for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 879 journals)
    - APPLIED MATHEMATICS (71 journals)
    - GEOMETRY AND TOPOLOGY (19 journals)
    - MATHEMATICS (651 journals)
    - MATHEMATICS (GENERAL) (42 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (77 journals)

MATHEMATICS (651 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 3)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 2)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 8)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 7)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 4)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 1)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 5)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 7)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 3)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 9)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access  
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 2)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 19)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access  
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 7)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 18)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 2)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 29)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 7)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 4)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 4)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)
Formalized Mathematics     Open Access   (Followers: 2)

        1 2 3 4 | Last

Journal Cover British Journal of Mathematical and Statistical Psychology
  [SJR: 2.38]   [H-I: 36]   [21 followers]  Follow
    
   Full-text available via subscription Subscription journal
   ISSN (Print) 0007-1102 - ISSN (Online) 2044-8317
   Published by British Psychological Society Homepage  [10 journals]
  • Sample size determination for a matched-pairs study with incomplete data
           using exact approach
    • Authors: Guogen Shan; Charles Bernick, Sarah Banks
      Abstract: This research was motivated by a clinical trial design for a cognitive study. The pilot study was a matched-pairs design where some data are missing, specifically the missing data coming at the end of the study. Existing approaches to determine sample size are all based on asymptotic approaches (e.g., the generalized estimating equation (GEE) approach). When the sample size in a clinical trial is small to medium, these asymptotic approaches may not be appropriate for use due to the unsatisfactory Type I and II error rates. For this reason, we consider the exact unconditional approach to compute the sample size for a matched-pairs study with incomplete data. Recommendations are made for each possible missingness pattern by comparing the exact sample sizes based on three commonly used test statistics, with the existing sample size calculation based on the GEE approach. An example from a real surgeon-reviewers study is used to illustrate the application of the exact sample size calculation in study designs.
      PubDate: 2017-06-30T05:20:29.005688-05:
      DOI: 10.1111/bmsp.12107
       
  • Regression away from the mean: Theory and examples
    • Authors: Wolf Schwarz; Dennis Reike
      Abstract: Using a standard repeated measures model with arbitrary true score distribution and normal error variables, we present some fundamental closed-form results which explicitly indicate the conditions under which regression effects towards (RTM) and away from the mean are expected. Specifically, we show that for skewed and bimodal distributions many or even most cases will show a regression effect that is in expectation away from the mean, or that is not just towards but actually beyond the mean. We illustrate our results in quantitative detail with typical examples from experimental and biometric applications, which exhibit a clear regression away from the mean (‘egression from the mean’) signature. We aim not to repeal cautionary advice against potential RTM effects, but to present a balanced view of regression effects, based on a clear identification of the conditions governing the form that regression effects take in repeated measures designs.
      PubDate: 2017-06-30T05:00:32.429163-05:
      DOI: 10.1111/bmsp.12106
       
  • Improving precision of ability estimation: Getting more from response
           times
    • Authors: Maria Bolsinova; Jesper Tijmstra
      Abstract: By considering information about response time (RT) in addition to response accuracy (RA), joint models for RA and RT such as the hierarchical model (van der Linden, 2007) can improve the precision with which ability is estimated over models that only consider RA. The hierarchical model, however, assumes that only the person's speed is informative of ability. This assumption of conditional independence between RT and ability given speed may be violated in practice, and ignores collateral information about ability that may be present in the residual RTs. We propose a posterior predictive check for evaluating the assumption of conditional independence between RT and ability given speed. Furthermore, we propose an extension of the hierarchical model that contains cross-loadings between ability and RT, which enables one to take additional collateral information about ability into account beyond what is possible in the standard hierarchical model. A Bayesian estimation procedure is proposed for the model. Using simulation studies, the performance of the model is evaluated in terms of parameter recovery, and the possible gain in precision over the standard hierarchical model and an RA-only model is considered. The model is applied to data from a high-stakes educational test.
      PubDate: 2017-06-21T01:11:04.146383-05:
      DOI: 10.1111/bmsp.12104
       
