for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> MATHEMATICS (Total: 879 journals)
    - APPLIED MATHEMATICS (71 journals)
    - GEOMETRY AND TOPOLOGY (19 journals)
    - MATHEMATICS (651 journals)
    - MATHEMATICS (GENERAL) (42 journals)
    - NUMERICAL ANALYSIS (19 journals)

MATHEMATICS (651 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 3)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 2)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 8)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 7)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 4)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 1)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 5)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 7)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 3)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 9)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access  
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 2)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 19)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access  
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 7)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 18)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 2)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 29)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 7)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 4)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 4)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)
Formalized Mathematics     Open Access   (Followers: 2)

        1 2 3 4 | Last

Journal Cover Cognitive Computation
  [SJR: 0.692]   [H-I: 19]   [4 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1866-9964 - ISSN (Online) 1866-9956
   Published by Springer-Verlag Homepage  [2353 journals]
  • Incremental Adaptive Learning Vector Quantization for Character
           Recognition with Continuous Style Adaptation
    • Authors: Yuan-Yuan Shen; Cheng-Lin Liu
      Abstract: Abstract Incremental learning enables continuous model adaptation based on a constantly arriving data stream. It is a way relevant to human cognitive system, which learns to predict objects in a changing world. Incremental learning for character recognition is a typical scenario that characters appear sequentially and the font/writing style changes irregularly. In the paper, we investigate how to classify characters incrementally (i.e., input patterns appear once at a time). A reasonable assumption is that adjacent characters from the same font or the same writer share the same style in a short period while style variation occurs in characters printed by different fonts or written by different persons during a long period. The challenging issue here is how to take advantage of the local style consistency and adapt to the continuous style variation as well incrementally. For this purpose, we propose a continuous incremental adaptive learning vector quantization (CIALVQ) method, which incrementally learns a self-adaptive style transfer matrix for mapping input patterns from style-conscious space onto style-free space. After style transformation, this problem is casted into a common character recognition task and an incremental learning vector quantization (ILVQ) classifier is used. In this framework, we consider two learning modes: supervised incremental learning and active incremental learning. In the latter mode, samples receiving low confidence from the classifier are requested class labels. We evaluated the classification performance of CIALVQ in two scenarios, interleaved test-then-train and style-specific classification on NIST hand-printed data sets. The results show that local style consistency improves the accuracies of both two test scenarios, and for both supervised and active incremental learning modes.
      PubDate: 2017-08-04
      DOI: 10.1007/s12559-017-9491-3
  • Parkinson’s Disease and Aging: Analysis of Their Effect in Phonation and
           Articulation of Speech
    • Authors: T. Arias-Vergara; J. C. Vásquez-Correa; J. R. Orozco-Arroyave
      Abstract: Abstract Parkinson’s disease (PD) is a neurological disorder that affects the communication ability of patients. There is interest in the research community to study acoustic measures that provide objective information to model PD speech. Although there are several studies in the literature that consider different characteristics of Parkinson’s speech like phonation and articulation, there are no studies including the aging process as another possible source of impairments in speech. The aim of this work is to analyze the vowel articulation and phonation of Parkinson’s patients compared with respect to two groups of healthy people: (1) young speakers with ages ranging from 22 to 50 years and (2) people with ages matched with respect to the Parkinson’s patients. Each participant repeated the sustained phonation of the five Spanish vowels three times and those utterances per speaker are modeled by using phonation and articulation features. Feature selection is applied to eliminate redundant information in the features space, and the automatic discrimination of the three groups of speakers is performed using a multi-class Support Vector Machine (SVM) following a one vs. all strategy, speaker independent. The results are compared to those obtained using a cognitive-inspired classifier which is based on neural networks (NN). The results indicate that the phonation and articulation capabilities of young speakers clearly differ from those exhibited by the elderly speakers (with and without PD). To the best of our knowledge, this is the first paper introducing experimental evidence to support the fact that age matching is necessary to perform more accurate and robust evaluations of pathological speech signals, especially considering diseases suffered by elderly people, like Parkinson’s. Additionally, the comparison among groups of speakers at different ages is necessary in order to understand the natural change in speech due to the aging process.
