for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 864 journals)
    - APPLIED MATHEMATICS (68 journals)
    - GEOMETRY AND TOPOLOGY (19 journals)
    - MATHEMATICS (643 journals)
    - MATHEMATICS (GENERAL) (40 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (75 journals)

MATHEMATICS (643 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 3)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 2)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 6)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 20)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 10)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 4)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 4)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 1)
Advances in Materials Sciences     Open Access   (Followers: 15)
Advances in Mathematical Physics     Open Access   (Followers: 6)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 3)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 5)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 7)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 2)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 9)
Algorithms Research     Open Access  
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 3)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 4)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 8)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Numerical Analysis & Computational Mathematics     Hybrid Journal   (Followers: 5)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 2)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 17)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 6)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 1)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
BIBECHANA     Open Access  
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 19)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 5)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 2)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 18)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CAUCHY     Open Access   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 12)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 7)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 4)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 4)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 3)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)
Formalized Mathematics     Open Access   (Followers: 2)

        1 2 3 4 | Last

Journal Cover Computational Optimization and Applications
  [SJR: 1.481]   [H-I: 54]   [7 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-2894 - ISSN (Online) 0926-6003
   Published by Springer-Verlag Homepage  [2335 journals]
  • Structured regularization for barrier NLP solvers
    • Authors: Wei Wan; Lorenz T. Biegler
      Pages: 401 - 424
      Abstract: Abstract Barrier methods have led to several nonlinear programming (NLP) solvers (e.g. IPOPT, KNITRO, LOQO). However, certain regularity conditions are required for convergence of these methods. These conditions are violated for optimization models with dependent constraints, thus leading to method failure. These shortcomings can be identified by checking the inertia of the KKT matrix, and current solvers either add regularizing terms to correct the inertia of the KKT matrix or revert to more expensive trust region methods to solve the barrier problem. This study improves on these approaches with a new structured regularization strategy; within the Newton step it identifies an independent subset of equality constraints and removes the remaining constraints without modifying the KKT matrix structure. This approach leads to more accurate Newton steps and faster convergence, while maintaining global convergence properties. Implemented in IPOPT with linear solvers HSL_MA57, HSL_MA97 and MUMPS, we present numerical experiments on hundreds of examples from the CUTEr test set, modified for dependency. These results show an average reduction in iterations of more than 50 % over the current version of IPOPT. In addition, several nonlinear blending problems are solved with the proposed algorithm, and improvements over existing regularization strategies are further demonstrated.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9880-7
      Issue No: Vol. 66, No. 3 (2017)
       
  • Adaptive smoothing algorithms for nonsmooth composite convex minimization
    • Authors: Quoc Tran-Dinh
      Pages: 425 - 451
      Abstract: Abstract We propose an adaptive smoothing algorithm based on Nesterov’s smoothing technique in Nesterov (Math Prog 103(1):127–152, 2005) for solving “fully” nonsmooth composite convex optimization problems. Our method combines both Nesterov’s accelerated proximal gradient scheme and a new homotopy strategy for smoothness parameter. By an appropriate choice of smoothing functions, we develop a new algorithm that has the \(\mathcal {O}\left( \frac{1}{\varepsilon }\right) \) -worst-case iteration-complexity while preserves the same complexity-per-iteration as in Nesterov’s method and allows one to automatically update the smoothness parameter at each iteration. Then, we customize our algorithm to solve four special cases that cover various applications. We also specify our algorithm to solve constrained convex optimization problems and show its convergence guarantee on a primal sequence of iterates. We demonstrate our algorithm through three numerical examples and compare it with other related algorithms.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9873-6
      Issue No: Vol. 66, No. 3 (2017)
       
