      Pages: n/a - n/a
      Abstract: Headwater streams are the primary sources of water in a drainage network and serve as a critical hydrologic link between the surrounding landscape and larger, downstream surface waters. Many states, including North Carolina, regulate activity in and near headwater streams for the protection of water quality and aquatic resources. A fundamental tool for regulatory management is an accurate representation of streams on a map. Limited resources preclude field mapping every headwater stream and its origin across a large region. It is more practical to develop a model for headwater streams based on a sample of field data that can then be extrapolated to a larger area of interest. The North Carolina Division of Water Quality has developed a cost‐effective method for modeling and mapping the location, length, and flow classification (intermittent and perennial) of headwater streams. We used a multiple logistic regression approach that combined field data and terrain derivatives for watersheds located in the Triassic Basins ecoregion. Field data were collected using a standard methodology for identifying headwater streams and origins. Terrain derivatives were generated from digital elevation models interpolated from bare‐earth Light Detection and Range data. Model accuracies greater than 80% were achieved in classifying stream presence and absence, stream length and perennial stream length, but were not as consistent in predicting intermittent stream length.
      PubDate: 2014-10-15T13:31:02.932301-05:
      DOI: 10.1111/jawr.12250
       
  • Salinity as a Limiting Factor for Biological Condition in
           Mining‐Influenced Central Appalachian Headwater Streams
    • Authors: Anthony J. Timpano; Stephen H. Schoenholtz, David J. Soucek, Carl E. Zipper
      Pages: n/a - n/a
      Abstract: Recent studies have found that Appalachian coal mining causes increased surface water salinity, and that benthic macroinvertebrate communities in salinized mining‐influenced streams differ from communities in streams draining unmined areas. Understanding the role of salinity in shaping these communities is challenging because such streams are often influenced by a variety of stressors in addition to salinity. We characterized associations of salinity with biotic condition while isolating salinity from other stressors through rigorous site selection. We used a multimetric index of biotic condition to characterize benthic macroinvertebrate communities in headwater streams in the Central Appalachian Ecoregion of Virginia across a gradient of sulfate‐dominated salinity. We found strong negative seasonal correlations between biotic condition and three salinity measures (specific conductance, total dissolved solids, and SO42− concentration). We found no evidence to suggest stressors other than salinity as significant influences on biotic condition in these streams. Our results confirm negative associations of salinity with benthic macroinvertebrate community condition, as observed in other studies. Thus, our findings demonstrate that elevated salinity is an important limiting factor for biological condition in Central Appalachian headwater streams.
      PubDate: 2014-10-15T13:30:57.322944-05:
      DOI: 10.1111/jawr.12247
       
  • Describing Damage to Stream Modification Projects in Constrained Settings
    • Authors: Cidney J. Jones; Peggy A. Johnson
      Pages: n/a - n/a
      Abstract: Complex relationships between stream functions and processes make evaluation of stream modification projects difficult. Informed by vague objectives and minimal monitoring data, post‐construction project evaluations can often be a subjective attribution of success or failure. This article provides a simple framework to rapidly describe the degree of damage in stream modification projects performed in constrained settings. Based on widely accepted evaluations of physical habitat quality and stream stability, the damage states framework describes a continuum of damage in multiple categories that relate natural stream functions to the often desired state of static equilibrium. Given that channel form is closely related to stream function, it follows that changes to the channel form result in changes in function. The damage states focus on damage to flow hydraulics, sediment transport and channel equilibrium, hydraulic, and geomorphic parameters that describe basic stream functioning and support higher level functions in the modified channel. The damage states can be used in decision making as a systematic method to determine the need for repair and design adjustments.
      PubDate: 2014-10-15T13:30:43.474752-05:
      DOI: 10.1111/jawr.12248
       
  • Book Reviews
    • Authors: Seung Ah Byun
      Pages: n/a - n/a
      PubDate: 2014-10-15T13:30:38.572404-05:
      DOI: 10.1111/jawr.12251
       
