for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 864 journals)
    - APPLIED MATHEMATICS (69 journals)
    - GEOMETRY AND TOPOLOGY (19 journals)
    - MATHEMATICS (642 journals)
    - MATHEMATICS (GENERAL) (40 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (75 journals)

MATHEMATICS (642 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 2)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 6)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 10)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 4)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 1)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 6)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 3)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 5)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 7)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 2)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 9)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 3)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 4)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 8)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 2)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 17)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
BIBECHANA     Open Access  
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 19)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 6)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 2)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 18)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 12)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 7)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 4)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 4)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 3)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)
Formalized Mathematics     Open Access   (Followers: 2)
Foundations and Trends® in Econometrics     Full-text available via subscription   (Followers: 4)
Foundations and Trends® in Networking     Full-text available via subscription   (Followers: 1)

        1 2 3 4 | Last

Journal Cover Annals of Mathematics and Artificial Intelligence
  [SJR: 0.593]   [H-I: 42]   [6 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-7470 - ISSN (Online) 1012-2443
   Published by Springer-Verlag Homepage  [2340 journals]
  • Submodularity and its application to some global constraints
    • Authors: D. Magos; I. Mourtos
      Pages: 267 - 289
      Abstract: Abstract Submodularity defines a general framework rich of important theoretical properties while accommodating numerous applications. Although the notion has been present in the literature of Combinatorial Optimization for several decades, it has been overlooked in the analysis of global constraints. The current work illustrates the potential of submodularity as a powerful tool for such an analysis. In particular, we show that the cumulative constraint, when all tasks are identical, has the submodular/supermodular representation property, i.e., it can be represented by a submodular/supermodular system of linear inequalities. Motivated by that representation, we show that the system of any two (global) constraints not necessarily of the same type, each bearing the above-mentioned property, has an integral relaxation given by the conjunction of the linear inequalities representing each individual constraint. This result is obtained through the use of the celebrated polymatroid intersection theorem.
      PubDate: 2017-04-01
      DOI: 10.1007/s10472-016-9522-x
      Issue No: Vol. 79, No. 4 (2017)
       
  • Bagging strategies for learning planning policies
    • Authors: Tomás de la Rosa; Raquel Fuentetaja
      Pages: 291 - 305
      Abstract: Abstract In this paper we describe ENSEMBLE-ROLLER, a learning-based automated planner that uses a bagging approach to enhance existing techniques for learning planning policies. Previous policy-style planning and learning systems sort state successors based on action predictions from a relational classifier. However, these learning-based planners can produce several plans of bad quality, since it is very difficult to encode in a single classifier all possible situations occurring in a planning domain. We propose to use ensembles of relational classifiers to generate more robust policies. As in other applications of machine learning, the idea of the ensembles of classifiers consists of providing accuracy for particular scenarios and diversity to cover a wide range of situations. In particular, ENSEMBLE-ROLLER learns ensembles of relational decision trees for each planning domain. The control knowledge from different sets of trees is aggregated as a single prediction or applied separately in a multiple-queue search algorithm. Experimental results show that both ways of using new policies produce on average plans of better quality.
      PubDate: 2017-04-01
      DOI: 10.1007/s10472-016-9523-9
      Issue No: Vol. 79, No. 4 (2017)
       
  • Logic of temporal attribute implications
    • Authors: Jan Triska; Vilem Vychodil
      Pages: 307 - 335
      Abstract: Abstract We study logic for reasoning with if-then formulas describing dependencies between attributes of objects which are observed in consecutive points in time. We introduce semantic entailment of the formulas, show its fixed-point characterization, investigate closure properties of model classes, present an axiomatization and prove its completeness, and investigate alternative axiomatizations and normalized proofs. We investigate decidability and complexity issues of the logic and prove that the entailment problem is NP-hard and belongs to EXPSPACE. We show that by restricting to predictive formulas, the entailment problem is decidable in pseudo-linear time.
      PubDate: 2017-04-01
      DOI: 10.1007/s10472-016-9526-6
      Issue No: Vol. 79, No. 4 (2017)
       
  • Meeting a deadline: shortest paths on stochastic directed acyclic graphs
           with information gathering
    • Authors: Mikko Lauri; Aino Ropponen; Risto Ritala
      Pages: 337 - 370
      Abstract: Abstract We consider the problem of an agent traversing a directed graph with the objective of maximizing the probability of reaching a goal node before a given deadline. Only the probability of the travel times of edges is known to the agent. The agent must balance between traversal actions towards the goal, and delays due to actions improving information about graph edge travel times. We describe the relationship of the problem to the more general partially observable Markov decision process. Further, we show that if edge travel times are independent and the underlying directed graph is acyclic, a closed loop solution can be computed. The solution specifies whether to execute a traversal or information-gathering action as a function of the current node, the time remaining until the deadline, and the information about edge travel times. We present results from two case studies, quantifying the usefulness of information-gathering as opposed to applying only traversal actions.
      PubDate: 2017-04-01
      DOI: 10.1007/s10472-016-9527-5
      Issue No: Vol. 79, No. 4 (2017)
       