      PubDate: 2017-08-04
      DOI: 10.1007/s12559-017-9497-x
  • Human Reading Knowledge Inspired Text Line Extraction
    • Authors: Liuan Wang; Seiichi Uchida; Anna Zhu; Jun Sun
      Abstract: Abstract Text in images contains exact semantic information and the text knowledge can be utilized in many image cognition and understanding applications. The human reading habits can provide the clues of text line structure for text line extraction. In this paper, we propose a novel human reading knowledge inspired text line extraction method based on k-shortest paths global optimization. Firstly, the candidate character extraction is reformulated as Maximal Stable Extremal Region (MSER) algorithm on gray, red, blue, and green channels of the target images, and the extracted MSERs are fed into Convolutional Neural Network (CNN) to remove the noise components. Then, the directed graph is built upon the character component nodes with edges inspired by human reading sense. The directed graph can automatically construct the relationship to eliminate the disorder of candidate text components. The text line paths optimization is inspired by the human reading ability in planning of a text line path sequentially. Therefore, the text line extraction problem can be solved using the k-shortest paths optimization algorithm by taking advantage of the human reading sense structure of the directed graph. It can extract the text lines iteratively to avoid the exhaustive searching and obtain global optimized text line number. The proposed method achieves the f-measure of 0.820 and 0.812 on public ICDAR2011 and ICDAR2013 dataset, respectively. The experimental results demonstrate the effectiveness of the proposed human reading knowledge inspired text line extraction method in comparison with state-of-the-art methods This paper presents one human reading knowledge inspired text line extraction method, which approves that the human reading knowledge can benefit the text line extraction and image text discovery.
      PubDate: 2017-08-02
      DOI: 10.1007/s12559-017-9490-4
  • An Interval Neutrosophic Projection-Based VIKOR Method for Selecting
    • Authors: Junhua Hu; Li Pan; Xiaohong Chen
      Abstract: Abstract Mobile healthcare applications are emerging as an innovative and practical technology resource to provide automated and efficient medical services online. However, vagueness and uncertainty commonly exist during the process of selecting doctors online and few studies have addressed these problems. In this paper, we employed interval neutrosophic sets (INSs) to process evaluation information. We proposed and normalized an improved projection measurement for INSs to overcome the shortcomings in extant projection measurements. Additionally, we presented a projection-based difference measure combined with the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method to establish a projection-based VIKOR method. Moreover, we introduced transition functions to transform online evaluation information into INSs and employed the maximizing deviation method to obtain weights for criteria. It is a practical problem for patients to choose a suitable doctor on a mobile healthcare application. This problem can be solved by applying the proposed method. Finally, we verified the validity of the method by comparison with several existing methods, and then we conducted sensitivity analysis to demonstrate the method’s reliability. The doctor selection problem can be effectively solved by the projection-based VIKOR method for INSs. Our comparison indicates that the proposed method is more appropriate than other methods, and the final ranking results are more precise than the actual ranking list found online. INSs are effective in describing vagueness and uncertainty in multi-criteria decision-making problems. The method proposed in this paper was viable and valid for use in doctor selection processes with information expressed by INSs.
      PubDate: 2017-08-02
      DOI: 10.1007/s12559-017-9499-8
  • A Novel Manifold Regularized Online Semi-supervised Learning Model
    • Authors: Shuguang Ding; Xuanyang Xi; Zhiyong Liu; Hong Qiao; Bo Zhang
      Abstract: Abstract In the process of human learning, training samples are often obtained successively. Therefore, many human learning tasks exhibit online and semi-supervision characteristics, that is, the observations arrive in sequence and the corresponding labels are presented very sporadically. In this paper, we propose a novel manifold regularized model in a reproducing kernel Hilbert space (RKHS) to solve the online semi-supervised learning (OS2L) problems. The proposed algorithm, named Model-Based Online Manifold Regularization (MOMR), is derived by solving a constrained optimization problem. Different from the stochastic gradient algorithm used for solving the online version of the primal problem of Laplacian support vector machine (LapSVM), the proposed algorithm can obtain an exact solution iteratively by solving its Lagrange dual problem. Meanwhile, to improve the computational efficiency, a fast algorithm is presented by introducing an approximate technique to compute the derivative of the manifold term in the proposed model. Furthermore, several buffering strategies are introduced to improve the scalability of the proposed algorithms and theoretical results show the reliability of the proposed algorithms. Finally, the proposed algorithms are experimentally shown to have a comparable performance to the standard batch manifold regularization algorithm.
