for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 874 journals)
    - APPLIED MATHEMATICS (71 journals)
    - GEOMETRY AND TOPOLOGY (19 journals)
    - MATHEMATICS (647 journals)
    - MATHEMATICS (GENERAL) (41 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (77 journals)

MATHEMATICS (647 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 3)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 2)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 7)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 4)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 1)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 6)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 5)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 7)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 3)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 9)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 3)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 4)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 8)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access  
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 2)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 18)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
BIBECHANA     Open Access  
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 7)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 17)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 2)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 12)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 29)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 7)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 4)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 3)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)
Formalized Mathematics     Open Access   (Followers: 2)
Foundations and Trends® in Econometrics     Full-text available via subscription   (Followers: 4)

        1 2 3 4 | Last

Journal Cover Computational Optimization and Applications
  [SJR: 1.481]   [H-I: 54]   [7 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-2894 - ISSN (Online) 0926-6003
   Published by Springer-Verlag Homepage  [2345 journals]
  • Forward–backward quasi-Newton methods for nonsmooth optimization
           problems
    • Authors: Lorenzo Stella; Andreas Themelis; Panagiotis Patrinos
      Pages: 443 - 487
      Abstract: The forward–backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward–backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward–backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka–Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9912-y
      Issue No: Vol. 67, No. 3 (2017)
       
  • Further properties of the forward–backward envelope with applications to
           difference-of-convex programming
    • Authors: Tianxiang Liu; Ting Kei Pong
      Pages: 489 - 520
      Abstract: In this paper, we further study the forward–backward envelope first introduced in Patrinos and Bemporad (Proceedings of the IEEE Conference on Decision and Control, pp 2358–2363, 2013) and Stella et al. (Comput Optim Appl, doi:10.1007/s10589-017-9912-y, 2017) for problems whose objective is the sum of a proper closed convex function and a twice continuously differentiable possibly nonconvex function with Lipschitz continuous gradient. We derive sufficient conditions on the original problem for the corresponding forward–backward envelope to be a level-bounded and Kurdyka–Łojasiewicz function with an exponent of \(\frac{1}{2}\) ; these results are important for the efficient minimization of the forward–backward envelope by classical optimization algorithms. In addition, we demonstrate how to minimize some difference-of-convex regularized least squares problems by minimizing a suitably constructed forward–backward envelope. Our preliminary numerical results on randomly generated instances of large-scale \(\ell _{1-2}\) regularized least squares problems (Yin et al. in SIAM J Sci Comput 37:A536–A563, 2015) illustrate that an implementation of this approach with a limited-memory BFGS scheme usually outperforms standard first-order methods such as the nonmonotone proximal gradient method in Wright et al. (IEEE Trans Signal Process 57:2479–2493, 2009).
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9900-2
      Issue No: Vol. 67, No. 3 (2017)
       
  • Total variation image deblurring with space-varying kernel
    • Authors: Daniel O’Connor; Lieven Vandenberghe
      Pages: 521 - 541
      Abstract: Image deblurring techniques based on convex optimization formulations, such as total-variation deblurring, often use specialized first-order methods for large-scale nondifferentiable optimization. A key property exploited in these methods is spatial invariance of the blurring operator, which makes it possible to use the fast Fourier transform (FFT) when solving linear equations involving the operator. In this paper we extend this approach to two popular models for space-varying blurring operators, the Nagy–O’Leary model and the efficient filter flow model. We show how splitting methods derived from the Douglas–Rachford algorithm can be implemented with a low complexity per iteration, dominated by a small number of FFTs.
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9901-1
      Issue No: Vol. 67, No. 3 (2017)
       
  • $$S_{1/2}$$ S 1 / 2 regularization methods and fixed point algorithms for
           affine rank minimization problems
    • Authors: Dingtao Peng; Naihua Xiu; Jian Yu
      Pages: 543 - 569
      Abstract: The affine rank minimization problem is to minimize the rank of a matrix under linear constraints. It has many applications in various areas such as statistics, control, system identification and machine learning. Unlike the literatures which use the nuclear norm or the general Schatten \(q~ (0<q<1)\) quasi-norm to approximate the rank of a matrix, in this paper we use the Schatten 1 / 2 quasi-norm approximation which is a better approximation than the nuclear norm but leads to a nonconvex, nonsmooth and non-Lipschitz optimization problem. It is important that we give a global necessary optimality condition for the \(S_{1/2}\) regularization problem by virtue of the special objective function. This is very different from the local optimality conditions usually used for the general \(S_q\) regularization problems. Explicitly, the global necessary optimality condition for the \(S_{1/2}\) regularization problem is a fixed point inclusion associated with the singular value half thresholding operator. Naturally, we propose a fixed point iterative scheme for the problem. We also provide the convergence analysis of this iteration. By discussing the location and setting of the optimal regularization parameter as well as using an approximate singular value decomposition procedure, we get a very efficient algorithm, half norm fixed point algorithm with an approximate SVD (HFPA algorithm), for the \(S_{1/2}\) regularization problem. Numerical experiments on randomly generated and real matrix completion problems are presented to demonstrate the effectiveness of the proposed algorithm.
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9898-5
      Issue No: Vol. 67, No. 3 (2017)
       