  • Erratum to: Analyzing restricted fragments of the theory of linear
           arithmetic
    • Authors: Piotr Wojciechowski; Pavlos Eirinakis; K. Subramani
      Pages: 371 - 392
      Abstract: Erratum to: Ann Math Artif Intell (2017) 79:245-266
      DOI 10.1007/s10472-016-9525-7 Owing to an error in the production process, the following article has been published incorrectly online. The article including the illustrations is presented hereafter.
      PubDate: 2017-04-01
      Issue No: Vol. 79, No. 4 (2017)
       
  • Boosting conditional probability estimators
    • Authors: Dan Gutfreund; Aryeh Kontorovich; Ran Levy; Michal Rosen-Zvi
      Pages: 129 - 144
      Abstract: Abstract In the standard agnostic multiclass model, <instance, label > pairs are sampled independently from some underlying distribution. This distribution induces a conditional probability over the labels given an instance, and our goal in this paper is to learn this conditional distribution. Since even unconditional densities are quite challenging to learn, we give our learner access to <instance, conditional distribution > pairs. Assuming a base learner oracle in this model, we might seek a boosting algorithm for constructing a strong learner. Unfortunately, without further assumptions, this is provably impossible. However, we give a new boosting algorithm that succeeds in the following sense: given a base learner guaranteed to achieve some average accuracy (i.e., risk), we efficiently construct a learner that achieves the same level of accuracy with arbitrarily high probability. We give generalization guarantees of several different kinds, including distribution-free accuracy and risk bounds. None of our estimates depend on the number of boosting rounds and some of them admit dimension-free formulations.
      PubDate: 2017-03-01
      DOI: 10.1007/s10472-015-9465-7
      Issue No: Vol. 79, No. 1-3 (2017)
       
  • Learning concepts and their unions from positive data with refinement
           operators
    • Authors: Seishi Ouchi; Tomohiko Okayama; Keisuke Otaki; Ryo Yoshinaka; Akihiro Yamamoto
      Pages: 181 - 203
      Abstract: Abstract This paper is concerned with a sufficient condition under which a concept class is learnable in Gold’s classical model of identification in the limit from positive data. The standard principle of learning algorithms working under this model is called the MINL strategy, which is to conjecture a hypothesis representing a minimal concept among the ones consistent with the given positive data. The minimality of a concept is defined with respect to the set-inclusion relation – the strategy is semantics-based. On the other hand, refinement operators have been developed in the field of learning logic programs, where a learner constructs logic programs as hypotheses consistent with given logical formulae. Refinement operators have syntax-based definitions – they are defined based on inference rules in first-order logic. This paper investigates the relation between the MINL strategy and refinement operators in inductive inference. We first show that if a hypothesis space admits a refinement operator with certain properties, the concept class will be learnable by an algorithm based on the MINL strategy. We then present an additional condition that ensures the learnability of the class of unbounded finite unions of concepts. Furthermore, we show that under certain assumptions a learning algorithm runs in polynomial time.
      PubDate: 2017-03-01
      DOI: 10.1007/s10472-015-9458-6
      Issue No: Vol. 79, No. 1-3 (2017)
       
  • On the role of fairness and limited backward induction in sequential
           bargaining games
    • Authors: Xia Qu; Prashant Doshi
      Pages: 205 - 227
      Abstract: Abstract Experiments show that in sequential bargaining games ( \(\mathcal {SBG}\) ), subjects usually deviate from game-theoretic predictions. Previous explanations have focused on considerations of fairness in the offers, and social utility functions have been formulated to model the data. However, a recent explanation by Ho and Su (Manag. Sci. 59(2), 452–469 2013) for observed deviations from game-theoretic predictions in sequential games such as the Centipede game is that players engage in limited backward induction. In this article, a suite of new and existing computational models that integrate different choice models with utility functions are comprehensively evaluated on \(\mathcal {SBG}\) data. These include DeBruyn and Bolton’s recursive quantal response with social utility functions, those based on Ho and Su’s dynamic level-k, and analogous extensions of the cognitive hierarchy with dynamic components. Our comprehensive analysis reveals that in extended \(\mathcal {SBG}\) with 5 rounds, models that capture violations of backward induction perform better than those that model fairness. However, we did not observe this result for \(\mathcal {SBG}\) with less rounds, and fairness of the offer remains a key consideration in these games. These findings contribute to the broader observation that non-social factors play a significant role in non-equilibrium play of sequential games.
      PubDate: 2017-03-01
      DOI: 10.1007/s10472-015-9481-7
      Issue No: Vol. 79, No. 1-3 (2017)
       
