for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 889 journals)
    - APPLIED MATHEMATICS (73 journals)
    - GEOMETRY AND TOPOLOGY (20 journals)
    - MATHEMATICS (659 journals)
    - MATHEMATICS (GENERAL) (42 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (76 journals)

MATHEMATICS (659 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 3)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 8)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 25)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 8)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 5)
Advances in Difference Equations     Open Access   (Followers: 2)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 2)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 6)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 9)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Al-Jabar : Jurnal Pendidikan Matematika     Open Access  
Algebra and Logic     Hybrid Journal   (Followers: 4)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 7)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 3)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 20)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access   (Followers: 1)
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 9)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 20)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 8)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Eco Matemático     Open Access  
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 5)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 4)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)

        1 2 3 4 | Last

Journal Cover Advances in Computational Mathematics
  [SJR: 1.255]   [H-I: 44]   [15 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-9044 - ISSN (Online) 1019-7168
   Published by Springer-Verlag Homepage  [2352 journals]
  • A fractional spectral method with applications to some singular problems
    • Authors: Dianming Hou; Chuanju Xu
      Pages: 911 - 944
      Abstract: In this paper we propose and analyze fractional spectral methods for a class of integro-differential equations and fractional differential equations. The proposed methods make new use of the classical fractional polynomials, also known as Müntz polynomials. We first develop a kind of fractional Jacobi polynomials as the approximating space, and derive basic approximation results for some weighted projection operators defined in suitable weighted Sobolev spaces. We then construct efficient fractional spectral methods for some integro-differential equations which can achieve spectral accuracy for solutions with limited regularity. The main novelty of the proposed methods is that the exponential convergence can be attained for any solution u(x) with u(x 1/λ ) being smooth, where λ is a real number between 0 and 1 and it is supposed that the problem is defined in the interval (0,1). This covers a large number of problems, including integro-differential equations with weakly singular kernels, fractional differential equations, and so on. A detailed convergence analysis is carried out, and several error estimates are established. Finally a series of numerical examples are provided to verify the efficiency of the methods.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-016-9511-y
      Issue No: Vol. 43, No. 5 (2017)
       
  • A fast discrete spectral method for stochastic partial differential
           equations
    • Authors: Yanzhao Cao; Ying Jiang; Yuesheng Xu
      Pages: 973 - 998
      Abstract: The goal of this paper is to construct an efficient numerical algorithm for computing the coefficient matrix and the right hand side of the linear system resulting from the spectral Galerkin approximation of a stochastic elliptic partial differential equation. We establish that the proposed algorithm achieves an exponential convergence with requiring only O \((n\log _{2}^{d+1}n)\) number of arithmetic operations, where n is the highest degree of the one dimensional orthogonal polynomial used in the algorithm, d+1 is the number of terms in the finite Karhunen–Loéve (K-L) expansion. Numerical experiments confirm the theoretical estimates of the proposed algorithm and demonstrate its computational efficiency.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9513-4
      Issue No: Vol. 43, No. 5 (2017)
       
  • Dimension-by-dimension moment-based central Hermite WENO schemes for
           directly solving Hamilton-Jacobi equations
    • Authors: Zhanjing Tao; Jianxian Qiu
      Pages: 1023 - 1058
      Abstract: In this paper, a class of high-order central Hermite WENO (HWENO) schemes based on finite volume framework and staggered meshes is proposed for directly solving one- and two-dimensional Hamilton-Jacobi (HJ) equations. The methods involve the Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. This work can be regarded as an extension of central HWENO schemes for hyperbolic conservation laws (Tao et al. J. Comput. Phys. 318, 222–251, 2016) which combine the central scheme and the HWENO spatial reconstructions and therefore carry many features of both schemes. Generally, it is not straightforward to design a finite volume scheme to directly solve HJ equations and a key ingredient for directly solving such equations is the reconstruction of numerical Hamiltonians to guarantee the stability of methods. Benefited from the central strategy, our methods require no numerical Hamiltonians. Meanwhile, the zeroth-order and the first-order moments of the solution are involved in the spatial HWENO reconstructions which is more compact compared with WENO schemes. The reconstructions are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. A collection of one- and two- dimensional numerical examples is performed to validate high resolution and robustness of the methods in approximating the solutions of HJ equations, which involve linear, nonlinear, smooth, non-smooth, convex or non-convex Hamiltonians.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9515-2
      Issue No: Vol. 43, No. 5 (2017)
       