  • Standard errors and confidence intervals for correlations corrected for
           indirect range restriction: A simulation study comparing analytic and
           bootstrap methods
    • Authors: Tamar Kennet-Cohen; Dvir Kleper, Elliot Turvall
      Abstract: A frequent topic of psychological research is the estimation of the correlation between two variables from a sample that underwent a selection process based on a third variable. Due to indirect range restriction, the sample correlation is a biased estimator of the population correlation, and a correction formula is used. In the past, bootstrap standard error and confidence intervals for the corrected correlations were examined with normal data. The present study proposes a large-sample estimate (an analytic method) for the standard error, and a corresponding confidence interval for the corrected correlation. Monte Carlo simulation studies involving both normal and non-normal data were conducted to examine the empirical performance of the bootstrap and analytic methods. Results indicated that with both normal and non-normal data, the bootstrap standard error and confidence interval were generally accurate across simulation conditions (restricted sample size, selection ratio, and population correlations) and outperformed estimates of the analytic method. However, with certain combinations of distribution type and model conditions, the analytic method has an advantage, offering reasonable estimates of the standard error and confidence interval without resorting to the bootstrap procedure's computer-intensive approach. We provide SAS code for the simulation studies.
      PubDate: 2017-06-20T02:27:38.723418-05:
      DOI: 10.1111/bmsp.12105
       
  • ANOVA and the variance homogeneity assumption: Exploring a better
           gatekeeper
    • Authors: Yoosun Jamie Kim; Robert A. Cribbie
      Abstract: Valid use of the traditional independent samples ANOVA procedure requires that the population variances are equal. Previous research has investigated whether variance homogeneity tests, such as Levene's test, are satisfactory as gatekeepers for identifying when to use or not to use the ANOVA procedure. This research focuses on a novel homogeneity of variance test that incorporates an equivalence testing approach. Instead of testing the null hypothesis that the variances are equal against an alternative hypothesis that the variances are not equal, the equivalence-based test evaluates the null hypothesis that the difference in the variances falls outside or on the border of a predetermined interval against an alternative hypothesis that the difference in the variances falls within the predetermined interval. Thus, with the equivalence-based procedure, the alternative hypothesis is aligned with the research hypothesis (variance equality). A simulation study demonstrated that the equivalence-based test of population variance homogeneity is a better gatekeeper for the ANOVA than traditional homogeneity of variance tests.
      PubDate: 2017-06-01T01:50:35.69062-05:0
      DOI: 10.1111/bmsp.12103
       
  • More efficient parameter estimates for factor analysis of ordinal
           variables by ridge generalized least squares
    • Authors: Ke-Hai Yuan; Ge Jiang, Ying Cheng
      Abstract: Data in psychology are often collected using Likert-type scales, and it has been shown that factor analysis of Likert-type data is better performed on the polychoric correlation matrix than on the product-moment covariance matrix, especially when the distributions of the observed variables are skewed. In theory, factor analysis of the polychoric correlation matrix is best conducted using generalized least squares with an asymptotically correct weight matrix (AGLS). However, simulation studies showed that both least squares (LS) and diagonally weighted least squares (DWLS) perform better than AGLS, and thus LS or DWLS is routinely used in practice. In either LS or DWLS, the associations among the polychoric correlation coefficients are completely ignored. To mend such a gap between statistical theory and empirical work, this paper proposes new methods, called ridge GLS, for factor analysis of ordinal data. Monte Carlo results show that, for a wide range of sample sizes, ridge GLS methods yield uniformly more accurate parameter estimates than existing methods (LS, DWLS, AGLS). A real-data example indicates that estimates by ridge GLS are 9–20% more efficient than those by existing methods. Rescaled and adjusted test statistics as well as sandwich-type standard errors following the ridge GLS methods also perform reasonably well.
      PubDate: 2017-05-26T01:55:33.202119-05:
      DOI: 10.1111/bmsp.12098
       