  • A robust Lagrangian-DNN method for a class of quadratic optimization
           problems
    • Authors: Naohiko Arima; Sunyoung Kim; Masakazu Kojima; Kim-Chuan Toh
      Pages: 453 - 479
      Abstract: Abstract The Lagrangian-doubly nonnegative (DNN) relaxation has recently been shown to provide effective lower bounds for a large class of nonconvex quadratic optimization problems (QAPs) using the bisection method combined with first-order methods by Kim et al. (Math Program 156:161–187, 2016). While the bisection method has demonstrated the computational efficiency, determining the validity of a computed lower bound for the QOP depends on a prescribed parameter \(\epsilon > 0\) . To improve the performance of the bisection method for the Lagrangian-DNN relaxation, we propose a new technique that guarantees the validity of the computed lower bound at each iteration of the bisection method for any choice of \(\epsilon > 0\) . It also accelerates the bisection method. Moreover, we present a method to retrieve a primal-dual pair of optimal solutions of the Lagrangian-DNN relaxation using the primal-dual interior-point method. As a result, the method provides a better lower bound and substantially increases the robustness as well as the effectiveness of the bisection method. Computational results on binary QOPs, multiple knapsack problems, maximal stable set problems, and quadratic assignment problems illustrate the robustness of the proposed method. In particular, a tight bound for QAPs with size \(n=50\) could be obtained.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9879-0
      Issue No: Vol. 66, No. 3 (2017)
       
  • Partitioned quasi-Newton methods for sparse nonlinear equations
    • Authors: Hui-Ping Cao; Dong-Hui Li
      Pages: 481 - 505
      Abstract: Abstract In this paper, we present two partitioned quasi-Newton methods for solving partially separable nonlinear equations. When the Jacobian is not available, we propose a partitioned Broyden’s rank one method and show that the full step partitioned Broyden’s rank one method is locally and superlinearly convergent. By using a well-defined derivative-free line search, we globalize the method and establish its global and superlinear convergence. In the case where the Jacobian is available, we propose a partitioned adjoint Broyden method and show its global and superlinear convergence. We also present some preliminary numerical results. The results show that the two partitioned quasi-Newton methods are effective and competitive for solving large-scale partially separable nonlinear equations.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9878-1
      Issue No: Vol. 66, No. 3 (2017)
       
  • A nonmonotone Jacobian smoothing inexact Newton method for NCP
    • Authors: Sanja Rapajić; Zoltan Papp
      Pages: 507 - 532
      Abstract: Abstract In this paper we propose Jacobian smoothing inexact Newton method for nonlinear complementarity problems (NCP) with derivative-free nonmonotone line search. This nonmonotone line search technique ensures globalization and is a combination of Grippo-Lampariello-Lucidi (GLL) and Li-Fukushima (LF) strategies, with the aim to take into account their advantages. The method is based on very well known Fischer-Burmeister reformulation of NCP and its smoothing Kanzow’s approximation. The mixed Newton equation, which combines the semismooth function with the Jacobian of its smooth operator, is solved approximately in every iteration, so the method belongs to the class of Jacobian smoothing inexact Newton methods. The inexact search direction is not in general a descent direction and this is the reason why nonmonotone scheme is used for globalization. Global convergence and local superlinear convergence of method are proved. Numerical performances are also analyzed and point out that high level of nonmonotonicity of this line search rule enables robust and efficient method.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9881-6
      Issue No: Vol. 66, No. 3 (2017)
       
  • Quasi-Newton smoothed functional algorithms for unconstrained and
           constrained simulation optimization
    • Authors: K. Lakshmanan; Shalabh Bhatnagar
      Pages: 533 - 556
      Abstract: Abstract We propose a multi-time scale quasi-Newton based smoothed functional (QN-SF) algorithm for stochastic optimization both with and without inequality constraints. The algorithm combines the smoothed functional (SF) scheme for estimating the gradient with the quasi-Newton method to solve the optimization problem. Newton algorithms typically update the Hessian at each instant and subsequently (a) project them to the space of positive definite and symmetric matrices, and (b) invert the projected Hessian. The latter operation is computationally expensive. In order to save computational effort, we propose in this paper a quasi-Newton SF (QN-SF) algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule. In Bhatnagar (ACM TModel Comput S. 18(1): 27–62, 2007), a Jacobi variant of Newton SF (JN-SF) was proposed and implemented to save computational effort. We compare our QN-SF algorithm with gradient SF (G-SF) and JN-SF algorithms on two different problems – first on a simple stochastic function minimization problem and the other on a problem of optimal routing in a queueing network. We observe from the experiments that the QN-SF algorithm performs significantly better than both G-SF and JN-SF algorithms on both the problem settings. Next we extend the QN-SF algorithm to the case of constrained optimization. In this case too, the QN-SF algorithm performs much better than the JN-SF algorithm. Finally we present the proof of convergence for the QN-SF algorithm in both unconstrained and constrained settings.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9875-4
      Issue No: Vol. 66, No. 3 (2017)
       