  • New subgradient extragradient methods for common solutions to equilibrium
           problems
    • Authors: Dang Van Hieu
      Pages: 571 - 594
      Abstract: In this paper, three parallel hybrid subgradient extragradient algorithms are proposed for finding a common solution of a finite family of equilibrium problems in Hilbert spaces. The proposed algorithms originate from previously known results for variational inequalities and can be considered as modifications of extragradient methods for equilibrium problems. Theorems of strong convergence are established under the standard assumptions imposed on bifunctions. Some numerical experiments are given to illustrate the convergence of the new algorithms and to compare their behavior with other algorithms.
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9899-4
      Issue No: Vol. 67, No. 3 (2017)
       
  • Generalized Krasnoselskii–Mann-type iterations for nonexpansive
           mappings in Hilbert spaces
    • Authors: Christian Kanzow; Yekini Shehu
      Pages: 595 - 620
      Abstract: The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii–Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong convergence for a modified inexact Krasnoselskii–Mann iteration under suitable assumptions. The convergence results generalize existing ones from the literature. Applications are given to the Douglas–Rachford splitting method, the Fermat–Weber location problem as well as the alternating projection method by John von Neumann.
      PubDate: 2017-07-01
      DOI: 10.1007/s10589-017-9902-0
      Issue No: Vol. 67, No. 3 (2017)
       
  • Second-order orthant-based methods with enriched Hessian information for
           sparse $$\ell _1$$ ℓ 1 -optimization
    • Authors: J. C. De Los Reyes; E. Loayza; P. Merino
      Pages: 225 - 258
      Abstract: We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing \(\ell _1\) -norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the \(\ell _1\) -norm. The weak second order information behind the \(\ell _1\) -term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9891-z
      Issue No: Vol. 67, No. 2 (2017)
       
  • Local and global convergence of a general inertial proximal splitting
           scheme for minimizing composite functions
    • Authors: Patrick R. Johnstone; Pierre Moulin
      Pages: 259 - 292
      Abstract: This paper is concerned with convex composite minimization problems in a Hilbert space. In these problems, the objective is the sum of two closed, proper, and convex functions where one is smooth and the other admits a computationally inexpensive proximal operator. We analyze a family of generalized inertial proximal splitting algorithms (GIPSA) for solving such problems. We establish weak convergence of the generated sequence when the minimum is attained. Our analysis unifies and extends several previous results. We then focus on \(\ell _1\) -regularized optimization, which is the ubiquitous special case where the nonsmooth term is the \(\ell _1\) -norm. For certain parameter choices, GIPSA is amenable to a local analysis for this problem. For these choices we show that GIPSA achieves finite “active manifold identification”, i.e. convergence in a finite number of iterations to the optimal support and sign, after which GIPSA reduces to minimizing a local smooth function. We prove local linear convergence under either restricted strong convexity or a strict complementarity condition. We determine the rate in terms of the inertia, stepsize, and local curvature. Our local analysis is applicable to certain recent variants of the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA), for which we establish active manifold identification and local linear convergence. Based on our analysis we propose a momentum restart scheme in these FISTA variants to obtain the optimal local linear convergence rate while maintaining desirable global properties.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9896-7
      Issue No: Vol. 67, No. 2 (2017)
       
  • Branch-and-price for p -cluster editing
    • Authors: Teobaldo Bulhões; Anand Subramanian; Gilberto F. Sousa Filho; Lucídio dos Anjos F. Cabral
      Pages: 293 - 316
      Abstract: Given an input graph, the p-cluster editing problem consists of minimizing the number of editions, i.e., additions and/or deletions of edges, so as to create p vertex-disjoint cliques (clusters). In order to solve this \({\mathscr {NP}}\) -hard problem, we propose a branch-and-price algorithm over a set partitioning based formulation with exponential number of variables. We show that this formulation theoretically dominates the best known formulation for the problem. Moreover, we compare the performance of three mathematical formulations for the pricing subproblem, which is strongly \({\mathscr {NP}}\) -hard. A heuristic algorithm is also proposed to speedup the column generation procedure. We report improved bounds for benchmark instances available in the literature.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9893-x
      Issue No: Vol. 67, No. 2 (2017)
       