  • Non-ignorable missingness item response theory models for choice effects
           in examinee-selected items
    • Authors: Chen-Wei Liu; Wen-Chung Wang
      Abstract: Examinee-selected item (ESI) design, in which examinees are required to respond to a fixed number of items in a given set, always yields incomplete data (i.e., when only the selected items are answered, data are missing for the others) that are likely non-ignorable in likelihood inference. Standard item response theory (IRT) models become infeasible when ESI data are missing not at random (MNAR). To solve this problem, the authors propose a two-dimensional IRT model that posits one unidimensional IRT model for observed data and another for nominal selection patterns. The two latent variables are assumed to follow a bivariate normal distribution. In this study, the mirt freeware package was adopted to estimate parameters. The authors conduct an experiment to demonstrate that ESI data are often non-ignorable and to determine how to apply the new model to the data collected. Two follow-up simulation studies are conducted to assess the parameter recovery of the new model and the consequences for parameter estimation of ignoring MNAR data. The results of the two simulation studies indicate good parameter recovery of the new model and poor parameter recovery when non-ignorable missing data were mistakenly treated as ignorable.
      PubDate: 2017-04-08T07:17:00.085834-05:
      DOI: 10.1111/bmsp.12097
       
  • CDF-quantile distributions for modelling random variables on the unit
           interval
    • Authors: Michael Smithson; Yiyun Shou
      Abstract: This paper introduces a two-parameter family of distributions for modelling random variables on the (0,1) interval by applying the cumulative distribution function of one ‘parent’ distribution to the quantile function of another. Family members have explicit probability density functions, cumulative distribution functions and quantiles in a location parameter and a dispersion parameter. They capture a wide variety of shapes that the beta and Kumaraswamy distributions cannot. They are amenable to likelihood inference, and enable a wide variety of quantile regression models, with predictors for both the location and dispersion parameters. We demonstrate their applicability to psychological research problems and their utility in modelling real data.
      PubDate: 2017-03-17T09:30:56.538616-05:
      DOI: 10.1111/bmsp.12091
       
  • Rank-based permutation approaches for non-parametric factorial designs
    • Authors: Maria Umlauft; Frank Konietschke, Markus Pauly
      Abstract: Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal–Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability.
      PubDate: 2017-03-15T02:05:36.852211-05:
      DOI: 10.1111/bmsp.12089
       
  • Order-constrained linear optimization
    • Authors: Joe W. Tidwell; Michael R. Dougherty, Jeffrey S. Chrabaszcz, Rick P. Thomas
      Abstract: Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data.
      PubDate: 2017-02-27T02:20:29.642191-05:
      DOI: 10.1111/bmsp.12090
       
  • Person-specific versus multilevel autoregressive models: Accuracy in
           parameter estimates at the population and individual levels
    • Authors: Siwei Liu
      Abstract: This paper compares the multilevel modelling (MLM) approach and the person-specific (PS) modelling approach in examining autoregressive (AR) relations with intensive longitudinal data. Two simulation studies are conducted to examine the influences of sample heterogeneity, time series length, sample size, and distribution of individual level AR coefficients on the accuracy of AR estimates, both at the population level and at the individual level. It is found that MLM generally outperforms the PS approach under two conditions: when the sample has a homogeneous AR pattern, namely, when all individuals in the sample are characterized by AR processes with the same order; and when the sample has heterogeneous AR patterns, but a multilevel model with a sufficiently high order (i.e., an order equal to or higher than the maximum order of individual AR patterns in the sample) is fitted and successfully converges. If a lower-order multilevel model is chosen for heterogeneous samples, the higher-order lagged effects are misrepresented, resulting in bias at the population level and larger prediction errors at the individual level. In these cases, the PS approach is preferable, given sufficient measurement occasions (T ≥ 50). In addition, sample size and distribution of individual level AR coefficients do not have a large impact on the results. Implications of these findings on model selection and research design are discussed.
      PubDate: 2017-02-22T08:45:50.43108-05:0
      DOI: 10.1111/bmsp.12096
       
  • The assessment of knowledge and learning in competence spaces: The
           gain–loss model for dependent skills
    • Authors: Pasquale Anselmi; Luca Stefanutti, Debora Chiusole, Egidio Robusto
      Abstract: The gain–loss model (GaLoM) is a formal model for assessing knowledge and learning. In its original formulation, the GaLoM assumes independence among the skills. Such an assumption is not reasonable in several domains, in which some preliminary knowledge is the foundation for other knowledge. This paper presents an extension of the GaLoM to the case in which the skills are not independent, and the dependence relation among them is described by a well-graded competence space. The probability of mastering skill s at the pretest is conditional on the presence of all skills on which s depends. The probabilities of gaining or losing skill s when moving from pretest to posttest are conditional on the mastery of s at the pretest, and on the presence at the posttest of all skills on which s depends. Two formulations of the model are presented, in which the learning path is allowed to change from pretest to posttest or not. A simulation study shows that models based on the true competence space obtain a better fit than models based on false competence spaces, and are also characterized by a higher assessment accuracy. An empirical application shows that models based on pedagogically sound assumptions about the dependencies among the skills obtain a better fit than models assuming independence among the skills.
      PubDate: 2017-02-17T04:05:40.202974-05:
      DOI: 10.1111/bmsp.12095
       