  • Hermite subdivision on manifolds via parallel transport
    • Authors: Caroline Moosmüller
      Pages: 1059 - 1074
      Abstract: We propose a new adaption of linear Hermite subdivision schemes to the manifold setting. Our construction is intrinsic, as it is based solely on geodesics and on the parallel transport operator of the manifold. The resulting nonlinear Hermite subdivision schemes are analyzed with respect to convergence and C 1 smoothness. Similar to previous work on manifold-valued subdivision, this analysis is carried out by proving that a so-called proximity condition is fulfilled. This condition allows to conclude convergence and smoothness properties of the manifold-valued scheme from its linear counterpart, provided that the input data are dense enough. Therefore the main part of this paper is concerned with showing that our nonlinear Hermite scheme is “close enough”, i.e., in proximity, to the linear scheme it is derived from.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9516-1
      Issue No: Vol. 43, No. 5 (2017)
       
  • Accurate calculation of spherical and vector spherical harmonic expansions
           via spectral element grids
    • Authors: Bo Wang; Li-Lian Wang; Ziqing Xie
      Abstract: We present in this paper a spectrally accurate numerical method for computing the spherical/vector spherical harmonic expansion of a function/vector field with given (elemental) nodal values on a spherical surface. Built upon suitable analytic formulas for dealing with the involved highly oscillatory integrands, the method is robust for high mode expansions. We apply the numerical method to the simulation of three-dimensional acoustic and electromagnetic multiple scattering problems. Various numerical evidences show that the high accuracy can be achieved within reasonable computational time. This also paves the way for spectral-element discretization of 3D scattering problems reduced by spherical transparent boundary conditions based on the Dirichlet-to-Neumann map.
      PubDate: 2017-11-08
      DOI: 10.1007/s10444-017-9569-1
       
  • Analysis of linearized Galerkin-mixed FEMs for the time-dependent
           Ginzburg-Landau equations of superconductivity
    • Authors: Huadong Gao; Weiwei Sun
      Abstract: A linearized backward Euler Galerkin-mixed finite element method is investigated for the time-dependent Ginzburg-Landau (TDGL) equations under the Lorentz gauge. By introducing the induced magnetic field σ = c u r l A as a new variable, the Galerkin-mixed FE scheme offers many advantages over conventional Lagrange type Galerkin FEMs. An optimal error estimate for the linearized Galerkin-mixed FE scheme is established unconditionally. Analysis is given under more general assumptions for the regularity of the solution of the TDGL equations, which includes the problem in two-dimensional nonconvex polygons and certain three dimensional polyhedrons, while the conventional Galerkin FEMs may not converge to a true solution in these cases. Numerical examples in both two and three dimensional spaces are presented to confirm our theoretical analysis. Numerical results show clearly the efficiency of the mixed method, particularly for problems on nonconvex domains.
      PubDate: 2017-11-07
      DOI: 10.1007/s10444-017-9568-2
       