      PubDate: 2017-08-02
      DOI: 10.1007/s12559-017-9489-x
  • Leveraging Spatial Context Disparity for Power Line Detection
    • Authors: Chaofeng Pan; Haotian Shan; Xianbin Cao; Xuelong Li; Dapeng Wu
      Abstract: Abstract For the safety of low flying aircraft, it will become increasingly important that an aircraft should have the ability to detect and avoid small obstacles in the low flying environment. In recent years, using context information to assist in detecting power lines has shown great potential to better detect power lines at a remote distance. Therefore, how to adequately use the context information for a better detection is a hot issue of concern. This paper proposes a novel auxiliary assisted power line detection method, in which the spatial context disparity of auxiliaries is quantitatively and uniformly evaluated for the first time. As a cognitive strategy, the spatial context disparity depends on two factors, the spatial context peakedness and the spatial context difference. With this cognitive method, objects that achieve high spatial context disparity scores are more suitable for being the auxiliaries of the power lines. Experimental results show that, owing to the spatial context disparity, the proposed method can acquire proper auxiliaries with abundant context information to support the detection, so that better power line detections are achieved comparing to traditional power line detection methods. The proposed power line detection method, which can automatically choose the optimal auxiliaries, is effective and has the potential for practical use in ensuring the flight safety of unmanned air vehicles (UAVs) in the low flying environment.
      PubDate: 2017-08-02
      DOI: 10.1007/s12559-017-9488-y
  • Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme
           Learning Machine
    • Authors: Lijuan Duan; Menghu Bao; Song Cui; Yuanhua Qiao; Jun Miao
      Abstract: Abstract As connections from the brain to an external device, Brain-Computer Interface (BCI) systems are a crucial aspect of assisted communication and control. When equipped with well-designed feature extraction and classification approaches, information can be accurately acquired from the brain using such systems. The Hierarchical Extreme Learning Machine (HELM) has been developed as an effective and accurate classification approach due to its deep structure and extreme learning mechanism. A classification system for motor imagery EEG signals is proposed based on the HELM combined with a kernel, herein called the Kernel Hierarchical Extreme Learning Machine (KHELM). Principle Component Analysis (PCA) is used to reduce the dimensionality of the data, and Linear Discriminant Analysis (LDA) is introduced to push the features away from different classes. To demonstrate the performance, the proposed system is applied to the BCI competition 2003 Dataset Ia, and the results are compared with those from state-of-the-art methods; we find that the accuracy is up to 94.54%.
      PubDate: 2017-08-01
      DOI: 10.1007/s12559-017-9494-0
  • A Study on Text-Score Disagreement in Online Reviews
    • Authors: Michela Fazzolari; Vittoria Cozza; Marinella Petrocchi; Angelo Spognardi
      Abstract: Abstract In this paper, we focus on online reviews and employ artificial intelligence tools, taken from the cognitive computing field, to help understand the relationships between the textual part of the review and the assigned numerical score. We move from the intuitions that (1) a set of textual reviews expressing different sentiments may feature the same score (and vice-versa), and (2) detecting and analyzing the mismatches between the review content and the actual score may benefit both service providers and consumers, by highlighting specific factors of satisfaction (and dissatisfaction) in texts. To prove the intuitions, we adopt sentiment analysis techniques and we concentrate on hotel reviews, to find polarity mismatches therein. In particular, we first train a text classifier with a set of annotated hotel reviews, taken from the Booking website. Then, we analyze a large dataset, with around 160k hotel reviews collected from TripAdvisor, with the aim of detecting a polarity mismatch, indicating if the textual content of the review is in line, or not, with the associated score. Using well-established artificial intelligence techniques and analyzing in depth the reviews featuring a mismatch between the text polarity and the score, we find that—on a scale of five stars—those reviews ranked with middle scores include a mixture of positive and negative aspects. The approach proposed here, beside acting as a polarity detector, provides an effective selection of reviews—on an initial very large dataset—that may allow both consumers and providers to focus directly on the review subset featuring a text/score disagreement,which conveniently convey to the user a summary of positive and negative features of the review target.