  • Analysis of categorical moderators in mixed-effects meta-analysis:
           Consequences of using pooled versus separate estimates of the residual
           between-studies variances
    • Authors: María Rubio-Aparicio; Julio Sánchez-Meca, José Antonio López-López, Juan Botella, Fulgencio Marín-Martínez
      Abstract: Subgroup analyses allow us to examine the influence of a categorical moderator on the effect size in meta-analysis. We conducted a simulation study using a dichotomous moderator, and compared the impact of pooled versus separate estimates of the residual between-studies variance on the statistical performance of the QB(P) and QB(S) tests for subgroup analyses assuming a mixed-effects model. Our results suggested that similar performance can be expected as long as there are at least 20 studies and these are approximately balanced across categories. Conversely, when subgroups were unbalanced, the practical consequences of having heterogeneous residual between-studies variances were more evident, with both tests leading to the wrong statistical conclusion more often than in the conditions with balanced subgroups. A pooled estimate should be preferred for most scenarios, unless the residual between-studies variances are clearly different and there are enough studies in each category to obtain precise separate estimates.
      PubDate: 2017-02-06T03:35:27.313476-05:
      DOI: 10.1111/bmsp.12092
       
  • Spontaneous and imposed speed of cognitive test responses
    • Authors: Paul De Boeck; Haiqin Chen, Mark Davison
      Abstract: Based on data from a cognitive test presented in a condition with time constraints per item and a condition without time constraints, the effect of speed on accuracy is investigated. First, if the effect of imposed speed on accuracy is negative it can be explained by the speed–accuracy trade-off, and if it can be captured through the corresponding latent variables, then measurement invariance applies between a condition with and a condition without time constraints. The results do show a negative effect and a lack of measurement invariance. Second, the conditional accuracy function (CAF) is investigated in both conditions, with and without time constraints. The CAF shows an (item-dependent) negative conditional dependence between response time and response accuracy and thus a positive relationship between speed and accuracy, which implies that faster responses are more accurate. In sum, there seem to be two kinds of speed effects: a speed–accuracy trade-off effect induced by imposed speed and an opposite CAF effect associated with speed within conditions. The second effect is interpreted as stemming from a within-person variation of the cognitive capacity during the test which simultaneously favours or disfavours speed and accuracy.
      PubDate: 2017-02-03T07:13:33.4059-05:00
      DOI: 10.1111/bmsp.12094
       
  • Analysing model fit of psychometric process models: An overview, a new
           test and an application to the diffusion model
    • Authors: Jochen Ranger; Jörg-Tobias Kuhn, Carsten Szardenings
      Abstract: Cognitive psychometric models embed cognitive process models into a latent trait framework in order to allow for individual differences. Due to their close relationship to the response process the models allow for profound conclusions about the test takers. However, before such a model can be used its fit has to be checked carefully. In this manuscript we give an overview over existing tests of model fit and show their relation to the generalized moment test of Newey (Econometrica, 53, 1985, 1047) and Tauchen (Journal of Econometrics, 30, 1985, 415). We also present a new test, the Hausman test of misspecification (Hausman, Econometrica, 46, 1978, 1251). The Hausman test consists of a comparison of two estimates of the same item parameters which should be similar if the model holds. The performance of the Hausman test is evaluated in a simulation study. In this study we illustrate its application to two popular models in cognitive psychometrics, the Q-diffusion model and the D-diffusion model (van der Maas, Molenaar, Maris, Kievit, & Boorsboom, Psychological Review, 118, 2011, 339; Molenaar, Tuerlinckx, & van der Maas, Journal of Statistical Software, 66, 2015, 1). We also compare the performance of the test to four alternative tests of model fit, namely the M2 test (Molenaar et al., Journal of Statistical Software, 66, 2015, 1), the moment test (Ranger et al., British Journal of Mathematical and Statistical Psychology, 2016) and the test for binned time (Ranger & Kuhn, Psychological Test and Assessment Modeling, 56, 2014b, 370). The simulation study indicates that the Hausman test is superior to the latter tests. The test closely adheres to the nominal Type I error rate and has higher power in most simulation conditions.
      PubDate: 2017-02-03T07:07:07.130454-05:
      DOI: 10.1111/bmsp.12082
       