  • Sustainable Rainwater Catchment Systems for Micronesian Atoll Communities
    • Authors: Corey D. Wallace; Ryan T. Bailey
      Pages: n/a - n/a
      Abstract: Atoll island communities rely on rainwater catchment systems (RWCS) as a primary method of storing freshwater. However, stored freshwater can be depleted during times of drought, requiring importation of water to sustain community living. To maintain adequate water supply under future climatic conditions, the functioning of RWCS for atoll communities must be analyzed and optimal designs must be adopted. In this study, a quantitative analysis of stored daily water volumes is provided for atoll islands within the Federated States of Micronesia (FSM), with Nikahlap Island, Pakein Atoll, and a generic island in western FSM used as representative cases. Using a daily water balance model for the RWCS, baseline conditions are simulated for the 1997‐1999 time period, during which an intense El Niño‐induced drought occurred, and a sensitivity analysis is performed to quantify the influence of RWCS features on water system outputs, whereupon an optimal RWCS design using existing infrastructure is analyzed. Results indicate the strong influence of catchment area, system efficiency, and storage capacity on water volumes and the depletion of water during dry seasons and drought periods using current RWCS infrastructure. Adequate storage can be maintained during a major drought if unused RWCS features are employed and if minimal rationing is adopted. Study results provide water resource managers and government officials with valuable data for consideration in water security measures.
      PubDate: 2014-09-03T09:02:47.978432-05:
      DOI: 10.1111/jawr.12244
       
  • Discussion
    • Authors: David L. Rosgen
      Pages: n/a - n/a
      PubDate: 2014-09-03T09:02:44.540777-05:
      DOI: 10.1111/jawr.12242
       
  • Reply to Discussion
    • Authors: Kristan Cockerill; William P. Anderson
      Pages: n/a - n/a
      PubDate: 2014-09-03T09:02:42.970719-05:
      DOI: 10.1111/jawr.12241
       
  • Pre‐Development Groundwater Conditions Surrounding Memphis,
           Tennessee: Controversy and Unexpected Outcomes
    • Authors: Brian Waldron; Daniel Larsen
      Pages: n/a - n/a
      Abstract: Reliance on groundwater resources by differing governing bodies can create transboundary disputes raising questions of ownership and apportionment as the resource becomes strained through overuse or threatened by contamination. Transboundary disputes exist at varying scales, from conflicts between countries to smaller disputes between intrastate jurisdictions. In 2005 within the United States, the State of Mississippi filed a lawsuit against its political neighbor and their utility, the City of Memphis and Memphis Light, Gas, and Water, for groundwater deemed owned by the State of Mississippi to be wrongfully diverted across the state line and into Tennessee by the defendants. The basis of the lawsuit was potentiometric maps of groundwater levels for the Memphis aquifer that showed under suggested pre‐development conditions no flow occurring across the Mississippi‐Tennessee state line, but subsequent historic potentiometric maps show a cone of depression under the City of Memphis with a clear northwesterly gradient from Mississippi into Tennessee. The suggested pre‐development conditions were derived from limited groundwater level observations between 41 and 74 years post‐development. A new pre‐development map is constructed using historic records that range 0‐17 years post‐development that shows the natural flow is northwesterly from Mississippi into Tennessee and transboundary groundwater quantities have actually decreased since pre‐development conditions.
      PubDate: 2014-09-03T09:02:40.765267-05:
      DOI: 10.1111/jawr.12240
       
  • Development of the Spatial Rainfall Generator (SRGEN) for the Agricultural
           Policy/Environmental Extender Model
    • Authors: Jaehak Jeong; Jimmy R. Williams, Colleen G. Rossi, Robin A. Taylor, Xiuying Wang, William E. Fox
      Pages: n/a - n/a
      Abstract: Accurate spatial representation of climatic patterns is often a challenge in modeling biophysical processes at the watershed scale, especially where the representation of a spatial gradient in rainfall is not sufficiently captured by the number of weather stations. The spatial rainfall generator (SRGEN) is developed as an extension of the “weather generator” (WXGEN), a component of the Agricultural Policy/Environmental eXtender (APEX) model. SRGEN generates spatially distributed daily rainfall using monthly weather statistics available at multiple locations in a watershed. The spatial rainfall generator as incorporated in APEX is tested on the Cowhouse watershed (1,178 km2) in central Texas. The watershed presented a significant spatial rainfall gradient of 2.9 mm/km in the lateral (north‐south) directions based on four rainfall gages. A comparative analysis between SRGEN and WXGEN indicates that SRGEN performs well (PBIAS = 2.40%). Good results were obtained from APEX for streamflow (NSE = 0.99, PBIAS = 8.34%) and NO3‐N and soluble P loads (PBIAS ≈ 6.00% for each, respectively). However, APEX underpredicted sediment yield and organic N and P loads (PBIAS: 24.75‐27.90%) with SRGEN, although its uncertainty in output was lower than WXGEN results (PBIAS: −13.02 to −46.13%). The overall improvement achieved in rainfall generation by SRGEN is demonstrated to be effective in the improving model performance on flow and water quality output.
      PubDate: 2014-09-03T09:02:34.388698-05:
      DOI: 10.1111/jawr.12239
       