      PubDate: 2017-08-01
      DOI: 10.1007/s12559-017-9496-y
  • Establishment of Cognitive Relations Based on Cognitive Informatics
    • Authors: Radhika Shivhare; Aswani Kumar Cherukuri; Jinhai Li
      Abstract: Abstract Cognitive informatics (CI) is an interdisciplinary study on modelling of the brain in terms of knowledge and information processing. In CI, objects/attributes are considered as neurons connected to each other via synapse. The relation represents the synapse in CI. In order to represent new information the brain generates new synapse or relation between the existing neurons. Therefore, the establishment of cognitive relations is essential to represent new information. In order to represent new information, we propose an algorithm which creates cognitive relation between the pair of objects and attributes by using the relational attribute and object method. Further, the cognitive relations between the pair of objects or attributes within the context could be checked with newly defined conditions, i.e. the necessary and sufficient condition. These conditions will evaluate whether the relational object and attribute is adequate to have relations between the pair of objects and attributes. The new information is obtained without increasing the number of neurons in brain. It is achieved by creating cognitive relations between the pair of objects and attributes. The obtained results are beneficial to simulate the intelligence behaviour of brain such as learning and memorizing. Integrating the idea of CI into cognitive relations is a promising and challenging research direction. In this paper, we have discussed it from the aspects of cognitive mechanism, cognitive computing and cognitive process.
      PubDate: 2017-08-01
      DOI: 10.1007/s12559-017-9498-9
  • Lagrange Programming Neural Network Approaches for Robust Time-of-Arrival
    • Authors: Hao Wang; Ruibin Feng; Andrew Chi Sing Leung; K. F. Tsang
      Abstract: Abstract There are two interesting properties in human brain. One is its massively interconnected structure. Another one is that human can handle outlier data effectively. For instance, human is able to recognize an object from an image with non-Gaussian noise. Artificial neural network is one of biologically inspired techniques. From the structural point of view, many neural network models have massively interconnected structures. Since the traditional analog neural network approach cannot handle an l 1-norm-like objective function, it cannot be used to handle outlier data. This paper proposes two neural network models for the robust source localization problem in the time-of-arrival (TOA) model. Our development is based on the Lagrange programming neural network (LPNN) approach. To alleviate the influence of outliers, this paper introduces an l 1-norm objective function. However, in the traditional LPNN approach, the constraints and the objective function must be differentiable. We devise two methods to handle the non-differentiable l 1-norm term. The first method introduces an approximation to replace the l 1-norm term. The second one uses the concept of hidden state from the locally competitive algorithm (LCA) to avoid the computation of the gradient vector at non-differentiable points. We also present the local stability of the two proposed models. From the simulations, our proposed methods are capable to handle the outliers and their error performances are better than many existing TOA algorithms.
      PubDate: 2017-07-28
      DOI: 10.1007/s12559-017-9495-z
  • A Comparative Study of In-Air Trajectories at Short and Long Distances in
           Online Handwriting
    • Authors: Carlos Alonso-Martinez; Marcos Faundez-Zanuy; Jiri Mekyska
      Abstract: Abstract Existing literature about online handwriting analysis to support pathology diagnosis has taken advantage of in-air trajectories. A similar situation occurred in biometric security applications where the goal is to identify or verify an individual using his signature or handwriting. These studies do not consider the distance of the pen tip to the writing surface. This is due to the fact that current acquisition devices do not provide height formation. However, it is quite straightforward to differentiate movements at two different heights (a) short distance: height lower or equal to 1 cm above a surface of digitizer, the digitizer provides x and y coordinates; (b) long distance: height exceeding 1 cm, the only information available is a time stamp that indicates the time that a specific stroke has spent at long distance. Although short distance has been used in several papers, long distances have been ignored and will be investigated in this paper. In this paper, we will analyze a large set of databases (BIOSECUR-ID, EMOTHAW, PaHaW, OXYGEN-THERAPY, and SALT), which contain a total amount of 663 users and 17,951 files. We have specifically studied (a) the percentage of time spent on-surface, in-air at short distance, and in-air at long distance for different user profiles (pathological and healthy users) and different tasks; (b) the potential use of these signals to improve classification rates. Our experimental results reveal that long distance movements represent a very small portion of the total execution time (0.5% in the case of signatures and 10.4% for uppercase words of BIOSECUR-ID, which is the largest database). In addition, significant differences have been found in the comparison of pathological versus control group for letter “l” in PaHaW database (p = 0.0157) and crossed pentagons in SALT database (p = 0.0122).