  • A heteroscedastic generalized linear model with a non-normal speed factor
           for responses and response times
    • Authors: Dylan Molenaar; Maria Bolsinova
      Abstract: In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set.
      PubDate: 2017-02-03T06:55:41.161916-05:
      DOI: 10.1111/bmsp.12087
       
  • Population models and simulation methods: The case of the Spearman rank
           correlation
    • Authors: Oscar L. Olvera Astivia; Bruno D. Zumbo
      Abstract: The purpose of this paper is to highlight the importance of a population model in guiding the design and interpretation of simulation studies used to investigate the Spearman rank correlation. The Spearman rank correlation has been known for over a hundred years to applied researchers and methodologists alike and is one of the most widely used non-parametric statistics. Still, certain misconceptions can be found, either explicitly or implicitly, in the published literature because a population definition for this statistic is rarely discussed within the social and behavioural sciences. By relying on copula distribution theory, a population model is presented for the Spearman rank correlation, and its properties are explored both theoretically and in a simulation study. Through the use of the Iman–Conover algorithm (which allows the user to specify the rank correlation as a population parameter), simulation studies from previously published articles are explored, and it is found that many of the conclusions purported in them regarding the nature of the Spearman correlation would change if the data-generation mechanism better matched the simulation design. More specifically, issues such as small sample bias and lack of power of the t-test and r-to-z Fisher transformation disappear when the rank correlation is calculated from data sampled where the rank correlation is the population parameter. A proof for the consistency of the sample estimate of the rank correlation is shown as well as the flexibility of the copula model to encompass results previously published in the mathematical literature.
      PubDate: 2017-01-31T08:38:08.923003-05:
      DOI: 10.1111/bmsp.12085
       
  • Cognitive and psychometric modelling of responses and response times
    • Authors: Dylan Molenaar; Ingmar Visser
      Pages: 185 - 186
      PubDate: 2017-05-05T06:25:13.28324-05:0
      DOI: 10.1111/bmsp.12102
       
  • Modelling individual response time effects between and within experimental
           speed conditions: A GLMM approach for speeded tests
    • Authors: Frank Goldhammer; Merle A. Steinwascher, Ulf Kroehne, Johannes Naumann
      Pages: 238 - 256
      Abstract: Completing test items under multiple speed conditions avoids the performance measure being confounded with individual differences in the speed–accuracy compromise, and offers insights into the response process, that is, how response time relates to the probability of a correct response. This relation is traditionally represented by two conceptually different functions: the speed-accuracy trade-off function (SATF) across conditions relating the condition average response time to the condition average of accuracy, and the conditional accuracy function (CAF) within a condition describing accuracy conditional on response time. Using a generalized linear mixed modelling approach, we propose an item response modelling framework that is suitable for item response and response time data from experimental speed conditions. The proposed SATF and CAF model accommodates response time effects between conditions (i.e., person and item SATF slope) and within conditions (i.e., residual CAF slopes), captures person and item differences in these effects, and is suitable for measures with a strong speed component. Moreover, for a single condition a CAF model is proposed distinguishing person, item and residual CAF. The properties of the models are illustrated with an empirical example.
      PubDate: 2017-05-05T06:25:12.835182-05:
      DOI: 10.1111/bmsp.12099
       
  • Parameter recovery, bias and standard errors in the linear ballistic
           accumulator model
    • Authors: Ingmar Visser; Rens Poessé
      Pages: 280 - 296
      Abstract: The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model.
      PubDate: 2017-05-05T06:25:12.436464-05:
      DOI: 10.1111/bmsp.12100
       
  • A comparison of item response models for accuracy and speed of item
           responses with applications to adaptive testing
    • Authors: Peter W. Rijn; Usama S. Ali
      Pages: 317 - 345
      Abstract: We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures.
      PubDate: 2017-05-05T06:25:11.209892-05:
      DOI: 10.1111/bmsp.12101
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.81.157.56
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016