  • Solving nearly-separable quadratic optimization problems as nonsmooth
           equations
    • Authors: Frank E. Curtis; Arvind U. Raghunathan
      Pages: 317 - 360
      Abstract: An algorithm for solving nearly-separable quadratic optimization problems (QPs) is presented. The approach is based on applying a semismooth Newton method to solve the implicit complementarity problem arising as the first-order stationarity conditions of such a QP. An important feature of the approach is that, as in dual decomposition methods, separability of the dual function of the QP can be exploited in the search direction computation. Global convergence of the method is promoted by enforcing decrease in component(s) of a Fischer–Burmeister formulation of the complementarity conditions, either via a merit function or through a filter mechanism. The results of numerical experiments when solving convex and nonconvex instances are provided to illustrate the efficacy of the method.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9895-8
      Issue No: Vol. 67, No. 2 (2017)
       
  • An SQP method for mathematical programs with vanishing constraints with
           strong convergence properties
    • Authors: Matúš Benko; Helmut Gfrerer
      Pages: 361 - 399
      Abstract: We propose an SQP algorithm for mathematical programs with vanishing constraints which solves at each iteration a quadratic program with linear vanishing constraints. The algorithm is based on the newly developed concept of \({\mathcal {Q}}\) -stationarity (Benko and Gfrerer in Optimization 66(1):61–92, 2017). We demonstrate how \({\mathcal {Q}}_M\) -stationary solutions of the quadratic program can be obtained. We show that all limit points of the sequence of iterates generated by the basic SQP method are at least M-stationary and by some extension of the method we also guarantee the stronger property of \({\mathcal {Q}}_M\) -stationarity of the limit points.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9894-9
      Issue No: Vol. 67, No. 2 (2017)
       
  • $$L^1$$ L 1 penalization of volumetric dose objectives in optimal control
           of PDEs
    • Authors: Richard C. Barnard; Christian Clason
      Pages: 401 - 419
      Abstract: This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on \(L^1\) penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parameter tends to infinity, and present a semismooth Newton method for their efficient numerical solution. The performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9897-6
      Issue No: Vol. 67, No. 2 (2017)
       
  • Visualization of the $$\varepsilon $$ ε -subdifferential of piecewise
           linear–quadratic functions
    • Authors: Anuj Bajaj; Warren Hare; Yves Lucet
      Pages: 421 - 442
      Abstract: Computing explicitly the \(\varepsilon \) -subdifferential of a proper function amounts to computing the level set of a convex function namely the conjugate minus a linear function. The resulting theoretical algorithm is applied to the the class of (convex univariate) piecewise linear–quadratic functions for which existing numerical libraries allow practical computations. We visualize the results in a primal, dual, and subdifferential views through several numerical examples. We also provide a visualization of the Brøndsted–Rockafellar theorem.
      PubDate: 2017-06-01
      DOI: 10.1007/s10589-017-9892-y
      Issue No: Vol. 67, No. 2 (2017)
       
  • Error estimates for integral constraint regularization of
           state-constrained elliptic control problems
    • Authors: B. Jadamba; A. Khan; M. Sama
      Pages: 39 - 71
      Abstract: In this paper, we study new aspects of the integral contraint regularization of state-constrained elliptic control problems (Jadamba et al. in Syst Control Lett 61(6):707–713, 2012). Besides giving new results on the regularity and the convergence of the regularized controls and associated Lagrange multipliers, the main objective of this paper is to give abstract error estimates for the regularization error. We also consider a discretization of the regularized problems and derive numerical estimates which are uniform with respect to the regularization parameter and the discretization parameter. As an application of these results, we prove that this discretization is indeed a full discretization of the original problem defined in terms of a problem with finitely many integral constraints. Detailed numerical results justifying the theoretical findings as well as a comparison of our work with the existing literature is also given.
      PubDate: 2017-05-01
      DOI: 10.1007/s10589-016-9885-2
      Issue No: Vol. 67, No. 1 (2017)
       
  • A new approach for finding a basis for the splitting preconditioner for
           linear systems from interior point methods
    • Authors: Porfirio Suñagua; Aurelio R. L. Oliveira
      Pages: 111 - 127
      Abstract: The class of splitting preconditioners for the iterative solution of linear systems arising from Mehrotra’s predictor-corrector method for large scale linear programming problems needs to find a basis through a sophisticated process based on the application of a rectangular LU factorization. This class of splitting preconditioners works better near a solution of the linear programming problem when the matrices are highly ill-conditioned. In this study, we develop and implement a new approach to find a basis for the splitting preconditioner, based on standard rectangular LU factorization with partial permutation of the scaled transpose linear programming constraint matrix. In most cases, this basis is better conditioned than the existing one. In addition, we include a penalty parameter in Mehrotra’s predictor-corrector method in order to reduce ill-conditioning of the normal equations matrix. Computational experiments show a reduction in the average number of iterations of the preconditioned conjugate gradient method. Also, the increased efficiency and robustness of the new approach become evident by the performance profile.
      PubDate: 2017-05-01
      DOI: 10.1007/s10589-016-9887-0
      Issue No: Vol. 67, No. 1 (2017)
       