  • Convergence analysis of the direct extension of ADMM for multiple-block
           separable convex minimization
    • Authors: Min Tao; Xiaoming Yuan
      Abstract: Recently, the alternating direction method of multipliers (ADMM) has found many efficient applications in various areas; and it has been shown that the convergence is not guaranteed when it is directly extended to the multiple-block case of separable convex minimization problems where there are m ≥ 3 functions without coupled variables in the objective. This fact has given great impetus to investigate various conditions on both the model and the algorithm’s parameter that can ensure the convergence of the direct extension of ADMM (abbreviated as “e-ADMM”). Despite some results under very strong conditions (e.g., at least (m − 1) functions should be strongly convex) that are applicable to the generic case with a general m, some others concentrate on the special case of m = 3 under the relatively milder condition that only one function is assumed to be strongly convex. We focus on extending the convergence analysis from the case of m = 3 to the more general case of m ≥ 3. That is, we show the convergence of e-ADMM for the case of m ≥ 3 with the assumption of only (m − 2) functions being strongly convex; and establish its convergence rates in different scenarios such as the worst-case convergence rates measured by iteration complexity and the globally linear convergence rate under stronger assumptions. Thus the convergence of e-ADMM for the general case of m ≥ 4 is proved; this result seems to be still unknown even though it is intuitive given the known result of the case of m = 3. Even for the special case of m = 3, our convergence results turn out to be more general than the existing results that are derived specifically for the case of m = 3.
      PubDate: 2017-10-13
      DOI: 10.1007/s10444-017-9560-x
       
  • Coercivity results of a modified Q 1 -finite volume element scheme for
           anisotropic diffusion problems
    • Authors: Qi Hong; Jiming Wu
      Abstract: In this paper, we study a so-called modified Q 1-finite volume element scheme that is obtained by employing the trapezoidal rule to approximate the line integrals in the classical Q 1-finite volume element method. A necessary and sufficient condition is obtained for the positive definiteness of a certain element stiffness matrix. Based on this result, a sufficient condition is suggested to guarantee the coercivity of the scheme on arbitrary convex quadrilateral meshes. When the diffusion tensor is an identity matrix, this sufficient condition reduces to a geometric one, covering some standard meshes, such as the traditional h 1+γ -parallelogram meshes and some trapezoidal meshes. More interesting is that, this sufficient condition has explicit expression, by which one can easily judge on any diffusion tensor and any mesh with any mesh size h > 0. The H 1 error estimate of the modified Q 1-finite volume element scheme is obtained without the traditional h 1+γ -parallelogram assumption. Some numerical experiments are carried out to validate the theoretical analysis.
      PubDate: 2017-10-12
      DOI: 10.1007/s10444-017-9567-3
       
  • The spectral collocation method for efficiently solving PDEs with
           fractional Laplacian
    • Authors: Hong Lu; Peter W. Bates; Wenping Chen; Mingji Zhang
      Abstract: We derive a spectral collocation approximation to the fractional Laplacian operator based on the Riemann-Liouville fractional derivative operators on a bounded domain Ω = [a, b]. Corresponding matrix representations of (−△) α/2 for α ∈ (0,1) and α ∈ (1,2) are obtained. A space-fractional advection-dispersion equation is then solved to investigate the numerical performance of this method under various choices of parameters. It turns out that the proposed method has high accuracy and is efficient for solving these space-fractional advection-dispersion equations when the forcing term is smooth.
      PubDate: 2017-10-09
      DOI: 10.1007/s10444-017-9564-6
       
  • Erratum to: a posteriori stabilized sixth-order finite volume scheme for
           one-dimensional steady-state hyperbolic equations
    • Authors: Stéphane Clain; Raphaël Loubère; Gaspar J. Machado
      Abstract: During typesetting, Figs. 8 and 21 got corrupted and the images shown in the online published version are not correct. The original publication was updated.
      PubDate: 2017-10-07
      DOI: 10.1007/s10444-017-9563-7
       