      PubDate: 2017-07-27
      DOI: 10.1007/s12559-017-9501-5
  • Lane Boundary Detection Algorithm Based on Vector Fuzzy Connectedness
    • Authors: Lingling Fang; Xianghai Wang
      Abstract: Abstract In most actual autonomous guided vehicles (AGV), path finding and navigational control systems are usually implemented using images captured by cameras mounted on the vehicles. This paper presents and discusses a lane boundary detection technique that is necessary for the task of autonomous driving. In this paper, a new method called vector fuzzy connectedness (VFC) is presented to detect and estimate road lane boundaries. First, a preprocessed technique is used to obtain a skeleton image. Based on the result, the curvatures of the left and right lane boundaries are estimated, and the control points are found by the VFC method. Finally, the non-uniform b-spline (NUBS) interpolation method is introduced to construct the road lane boundaries. The proposed VFC method integrates the vector concept and fuzzy connectedness into the lane boundary detection algorithm. As shown in the example results, the proposed method can extract various road lane shapes and types from real road frames even under complex road environments. For navigation tasks, it is necessary to determine the position of the vehicle relative to the road. These results prove that the proposed detection method can assist in a number of actual AGV assistant applications. In the future, some intelligent techniques will be applied to test the AGV system with obstacle avoidance conditions on real world roads.
      PubDate: 2017-07-06
      DOI: 10.1007/s12559-017-9483-3
  • A Semi-blind Model with Parameter Identification for Building Temperature
    • Authors: Xing Luo; Xu Zhu; Eng Gee Lim; Yi Huang
      Abstract: Abstract An accurate thermal model for building enables the heating system (HS) to work efficiently as well as save energy. Thermal modelling often requires physical parameters of the building, which are difficult to be accurately determined. The aim of this work is to develop an optimal thermal model for better understanding of thermal dynamics with the goal of using this to estimate temperature variation in a few hours ahead within building. Based on the characteristics of thermal motion, a conventional physics-based (PB) model for building temperature estimation is introduced first. Afterwards, in order to refine the model and improve the actual performance, we propose an innovative semi-blind (SB) model based on data-driven approaches. Additionally, the methodologies including self-adaptive algorithms (SAAs) and grey prediction technique (GPT) have been applied in dealing with the integrated parameters estimation (IPE) process to ensure the practicability of the implemented model. The proposed model schema is validated by testing in a laboratory. The results indicate that the proposed approach achieves much higher accuracy in estimating temperature variation than the conventional PB model, with only limited knowledge of the building characteristics. The root mean square deviation (RMSD) of SB model and PB model are 0.18 and 0.43, respectively. According to the results, it can be concluded that the proposed SB model is able to appropriately estimate the internal temperature values and great improvement has been achieved comparing with the original thermal model.
      PubDate: 2017-06-29
      DOI: 10.1007/s12559-017-9486-0
  • Semantic Category-Based Classification Using Nonlinear Features and
           Wavelet Coefficients of Brain Signals
    • Authors: Ali Torabi; Fatemeh Zareayan Jahromy; Mohammad Reza Daliri
      Abstract: Abstract The problem of object recognition is solved in the brain using different strategies. These strategies are to some extent known to neuroscientists, but researches on this issue are still in progress to understand more accurately the computational, anatomical, and physiological aspects of this fast and accurate capability of the brain. In this paper, we presented a method, based on extracting nonlinearity of signals such as L-Z complexity, fractal dimension, Lyapunov exponents, Hurst exponents, and entropy, to classify single trials into their related semantic category groups with a linear SVM classifier. Furthermore, we proposed to combine nonlinear features mentioned above with wavelet coefficients to improve the classification accuracy. EEG signals were recorded from human subjects according to 10–20 system while performing a “go/no go” object-categorization task. Combining nonlinear features with wavelet coefficients led to a significant enhancement in classification accuracy (73%) relative to wavelet coefficients alone (54%). Feature-selection results showed that a significantly larger proportion of final selected features include nonlinear features (44%) relative to the first ratio of them (14%) to whole features. This ratio enhancement demonstrates the essential role of nonlinear features in the obtained classification accuracy. In addition, C3 channel and Katz fractal dimension were introduced as the most informative channel and the best nonlinear feature, respectively.