  • The Aging of America's Reservoirs: In‐Reservoir and Downstream
           Physical Changes and Habitat Implications
    • Authors: Kyle E. Juracek
      Pages: n/a - n/a
      Abstract: Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short‐ and medium‐term (50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.
      PubDate: 2014-09-03T09:02:27.614565-05:
      DOI: 10.1111/jawr.12238
       
  • Trophic State in Voyageurs National Park Lakes before and after
           Implementation of a Revised Water‐Level Management Plan
    • Authors: Victoria G. Christensen; Ryan P. Maki
      Pages: n/a - n/a
      Abstract: We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water‐level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, p = 0.020) between 1977‐1999 and 2000‐2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open‐water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, p = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, p = 0.006) between 1977‐1999 and 2000‐2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (p = 0.006) and in Kabetogama Lake from 57 to 50 (p = 0.006) between 1977‐1999 and 2000‐2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water‐level management plan.
      PubDate: 2014-08-12T11:38:10.788168-05:
      DOI: 10.1111/jawr.12234
       
  • Modeling Long‐Term Trends of Chlorinated Ethene Contamination at a
           Public Supply Well
    • Authors: Francis H. Chapelle; Leon J. Kauffman, Mark A. Widdowson
      Pages: n/a - n/a
      Abstract: A mass‐balance solute‐transport modeling approach was used to investigate the effects of dense nonaqueous phase liquid (DNAPL) volume, composition, and generation of daughter products on simulated and measured long‐term trends of chlorinated ethene (CE) concentrations at a public supply well. The model was built by telescoping a calibrated regional three‐dimensional MODFLOW model to the capture zone of a public supply well that has a history of CE contamination. The local model was then used to simulate the interactions between naturally occurring organic carbon that acts as an electron donor, and dissolved oxygen (DO), CEs, ferric iron, and sulfate that act as electron acceptors using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. The modeling results indicate that asymmetry between rapidly rising and more gradual falling concentration trends over time suggests a DNAPL rather than a dissolved source of CEs. Peak concentrations of CEs are proportional to the volume and composition of the DNAPL source. The persistence of contamination, which can vary from a few years to centuries, is proportional to DNAPL volume, but is unaffected by DNAPL composition. These results show that monitoring CE concentrations in raw water produced by impacted public supply wells over time can provide useful information concerning the nature of contaminant sources and the likely future persistence of contamination.
      PubDate: 2014-08-12T11:38:04.217703-05:
      DOI: 10.1111/jawr.12230
       
  • Specific Yield Functions for Estimating Evapotranspiration from Diurnal
           Surface Water Cycles
    • Authors: A. Jason Hill; Brandon Durchholz
      Pages: n/a - n/a
      Abstract: The White method has been routinely used to estimate evapotranspiration using diurnal variations in groundwater levels. Applications to surface water systems (e.g., wetlands) are less common. For applications to surface water systems, a stage‐dependent specific yield function must be defined. This is especially important for small wetlands formed in topographic depressions with bowl shaped bathymetries. Existing formulations of the specific yield function include weighting factors that impact the relative importance of the soil and open water specific yields on the composite value. Three formulations of the specific yield function from the literature were compared and found to produce varied results. Based on a comparison with empirical estimates of specific yield based on observed ratios of net precipitation to water level rise, one of the existing formulations is generalized and recommended for general use. The recommended function is dependent on wetland bathymetry, magnitude of the diurnal fluctuation, spatial extent of the equilibration area, and soil‐specific yield. A sensitivity analysis was conducted to examine the relative importance of these variables. The specific yield function is independent of wetland size and is strongly dependent on the basin profile coefficient (p), an indication of wetland shape. For most natural wetlands, bathymetry strongly influences specific yield.
      PubDate: 2014-08-12T11:37:57.914103-05:
      DOI: 10.1111/jawr.12237
       
  • Estimating Current and Future Groundwater Resources of the Maldives
    • Authors: Ryan T. Bailey; Abedalrazq Khalil, Vansa Chatikavanij
      Pages: n/a - n/a
      Abstract: The water resources of the atolls of the Republic of Maldives are under continual threat from climatic and anthropogenic stresses, including land surface pollution, increasing population, drought, and sea‐level rise (SLR). These threats are particularly acute for groundwater resources due to the small land surface area and low elevation of each island. In this study, the groundwater resources, in terms of freshwater lens thickness, total volume of fresh groundwater, and safe yield are estimated for the 52 most populous islands of the Maldives for current conditions and for the year 2030, with the latter accounting for projected SLR and associated shoreline recession. An algebraic model, designed in previous studies to estimate the lens thickness of atoll islands, is expanded in this study to also estimate volume of groundwater. Results indicate that average current lens thickness, groundwater volume, and per capita safe yield are approximately 4.6 m, 1,300 million liters, and 300 l/day, and that these values will decrease by approximately 10, 11, and 34%, respectively, by the year 2030. Based on results, it is demonstrated that groundwater, in terms of quantity, is a viable source of water for the islands of the Maldives both now and in coming decades, particularly for islands with large surface area and low population. Study results can provide water resource managers and government officials with valuable data for consideration in water security measures.
      PubDate: 2014-08-12T11:37:51.063294-05:
      DOI: 10.1111/jawr.12236
       