  • Formulating an n -person noncooperative game as a tensor complementarity
           problem
    • Authors: Zheng-Hai Huang; Liqun Qi
      Pages: 557 - 576
      Abstract: Abstract In this paper, we consider a class of n-person noncooperative games, where the utility function of every player is given by a homogeneous polynomial defined by the payoff tensor of that player, which is a natural extension of the bimatrix game where the utility function of every player is given by a quadratic form defined by the payoff matrix of that player. We will call such a problem the multilinear game. We reformulate the multilinear game as a tensor complementarity problem, a generalization of the linear complementarity problem; and show that finding a Nash equilibrium point of the multilinear game is equivalent to finding a solution of the resulted tensor complementarity problem. Especially, we present an explicit relationship between the solutions of the multilinear game and the tensor complementarity problem, which builds a bridge between these two classes of problems. We also apply a smoothing-type algorithm to solve the resulted tensor complementarity problem and give some preliminary numerical results for solving the multilinear games.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9872-7
      Issue No: Vol. 66, No. 3 (2017)
       
  • A polynomial primal-dual affine scaling algorithm for symmetric conic
           optimization
    • Authors: Ali Mohammad-Nezhad; Tamás Terlaky
      Pages: 577 - 600
      Abstract: Abstract The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the duality gap simultaneously. The method’s iteration complexity bound is analogous to the semidefinite optimization case. Numerical experiments demonstrate that the method is viable and robust when compared to SeDuMi, MOSEK and SDPT3.
      PubDate: 2017-04-01
      DOI: 10.1007/s10589-016-9874-5
      Issue No: Vol. 66, No. 3 (2017)
       
  • Local nonglobal minima for solving large-scale extended trust-region
           subproblems
    • Authors: Maziar Salahi; Akram Taati; Henry Wolkowicz
      Pages: 223 - 244
      Abstract: Abstract We study large-scale extended trust-region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust-region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS  and that there are efficient algorithms for solving large-scale TRS  problems. It is also known that there can exist at most one local non-global minimizer (LNGM) for TRS. We combine this with known characterizations for strong duality for eTRS  and, in particular, connect this with the so-called hard case for TRS. We begin with a recent characterization of the minimum for the TRS  via a generalized eigenvalue problem and extend this result to the LNGM. We then use this to derive an efficient algorithm that finds the global minimum for eTRS  by solving at most three generalized eigenvalue problems.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9867-4
      Issue No: Vol. 66, No. 2 (2017)
       
  • On solving L-SR1 trust-region subproblems
    • Authors: Johannes Brust; Jennifer B. Erway; Roummel F. Marcia
      Pages: 245 - 266
      Abstract: Abstract In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman–Morrison–Woodbury formula to compute global solutions to trust-region subproblems. To compute the optimal Lagrange multiplier for the trust-region constraint, we use Newton’s method with a judicious initial guess that does not require safeguarding. A crucial property of this solver is that it is able to compute high-accuracy solutions even in the so-called hard case. Additionally, the optimal solution is determined directly by formula, not iteratively. Numerical experiments demonstrate the effectiveness of this solver.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9868-3
      Issue No: Vol. 66, No. 2 (2017)
       
  • A semidefinite algorithm for completely positive tensor decomposition
    • Authors: Jinyan Fan; Anwa Zhou
      Pages: 267 - 283
      Abstract: Abstract A symmetric tensor, which has a symmetric nonnegative decomposition, is called a completely positive tensor. In this paper, we characterize the completely positive tensor as a truncated moment sequence, and transform the problem of checking whether a tensor is completely positive to checking whether its corresponding truncated moment sequence admits a representing measure, then present a semidefinite algorithm to solve it. If a tensor is not completely positive, a certificate for it can be obtained; if it is completely positive, a nonnegative decomposition can be obtained.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9870-9
      Issue No: Vol. 66, No. 2 (2017)
       