      PubDate: 2017-06-23
      DOI: 10.1007/s12559-017-9487-z
  • Nature-Inspired Chemical Reaction Optimisation Algorithms
    • Authors: Nazmul Siddique; Hojjat Adeli
      Abstract: Abstract Nature-inspired meta-heuristic algorithms have dominated the scientific literature in the areas of machine learning and cognitive computing paradigm in the last three decades. Chemical reaction optimisation (CRO) is a population-based meta-heuristic algorithm based on the principles of chemical reaction. A chemical reaction is seen as a process of transforming the reactants (or molecules) through a sequence of reactions into products. This process of transformation is implemented in the CRO algorithm to solve optimisation problems. This article starts with an overview of the chemical reactions and how it is applied to the optimisation problem. A review of CRO and its variants is presented in the paper. Guidelines from the literature on the effective choice of CRO parameters for solution of optimisation problems are summarised.
      PubDate: 2017-06-17
      DOI: 10.1007/s12559-017-9485-1
  • An Efficient Corpus-Based Stemmer
    • Authors: Jasmeet Singh; Vishal Gupta
      Abstract: Abstract Word stemming is a linguistic process in which the various inflected word forms are matched to their base form. It is among the basic text pre-processing approaches used in Natural Language Processing and Information Retrieval. Stemming is employed at the text pre-processing stage to solve the issue of vocabulary mismatch or to reduce the size of the word vocabulary, and consequently also the dimensionality of training data for statistical models. In this article, we present a fully unsupervised corpus-based text stemming method which clusters morphologically related words based on lexical knowledge. The proposed method performs cognitive-inspired computing to discover morphologically related words from the corpus without any human intervention or language-specific knowledge. The performance of the proposed method is evaluated in inflection removal (approximating lemmas) and Information Retrieval tasks. The retrieval experiments in four different languages using standard Text Retrieval Conference, Cross-Language Evaluation Forum, and Forum for Information Retrieval Evaluation collections show that the proposed stemming method performs significantly better than no stemming. In the case of highly inflectional languages, Marathi and Hungarian, the improvement in Mean Average Precision is nearly 50% as compared to unstemmed words. Moreover, the proposed unsupervised stemming method outperforms state-of-the-art strong language-independent and rule-based stemming methods in all the languages. Besides Information Retrieval, the proposed stemming method also performs significantly better in inflection removal experiments. The proposed unsupervised language-independent stemming method can be used as a multipurpose tool for various tasks such as the approximation of lemmas, improving retrieval performance or other Natural Language Processing applications.
      PubDate: 2017-06-07
      DOI: 10.1007/s12559-017-9479-z
  • FE-ELM: A New Friend Recommendation Model with Extreme Learning Machine
    • Authors: Zhen Zhang; Xiangguo Zhao; Guoren Wang
      Abstract: Abstract Friend recommendation is one of the most popular services in location-based social network (LBSN) platforms, which recommends interested or familiar people to users. Except for the original social property and textual property in social networks, LBSN specially owns the spatial-temporal property. However, none of the existing methods fully utilized all the three properties (i.e., just one or two), which may lead to the low recommendation accuracy. Moreover, these existing methods are usually inefficient. In this paper, we propose a new friend recommendation model to solve the above shortcomings of the existing methods, called feature extraction-extreme learning machine (FE-ELM), where friend recommendation is regarded as a binary classification problem. Classification is an important task in cognitive computation community. First, we use new strategies in our FE-ELM model to extract the spatial-temporal feature, social feature, and textual feature. These features make full use of all above properties of LBSN and ensure the recommendation accuracy. Second, our FE-ELM model also takes advantage of the extreme learning machine (ELM) classifier. ELM has fast learning speed and ensures the recommendation efficiency. Extensive experiments verify the accuracy and efficiency of FE-ELM model.
      PubDate: 2017-06-07
      DOI: 10.1007/s12559-017-9484-2
  • Removal of Electrooculogram Artifacts from Electroencephalogram Using
    • Authors: Banghua Yang; Tao Zhang; Yunyuan Zhang; Wanquan Liu; Jianguo Wang; Kaiwen Duan
      Abstract: Abstract Electrooculogram (EOG) is one of the major artifacts in the design of electroencephalogram (EEG)-based brain computer interfaces (BCIs). That removing EOG artifacts automatically while retaining more neural data will benefit for further feature extraction and classification. In order to remove EOG artifacts automatically as well as reserve more useful information from raw EEG, this paper proposes a novel blind source separation method called CCA-EEMD (canonical correlation analysis, ensemble empirical mode decomposition). Technically, the major steps of CCA-EEMD are as follows: Firstly, the multiple-channel original EEG signals are separated into several uncorrelated components using CCA. Then, the EOG component can be identified automatically by its kurtosis value. Next, the identified EOG component is decomposed into several intrinsic mode functions (IMFs) by EEMD. The IMFs uncorrelated to the EOG component are recognized and retained, and a new component will be constructed by the retained IMFs. Finally, the clean EEG signals are reconstructed. Keep in mind that the novelty of this paper is that the identified EOG component is not removed directly but used to extract neural EEG data, which would keep more effective information. Our tests with the data of seven subjects demonstrate that the proposed method has distinct advantages over other two commonly used methods in terms of average root mean square error [37.71 ± 0.14 (CCA-EEMD), 44.72 ± 0.13 (CCA), 49.59 ± 0.16 (ICA)], signal-to-noise ratio [3.59 ± 0.24 (CCA-EEMD), −6.53 ± 0.18(CCA), −8.43 ± 0.26 (ICA)], and classification accuracy [0.88 ± 0.002 (CCA-EEMD), 0.79 ± 0.001 (CCA), 0.73 ± 0.002 (ICA)]. The proposed method can not only remove EOG artifacts automatically but also keep the integrity of EEG data to the maximum extent.