  • Dualization of boolean functions using ternary decision diagrams
    • Authors: Takahisa Toda
      Pages: 229 - 244
      Abstract: Abstract Dualization of Boolean functions is a fundamental problem that appears in various fields such as artificial intelligence, logic, data mining, etc. For monotone Boolean functions, many empirical researches that focus on practical efficiency have recently been done. We extend our previous work for monotone dualization and present a novel method for dualization that allows us to handle any Boolean function, including non-monotone Boolean functions. We furthermore present a variant of this method in cooperation with all solutions solver. By experiments we evaluate efficiency and characteristics of our methods.
      PubDate: 2017-03-01
      DOI: 10.1007/s10472-016-9520-z
      Issue No: Vol. 79, No. 1-3 (2017)
       
  • Tennis manipulation: can we help serena williams win another
           tournament?
    • Authors: Lior Aronshtam; Havazelet Cohen; Tammar Shrot
      Abstract: Abstract This article focuses on the question of whether a certain candidate’s (player’s) chance to advance further in a tennis tournament can be increased when the ordering of the tournament can be controlled (manipulated by the organizers) according to his own preferences. Is it possible to increase the number of ranking points a player will receive? And most importantly, can it be done in reasonable computational time? The answers to these questions differ for different settings. e.g., the information available on the outcome of each game, the significance of the number of points gained or of the number of games won. We analyzed five different variations of these tournament questions. First the complexity hardness of trying to control the tournaments is shown. Then, the tools of parametrized complexity are used to investigate the source of the problems’ hardness. Specifically, we check whether this hardness holds when the size of the problem is bounded. The findings of this analysis show that it is possible under certain circumstances to control the tournament in favor of a specific candidate in order to help him advance further in the tournament.
      PubDate: 2017-04-24
      DOI: 10.1007/s10472-017-9549-7
       
  • To be fair, use bundles
    • Authors: John McCabe-Dansted; Mark Reynolds
      Abstract: Abstract Attempts to manage the reasoning about systems with fairness properties are long running. The popular but restricted Computational Tree Logic (CTL) is amenable to automated reasoning but has difficulty expressing some fairness properties. More expressive languages such as CTL* and CTL+ are computationally complex. The main contribution of this paper is to show the usefulness and practicality of employing the bundled variants of these languages to handle fairness. In particular we present a tableau for a bundled variant of CTL that still has the similar computational complexity to the CTL tableau and a simpler implementation. We further show that the decision problem remains in EXPTIME even if a bounded number of CTL* fairness constraints are allowed in the input formulas. By abandoning limit closure the bundled logics can simultaneously be easier to automate and express many typical fairness constraints.
      PubDate: 2017-04-19
      DOI: 10.1007/s10472-017-9546-x
       
  • Universal probability-free prediction
    • Authors: Vladimir Vovk; Dusko Pavlovic
      Abstract: Abstract We construct universal prediction systems in the spirit of Popper’s falsifiability and Kolmogorov complexity and randomness. These prediction systems do not depend on any statistical assumptions (but under the IID assumption they dominate, to within the usual accuracy, conformal prediction). Our constructions give rise to a theory of algorithmic complexity and randomness of time containing analogues of several notions and results of the classical theory of Kolmogorov complexity and randomness.
      PubDate: 2017-04-19
      DOI: 10.1007/s10472-017-9547-9
       
  • Preface for the special issue devoted to AISC 2014
    • Authors: Jacques Calmet
      PubDate: 2017-04-12
      DOI: 10.1007/s10472-017-9548-8
       
  • Large scale variable fidelity surrogate modeling
    • Authors: A. Zaytsev; E. Burnaev
      Abstract: Abstract Engineers widely use Gaussian process regression framework to construct surrogate models aimed to replace computationally expensive physical models while exploring design space. Thanks to Gaussian process properties we can use both samples generated by a high fidelity function (an expensive and accurate representation of a physical phenomenon) and a low fidelity function (a cheap and coarse approximation of the same physical phenomenon) while constructing a surrogate model. However, if samples sizes are more than few thousands of points, computational costs of the Gaussian process regression become prohibitive both in case of learning and in case of prediction calculation. We propose two approaches to circumvent this computational burden: one approach is based on the Nyström approximation of sample covariance matrices and another is based on an intelligent usage of a blackbox that can evaluate a low fidelity function on the fly at any point of a design space. We examine performance of the proposed approaches using a number of artificial and real problems, including engineering optimization of a rotating disk shape.
      PubDate: 2017-04-05
      DOI: 10.1007/s10472-017-9545-y
       