  • Computing the generalized eigenvalues of weakly symmetric tensors
    • Authors: Na Zhao; Qingzhi Yang; Yajun Liu
      Pages: 285 - 307
      Abstract: Abstract Tensor is a hot topic in the past decade and eigenvalue problems of higher order tensors become more and more important in the numerical multilinear algebra. Several methods for finding the Z-eigenvalues and generalized eigenvalues of symmetric tensors have been given. However, the convergence of these methods when the tensor is not symmetric but weakly symmetric is not assured. In this paper, we give two convergent gradient projection methods for computing some generalized eigenvalues of weakly symmetric tensors. The gradient projection method with Armijo step-size rule (AGP) can be viewed as a modification of the GEAP method. The spectral gradient projection method which is born from the combination of the BB method with the gradient projection method is superior to the GEAP, AG and AGP methods. We also make comparisons among the four methods. Some competitive numerical results are reported at the end of this paper.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9865-6
      Issue No: Vol. 66, No. 2 (2017)
       
  • Fast algorithm for singly linearly constrained quadratic programs with
           box-like constraints
    • Authors: Meijiao Liu; Yong-Jin Liu
      Pages: 309 - 326
      Abstract: Abstract This paper focuses on a singly linearly constrained class of convex quadratic programs with box-like constraints. We propose a new fast algorithm based on parametric approach and secant approximation method to solve this class of quadratic problems. We design efficient implementations for our proposed algorithm and compare its performance with two state-of-the-art standard solvers called Gurobi and Mosek. Numerical results on a variety of test problems demonstrate that our algorithm is able to efficiently solve the large-scale problems with the dimension up to fifty million and it substantially outperforms Gurobi and Mosek in terms of the running time.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9863-8
      Issue No: Vol. 66, No. 2 (2017)
       
  • A note on the convergence of ADMM for linearly constrained convex
           optimization problems
    • Authors: Liang Chen; Defeng Sun; Kim-Chuan Toh
      Pages: 327 - 343
      Abstract: Abstract This note serves two purposes. Firstly, we construct a counterexample to show that the statement on the convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex optimization problems in a highly influential paper by Boyd et al. (Found Trends Mach Learn 3(1):1–122, 2011) can be false if no prior condition on the existence of solutions to all the subproblems involved is assumed to hold. Secondly, we present fairly mild conditions to guarantee the existence of solutions to all the subproblems of the ADMM and provide a rigorous convergence analysis on the ADMM with a computationally more attractive large step-length that can even exceed the practically much preferred golden ratio of \((1+\sqrt{5})/2\) .
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9864-7
      Issue No: Vol. 66, No. 2 (2017)
       
  • Decomposable norm minimization with proximal-gradient homotopy algorithm
    • Authors: Reza Eghbali; Maryam Fazel
      Pages: 345 - 381
      Abstract: Abstract We study the convergence rate of the proximal-gradient homotopy algorithm applied to norm-regularized linear least squares problems, for a general class of norms. The homotopy algorithm reduces the regularization parameter in a series of steps, and uses a proximal-gradient algorithm to solve the problem at each step. Proximal-gradient algorithm has a linear rate of convergence given that the objective function is strongly convex, and the gradient of the smooth component of the objective function is Lipschitz continuous. In many applications, the objective function in this type of problem is not strongly convex, especially when the problem is high-dimensional and regularizers are chosen that induce sparsity or low-dimensionality. We show that if the linear sampling matrix satisfies certain assumptions and the regularizing norm is decomposable, proximal-gradient homotopy algorithm converges with a linear rate even though the objective function is not strongly convex. Our result generalizes results on the linear convergence of homotopy algorithm for \(\ell _1\) -regularized least squares problems. Numerical experiments are presented that support the theoretical convergence rate analysis.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9871-8
      Issue No: Vol. 66, No. 2 (2017)
       