  • On merit functions for p -order cone complementarity problem
    • Authors: Xin-He Miao; Yu-Lin Chang; Jein-Shan Chen
      Pages: 155 - 173
      Abstract: Merit function approach is a popular method to deal with complementarity problems, in which the complementarity problem is recast as an unconstrained minimization via merit function or complementarity function. In this paper, for the complementarity problem associated with p-order cone, which is a type of nonsymmetric cone complementarity problem, we show the readers how to construct merit functions for solving p-order cone complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also assert that these merit functions provide an error bound for the p-order cone complementarity problem. These results build up a theoretical basis for the merit method for solving p-order cone complementarity problem.
      PubDate: 2017-05-01
      DOI: 10.1007/s10589-016-9889-y
      Issue No: Vol. 67, No. 1 (2017)
       
  • Analysis on Newton projection method for the split feasibility problem
    • Authors: Biao Qu; Changyu Wang; Naihua Xiu
      Pages: 175 - 199
      Abstract: In this paper, based on a merit function of the split feasibility problem (SFP), we present a Newton projection method for solving it and analyze the convergence properties of the method. The merit function is differentiable and convex. But its gradient is a linear composite function of the projection operator, so it is nonsmooth in general. We prove that the sequence of iterates converges globally to a solution of the SFP as long as the regularization parameter matrix in the algorithm is chosen properly. Especially, under some local assumptions which are necessary for the case where the projection operator is nonsmooth, we prove that the sequence of iterates generated by the algorithm superlinearly converges to a regular solution of the SFP. Finally, some numerical results are presented.
      PubDate: 2017-05-01
      DOI: 10.1007/s10589-016-9884-3
      Issue No: Vol. 67, No. 1 (2017)
       
  • A generalized elastic net regularization with smoothed $$\ell _{q}$$ ℓ q
           penalty for sparse vector recovery
    • Authors: Yong Zhang; Wanzhou Ye; Jianjun Zhang
      Abstract: In this paper, we propose an iterative algorithm for solving the generalized elastic net regularization problem with smoothed \(\ell _{q} (0<q \le 1)\) penalty for recovering sparse vectors. We prove the convergence result of the algorithm based on the algebraic method. Under certain conditions, we show that the iterative solutions converge to a local minimizer of the generalized elastic net regularization problem and we also present an error bound. Theoretical analysis and numerical results show that the proposed algorithm is promising.
      PubDate: 2017-05-18
      DOI: 10.1007/s10589-017-9916-7
       
  • Peaceman–Rachford splitting for a class of nonconvex optimization
           problems
    • Authors: Guoyin Li; Tianxiang Liu; Ting Kei Pong
      Abstract: We study the applicability of the Peaceman–Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is computable, then any cluster point of the sequence generated, if exists, will give a stationary point of the optimization problem. We also give sufficient conditions guaranteeing boundedness of the sequence generated. We then discuss one way to split the objective so that the proposed method can be suitably applied to solving optimization problems with a coercive objective that is the sum of a (not necessarily strongly) convex Lipschitz differentiable function and a proper closed function; this setting covers a large class of nonconvex feasibility problems and constrained least squares problems. Finally, we illustrate the proposed algorithm numerically.
      PubDate: 2017-05-13
      DOI: 10.1007/s10589-017-9915-8
       
  • An exact algorithm for a resource allocation problem in mobile wireless
           communications
    • Authors: Adam N. Letchford; Qiang Ni; Zhaoyu Zhong
      Abstract: We consider a challenging resource allocation problem arising in mobile wireless communications. The goal is to allocate the available channels and power in a so-called OFDMA system, in order to maximise the transmission rate, subject to quality of service constraints. Standard MINLP software struggled to solve even small instances of this problem. Using outer approximation, perspective cuts and several implementation “tricks”, we are able to solve realistic instances in about one minute. A novel ingredient of our algorithm is what we call pre-emptive cut generation: the generation of cutting planes that are not violated in the current iteration, but are likely to be violated in subsequent iterations.
      PubDate: 2017-05-05
      DOI: 10.1007/s10589-017-9914-9
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.92.133.186
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016