  • Efficient design of experiments for sensitivity analysis based on
           polynomial chaos expansions
    • Authors: Evgeny Burnaev; Ivan Panin; Bruno Sudret
      Abstract: Abstract Global sensitivity analysis aims at quantifying respective effects of input random variables (or combinations thereof) onto variance of a physical or mathematical model response. Among the abundant literature on sensitivity measures, Sobol indices have received much attention since they provide accurate information for most of models. We consider a problem of experimental design points selection for Sobol’ indices estimation. Based on the concept of D-optimality, we propose a method for constructing an adaptive design of experiments, effective for calculation of Sobol’ indices based on Polynomial Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.
      PubDate: 2017-03-30
      DOI: 10.1007/s10472-017-9542-1
       
  • Robust visual tracking using information theoretical learning
    • Authors: Weifu Ding; Jiangshe Zhang
      Abstract: Abstract This paper presents a novel online object tracking algorithm with sparse representation for learning effective appearance models under a particle filtering framework. Compared with the state-of-the-art ℓ 1 sparse tracker, which simply assumes that the image pixels are corrupted by independent Gaussian noise, our proposed method is based on information theoretical Learning and is much less sensitive to corruptions; it achieves this by assigning small weights to occluded pixels and outliers. The most appealing aspect of this approach is that it can yield robust estimations without using the trivial templates adopted by the previous sparse tracker. By using a weighted linear least squares with non-negativity constraints at each iteration, a sparse representation of the target candidate is learned; to further improve the tracking performance, target templates are dynamically updated to capture appearance changes. In our template update mechanism, the similarity between the templates and the target candidates is measured by the earth movers’ distance(EMD). Using the largest open benchmark for visual tracking, we empirically compare two ensemble methods constructed from six state-of-the-art trackers, against the individual trackers. The proposed tracking algorithm runs in real-time, and using challenging sequences performs favorably in terms of efficiency, accuracy and robustness against state-of-the-art algorithms.
      PubDate: 2017-03-23
      DOI: 10.1007/s10472-017-9543-0
       
  • Hyper-arc consistency of polynomial constraints over finite domains using
           the modified Bernstein form
    • Authors: Federico Bergenti; Stefania Monica
      Abstract: Abstract This paper describes an algorithm to enforce hyper-arc consistency of polynomial constraints defined over finite domains. First, the paper describes the language of so called polynomial constraints over finite domains, and it introduces a canonical form for such constraints. Then, the canonical form is used to transform the problem of testing the satisfiability of a constraint in a box into the problem of studying the sign of a related polynomial function in the same box, a problem which is effectively solved by using the modified Bernstein form of polynomials. The modified Bernstein form of polynomials is briefly discussed, and the proposed hyper-arc consistency algorithm is finally detailed. The proposed algorithm is a subdivision procedure which, starting from an initial approximation of the domains of variables, removes values from domains to enforce hyper-arc consistency.
      PubDate: 2017-03-20
      DOI: 10.1007/s10472-017-9544-z
       
  • Improving machine learning in early drug discovery
    • Authors: Claus Bendtsen; Andrea Degasperi; Ernst Ahlberg; Lars Carlsson
      Abstract: Abstract The high cost for new medicines is hindering their development and machine learning is therefore being used to avoid carrying out physical experiments. Here, we present a comparison between three different machine learning approaches in a classification setting where learning and prediction follow a teaching schedule to mimic the drug discovery process. The approaches are standard SVM classification, SVM based multi-kernel classification and SVM classification based on learning using privileged information. Our two main conclusions are derived using experimental in-vitro data and compound structure descriptors. The in-vitro data is assumed to i) be completely absent in the standard SVM setting, ii) be available at all times when applying multi-kernel learning, or iii) be available as privileged information during training only. The structure descriptors are always available. One conclusion is that multi-kernel learning has higher odds than standard SVM in producing higher accuracy. The second is that learning using privileged information does not have higher odds than the standard SVM, although it may improve accuracy when the training sets are small.
      PubDate: 2017-03-18
      DOI: 10.1007/s10472-017-9541-2
       
  • Criteria of efficiency for set-valued classification
    • Authors: Vladimir Vovk; Ilia Nouretdinov; Valentina Fedorova; Ivan Petej; Alex Gammerman
      Abstract: Abstract We study optimal conformity measures for various criteria of efficiency of set-valued classification in an idealised setting. This leads to an important class of criteria of efficiency that we call probabilistic and argue for; it turns out that the most standard criteria of efficiency used in literature on conformal prediction are not probabilistic unless the problem of classification is binary. We consider both unconditional and label-conditional conformal prediction.
      PubDate: 2017-03-14
      DOI: 10.1007/s10472-017-9540-3
       
  • Foreword
    • Authors: Lisa Hellerstein; Lev Reyzin; Gyorgy Turan
      PubDate: 2016-12-13
      DOI: 10.1007/s10472-016-9533-7
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 107.22.15.235
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016