  • Multiobjective PDE-constrained optimization using the reduced-basis method
    • Authors: L. Iapichino; S. Ulbrich; S. Volkwein
      Abstract: In this paper the reduced basis (RB) method is applied to solve quadratic multiobjective optimal control problems governed by linear parametrized variational equations. These problems often arise in applications, where the quality of the system behavior has to be measured by more than one criterium. The weighted sum method is exploited for defining scalar-valued linear-quadratic optimal control problems built by introducing additional optimization parameters. The optimal controls corresponding to specific choices of the optimization parameters are efficiently computed by the RB method. The accuracy is guaranteed by an a-posteriori error estimate. An effective sensitivity analysis allows to further reduce the computational times for identifying a suitable and representative set of optimal controls.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-016-9512-x
       
  • Improved maximum-norm a posteriori error estimates for linear and
           semilinear parabolic equations
    • Authors: Natalia Kopteva; Torsten Linß
      Abstract: Linear and semilinear second-order parabolic equations are considered. For these equations, we give a posteriori error estimates in the maximum norm that improve upon recent results in the literature. In particular it is shown that logarithmic dependence on the time step size can be eliminated. Semidiscrete and fully discrete versions of the backward Euler and of the Crank-Nicolson methods are considered. For their full discretizations, we use elliptic reconstructions that are, respectively, piecewise-constant and piecewise-linear in time. Certain bounds for the Green’s function of the parabolic operator are also employed.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9514-3
       
  • Families of univariate and bivariate subdivision schemes originated from
           quartic B-spline
    • Authors: Ghulam Mustafa; Rabia Hameed
      Abstract: Families of parameter dependent univariate and bivariate subdivision schemes are presented in this paper. These families are new variants of the Lane-Riesenfeld algorithm. So the subdivision algorithms consist of both refining and smoothing steps. In refining step, we use the quartic B-spline based subdivision schemes. In smoothing step, we average the adjacent points. The bivariate schemes are the non-tensor product version of our univariate schemes. Moreover, for odd and even number of smoothing steps, we get the primal and dual schemes respectively. Higher regularity of the schemes can be achieved by increasing the number of smoothing steps. These schemes can be nicely generalized to contain local shape parameters that allow the user to adjust locally the shape of the limit curve/surface.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9519-y
       
  • A well-balanced van Leer-type numerical scheme for shallow water equations
           with variable topography
    • Authors: Dao Huy Cuong; Mai Duc Thanh
      Abstract: A well-balanced van Leer-type numerical scheme for the shallow water equations with variable topography is presented. The model involves a nonconservative term, which often makes standard schemes difficult to approximate solutions in certain regions. The construction of our scheme is based on exact solutions in computational form of local Riemann problems. Numerical tests are conducted, where comparisons between this van Leer-type scheme and a Godunov-type scheme are provided. Data for the tests are taken in both the subcritical region as well as supercritical region. Especially, tests for resonant cases where the exact solutions contain coinciding waves are also investigated. All numerical tests show that each of these two methods can give a good accuracy, while the van Leer -type scheme gives a better accuracy than the Godunov-type scheme. Furthermore, it is shown that the van Leer-type scheme is also well-balanced in the sense that it can capture exactly stationary contact discontinuity waves.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9521-4
       
  • Second kind boundary integral equation for multi-subdomain diffusion
           problems
    • Authors: X. Claeys; R. Hiptmair; E. Spindler
      Abstract: We consider isotropic scalar diffusion boundary value problems whose diffusion coefficients are piecewise constant with respect to a partition of space into Lipschitz subdomains. We allow so-called material junctions where three or more subdomains may abut. We derive a boundary integral equation of the second kind posed on the skeleton of the subdomain partition that involves, as unknown, only one trace function at each point of each interface. We prove the well-posedness of the corresponding boundary integral equations. We also report numerical tests for Galerkin boundary element discretisations, in which the new approach proves to be highly competitive compared to the well-established first kind direct single-trace boundary integral formulation. In particular, GMRES seems to enjoy fast convergence independent of the mesh resolution for the discrete second kind BIE.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9517-0
       