      PubDate: 2017-06-05
      DOI: 10.1007/s12559-017-9478-0
  • Application of Rough Set-Based Feature Selection for Arabic Sentiment
    • Authors: Qasem A. Al-Radaideh; Ghufran Y. Al-Qudah
      Abstract: Abstract Sentiment analysis is considered as one of the recent applications of text categorization that categories the emotions expressed in text as negative, positive, and natural. Rough set theory is a mathematical tool used to analyze uncertainty, incomplete information, and data reduction. Indiscernibility, reduct, and core are essential concepts in rough set theory that can be employed for data classification and knowledge reduction. This paper proposes to use the rough set-based methods for sentiment analysis to classify tweets that are written in the Arabic language. The paper investigates the application of the reduct concept of rough set theory as a feature selection method for sentiment analysis. This paper investigates four reduct computation techniques to generate the set of reducts. For classification purposes, two rule generation algorithms have been studied to build the rough set rule-based classifier. An Arabic data set of 4800 tweets is used in the experiments to validate the use of reduct computation for Arabic sentiment analysis. The results of the experiments showed that using rough set reducts techniques lead to different results and some of them can perform better than non-rough set classifier. The best classification accuracy rate was for rough set classifier using the full attribute weighting reduct generation algorithm which achieved an accuracy of 74%. The primary results indicate that using the rough set theory framework for sentiment analysis is an appealing option where it can enhance the overall accuracy and reduce the number of used terms for classification which in turn will lead to a faster classification process, especially with a large dataset.
      PubDate: 2017-06-03
      DOI: 10.1007/s12559-017-9477-1
  • A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir
    • Authors: Andrew Katumba; Matthias Freiberger; Peter Bienstman; Joni Dambre
      Abstract: Abstract Photonic reservoir computing has evolved into a viable contender for the next generation of analog computing platforms as industry looks beyond standard transistor-based computing architectures. Integrated photonic reservoir computing, particularly on the silicon-on-insulator platform, presents a CMOS-compatible, wide bandwidth, parallel platform for implementation of optical reservoirs. A number of demonstrations of the applicability of this platform for processing optical telecommunication signals have been made in the recent past. In this work, we take it a stage further by performing an architectural search for designs that yield the best performance while maintaining power efficiency. We present numerical simulations for an optical circuit model of a 16-node integrated photonic reservoir with the input signal injected in combinations of 2, 4, and 8 nodes, or into all 16 nodes. The reservoir is composed of a network of passive photonic integrated circuit components with the required nonlinearity introduced at the readout point with a photodetector. The resulting error performance on the temporal XOR task for these multiple input cases is compared with that of the typical case of input to a single node. We additionally introduce for the first time in our simulations a realistic model of a photodetector. Based on this, we carry out a full power-level exploration for each of the above input strategies. Multiple-input reservoirs achieve better performance and power efficiency than single-input reservoirs. For the same input power level, multiple-input reservoirs yield lower error rates. The best multiple-input reservoir designs can achieve the error rates of single-input ones with at least two orders of magnitude less total input power. These results can be generally attributed to the increase in richness of the reservoir dynamics and the fact that signals stay longer within the reservoir. If we account for all loss and noise contributions, the minimum input power for error-free performance for the optimal design is found to be in the ≈1 mW range.
      PubDate: 2017-04-28
      DOI: 10.1007/s12559-017-9465-5
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016