  • Modeling max–min fair bandwidth allocation in BitTorrent communities
    • Authors: Elvira Antal; Tamás Vinkó
      Pages: 383 - 400
      Abstract: Abstract This paper gives an exact mathematical programming model and algorithm of the max–min fairness bandwidth allocation problem in multi-swarm peer-to-peer content sharing community. The proposed iterative method involves solution of LP and MILP problems of large scale. Based on real-world data traces, numerical experiments demonstrate that the new algorithm is computationally faster than an earlier developed one for larger problem sizes, and it provides better numerical stability. Moreover, even if its execution is stopped after some initial steps it still grants feasible solution with good approximation to max–min fairness.
      PubDate: 2017-03-01
      DOI: 10.1007/s10589-016-9866-5
      Issue No: Vol. 66, No. 2 (2017)
       
  • Two wide neighborhood interior-point methods for symmetric cone
           optimization
    • Authors: M. Sayadi Shahraki; H. Mansouri; M. Zangiabadi
      Abstract: Abstract In this paper, we present two primal–dual interior-point algorithms for symmetric cone optimization problems. The algorithms produce a sequence of iterates in the wide neighborhood \(\mathcal {N}(\tau ,\,\beta )\) of the central path. The convergence is shown for a commutative class of search directions, which includes the Nesterov–Todd direction and the xs and sx directions. We derive that these two path-following algorithms have $$\begin{aligned} \text{ O }\left( \sqrt{r\text{ cond }(G)}\log \varepsilon ^{-1}\right) , \text{ O }\left( \sqrt{r}\left( \text{ cond }(G)\right) ^{1/4}\log \varepsilon ^{-1}\right) \end{aligned}$$ iteration complexity bounds, respectively. The obtained complexity bounds are the best result in regard to the iteration complexity bound in the context of the path-following methods for symmetric cone optimization. Numerical results show that the algorithms are efficient for this kind of problems.
      PubDate: 2017-03-09
      DOI: 10.1007/s10589-017-9905-x
       
  • On the resolution of certain discrete univariate max–min problems
    • Authors: Ramsharan Rangarajan
      Abstract: Abstract We analyze a class of discrete, univariate, and strictly quasiconcave max–min problems. A distinctive feature of max–min-type optimization problems is the nonsmoothness of the objective being maximized. Here we exploit strict quasiconcavity of the given set of functions to prove existence and uniqueness of the optimizer, and to provide computable bounds for it. The analysis inspires an efficient algorithm for computing the optimizer without having to resort to any regularization or heuristics. We prove correctness of the proposed algorithm and briefly discuss the effect of tolerances and approximate computation. Our study finds direct application in the context of certain mesh deformation methods, wherein the optimal perturbation for a vertex is computed as the solution of a max–min problem of the type we consider here. We include examples demonstrating improvement of simplicial meshes while adopting the proposed algorithm for resolution of the optimization problems involved, and use these numerical experiments to examine the performance of the algorithm.
      PubDate: 2017-03-06
      DOI: 10.1007/s10589-017-9903-z
       
  • Generalized Krasnoselskii–Mann-type iterations for nonexpansive
           mappings in Hilbert spaces
    • Authors: Christian Kanzow; Yekini Shehu
      Abstract: Abstract The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii–Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong convergence for a modified inexact Krasnoselskii–Mann iteration under suitable assumptions. The convergence results generalize existing ones from the literature. Applications are given to the Douglas–Rachford splitting method, the Fermat–Weber location problem as well as the alternating projection method by John von Neumann.
      PubDate: 2017-02-21
      DOI: 10.1007/s10589-017-9902-0
       
  • Total variation image deblurring with space-varying kernel
    • Authors: Daniel O’Connor; Lieven Vandenberghe
      Abstract: Abstract Image deblurring techniques based on convex optimization formulations, such as total-variation deblurring, often use specialized first-order methods for large-scale nondifferentiable optimization. A key property exploited in these methods is spatial invariance of the blurring operator, which makes it possible to use the fast Fourier transform (FFT) when solving linear equations involving the operator. In this paper we extend this approach to two popular models for space-varying blurring operators, the Nagy–O’Leary model and the efficient filter flow model. We show how splitting methods derived from the Douglas–Rachford algorithm can be implemented with a low complexity per iteration, dominated by a small number of FFTs.
      PubDate: 2017-02-18
      DOI: 10.1007/s10589-017-9901-1
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.157.205.247
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016