  • Parameter-uniform numerical method for singularly perturbed
           convection-diffusion problem on a circular domain
    • Authors: A. F. Hegarty; E. O’Riordan
      Abstract: A linear singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain is examined. Regularity constraints are imposed on the data in the vicinity of the two characteristic points. The solution is decomposed into a regular and a singular component. A priori parameter-explicit pointwise bounds on the partial derivatives of these components are established. By transforming to polar co-ordinates, a monotone finite difference method is constructed on a piecewise-uniform layer-adapted mesh of Shishkin type. Numerical analysis is presented for this monotone numerical method. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-016-9510-z
       
  • A study of the influence of center conditions on the domain of parameters
           of Newton’s method by using recurrence relations
    • Authors: J. A. Ezquerro; M. A. Hernández-Verón
      Abstract: This paper focuses on the importance of center conditions on the first derivative of the operator involved in the solution of nonlinear equations by Newton’s method when the semilocal convergence of the method is established from the technique of recurrence relations.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9518-z
       
  • Construction and analysis of higher order variational integrators for
           dynamical systems with holonomic constraints
    • Authors: Theresa Wenger; Sina Ober-Blöbaum; Sigrid Leyendecker
      Abstract: In this work, variational integrators of higher order for dynamical systems with holonomic constraints are constructed and analyzed. The construction is based on approximating the configuration and the Lagrange multiplier via different polynomials. The splitting of the augmented Lagrangian in two parts enables the use of different quadrature formulas to approximate the integral of each part. Conditions are derived that ensure the linear independence of the higher order constrained discrete Euler-Lagrange equations and stiff accuracy. Time reversibility is investigated for the discrete flow on configuration level only as for the flow on configuration and momentum level. The fulfillment of the hidden constraints plays an important role for the time reversibility of the presented integrators. The order of convergence is investigated numerically. Order reduction of the momentum and the Lagrange multiplier compared to the order of the configuration occurs in general, but can be avoided by fulfilling the hidden constraints in a simple post processing step. Regarding efficiency versus accuracy a numerical analysis yields that higher orders increase the accuracy of the discrete solution substantially while the computational costs decrease. A comparison to the constrained Galerkin methods in Marsden and West (Acta Numerica 10, 357–514 2001) and the symplectic SPARK integrators of Jay (SIAM Journal on Numerical Analysis 45(5), 1814–1842 2007) reveals that the approach presented here is more general and thus allows for more flexibility in the design of the integrator.
      PubDate: 2017-10-01
      DOI: 10.1007/s10444-017-9520-5
       
  • Real phase retrieval from unordered partial frame coefficients
    • Authors: Fusheng Lv; Wenchang Sun
      Abstract: We study the signal recovery from unordered partial phaseless frame coefficients. To this end, we introduce the concepts of m-erasure (almost) phase retrievable frames. We show that with an m-erasure (almost) phase retrievable frame, it is possible to reconstruct (almost) all n-dimensional real signals up to a sign from their arbitrary N − m unordered phaseless frame coefficients, where N stands for the element number of the frame. We give necessary and sufficient conditions for a frame to be m-erasure (almost) phase retrievable. Moreover, we give an explicit construction of such frames based on prime numbers.
      PubDate: 2017-09-30
      DOI: 10.1007/s10444-017-9566-4
       
  • High-precision computation of the confluent hypergeometric functions via
           Franklin-Friedman expansion
    • Authors: Guillermo Navas-Palencia
      Abstract: We present a method of high-precision computation of the confluent hypergeometric functions using an effective computational approach of what we termed Franklin-Friedman expansions. These expansions are convergent under mild conditions of the involved amplitude function and for some interesting cases the coefficients can be rapidly computed, thus providing a viable alternative to the conventional dichotomy between series expansion and asymptotic expansion. The present method has been extensively tested in different regimes of the parameters and compared with recently investigated convergent and uniform asymptotic expansions.
      PubDate: 2017-09-25
      DOI: 10.1007/s10444-017-9565-5
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.196.2.131
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016