  • Controls on Temperature in Salmonid‐Bearing Headwater Streams in Two
           Common Hydrogeologic Settings, Kenai Peninsula, Alaska
    • Authors: Michael K. Callahan; Mark C. Rains, Jason C. Bellino, Coowe M. Walker, Steven J. Baird, Dennis F. Whigham, Ryan S. King
      Pages: n/a - n/a
      Abstract: Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.
      PubDate: 2014-08-12T11:37:45.295675-05:
      DOI: 10.1111/jawr.12235
       
  • Evaluating the Eco‐Geomorphological Condition of Restored Streams
           Using Visual Assessment and Macroinvertebrate Metrics
    • Authors: Barbara A. Doll; Gregory D. Jennings, Jean Spooner, David L. Penrose, Joseph L. Usset
      Pages: n/a - n/a
      Abstract: The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.
      PubDate: 2014-08-12T11:37:33.277786-05:
      DOI: 10.1111/jawr.12233
       
  • Hydrological Responses to Climate and Land‐Use Changes along the
           North American East Coast: A 110‐Year Historical Reconstruction
    • Authors: Qichun Yang; Hanqin Tian, Marjorie A.M. Friedrichs, Mingliang Liu, Xia Li, Jia Yang
      Pages: n/a - n/a
      Abstract: The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.
      PubDate: 2014-08-12T11:35:40.486492-05:
      DOI: 10.1111/jawr.12232
       
  • Evaluating the Impacts of Environmental Flow Alternatives on Reservoir and
           Recreational Operations Using System Dynamics Modeling
    • Authors: Ryan R. Morrison; Mark C. Stone
      Pages: n/a - n/a
      Abstract: Providing environmental flows is increasingly a management obligation in many water resource systems. Evaluating the impacts of environmental flow alternatives on other water uses in a basin can be a challenge, especially when collaborating with stakeholders. We demonstrate the use of system dynamics (SD) modeling to assess the impacts of four environmental flow alternatives in the Rio Chama, New Mexico. The model was developed to examine impacts of each alternative on reservoir storage and releases, hydropower production and revenue, and whitewater boating access. We simulated each alternative within a stochastic framework in order to explicitly incorporate hydrologic uncertainty into the analyses. The environmental flow alternatives were developed at a collaborative workshop of geomorphology, hydrology, and ecology experts. Results from the model indicate that the proposed flow recommendations on the Rio Chama will generally decrease annual reservoir storage, increase median flows, and have minimal impacts on hydropower production and whitewater rafting on the system. The Rio Chama case study is a promising example of how SD modeling can be used in the early stages of environmental flow studies and why it is compatible with collaborative modeling.
      PubDate: 2014-08-12T11:35:31.597753-05:
      DOI: 10.1111/jawr.12231
       
  • Conditional Water Rights in the Western United States: Introducing
           Uncertainty to Prior Appropriation?
    • Authors: Charles J.P. Podolak; Martin Doyle
      Pages: n/a - n/a
      Abstract: In the prior‐appropriation water rights regimes that prevail in the arid western United States, claims to annually variable surface water flows are fulfilled based on the order of their establishment. The two‐step process used to establish an appropriative water right in all 17 conterminous western states creates a temporary phase, or conditional water right, which has a priority date but no actual water use. We provide a review of the legal basis for these conditional water rights and demonstrate the potential uncertainty they introduce to current water users. We then present a complete census of conditional water rights in Colorado, including their amounts, ages, and uses. At the end of 2012 there were a large number of conditional water rights in Colorado (some over 90 years old) equal to 61% of the perfected water rights. Many of the controversial conditional water rights in Colorado have been associated with unconventional oil production in the northwestern portion of the state; however, conditional water rights are ubiquitous across the state and across many use types. In several basins, their existence can introduce uncertainty to some of the most senior water rights holders. Nevertheless, in most of the state, the effects of conditional water rights are restricted to a relatively junior class of water users. This work quantifies for the first time the result, in one state, of a peculiar aspect of water law common across all western prior‐appropriation states.
      PubDate: 2014-08-12T11:35:25.142257-05:
      DOI: 10.1111/jawr.12229
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015