for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 974 journals)
    - APPLIED MATHEMATICS (84 journals)
    - GEOMETRY AND TOPOLOGY (20 journals)
    - MATHEMATICS (715 journals)
    - MATHEMATICS (GENERAL) (43 journals)
    - NUMERICAL ANALYSIS (22 journals)
    - PROBABILITIES AND MATH STATISTICS (90 journals)

MATHEMATICS (715 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 4)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 7)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 15)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 29)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 12)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 4)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19)
Advances in Decision Sciences     Open Access   (Followers: 3)
Advances in Difference Equations     Open Access   (Followers: 3)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 13)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 3)
Advances in Materials Sciences     Open Access   (Followers: 14)
Advances in Mathematical Physics     Open Access   (Followers: 4)
Advances in Mathematics     Full-text available via subscription   (Followers: 11)
Advances in Numerical Analysis     Open Access   (Followers: 5)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 6)
Advances in Pure Mathematics     Open Access   (Followers: 6)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 11)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Al-Jabar : Jurnal Pendidikan Matematika     Open Access   (Followers: 1)
Algebra and Logic     Hybrid Journal   (Followers: 6)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 6)
American Journal of Operations Research     Open Access   (Followers: 5)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 8)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 5)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Data Science     Hybrid Journal   (Followers: 12)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription   (Followers: 1)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
ANZIAM Journal     Open Access   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 2)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 11)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 7)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 6)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 2)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 3)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 2)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Armenian Journal of Mathematics     Open Access  
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 20)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 6)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 4)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access   (Followers: 1)
Baltic International Yearbook of Cognition, Logic and Communication     Open Access   (Followers: 1)
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access   (Followers: 2)
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 20)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 12)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of Symbolic Logic     Full-text available via subscription   (Followers: 2)
Bulletin of the Australian Mathematical Society     Full-text available via subscription   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 4)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 19)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 1)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Combinatorics and Optimization     Open Access  
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 8)
Compositio Mathematica     Full-text available via subscription   (Followers: 1)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 5)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 8)
Concrete Operators     Open Access   (Followers: 5)
Confluentes Mathematici     Hybrid Journal  
Contributions to Game Theory and Management     Open Access  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 13)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Current Research in Biostatistics     Open Access   (Followers: 9)
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 29)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 3)
Differentsial'nye Uravneniya     Open Access  
Discrete Mathematics     Hybrid Journal   (Followers: 8)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae - General Algebra and Applications     Open Access  
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Diskretnaya Matematika     Full-text available via subscription  
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Akademii Nauk     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Eco Matemático     Open Access  
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Combinatorics     Open Access  
Electronic Journal of Differential Equations     Open Access  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 4)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)

        1 2 3 4 | Last

Journal Cover
Archive of Applied Mechanics
Journal Prestige (SJR): 0.79
Citation Impact (citeScore): 2
Number of Followers: 5  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0939-1533 - ISSN (Online) 1432-0681
Published by Springer-Verlag Homepage  [2351 journals]
  • Stress concentration around a rectangular cuboid hole in a
           three-dimensional elastic body under tension loading
    • Authors: Yi Yang; Yufeng Cheng; Weidong Zhu
      Pages: 1229 - 1241
      Abstract: Stress concentration caused by holes can be investigated by numerical and analytical methods. Current analytical methods can only solve two-dimensional problems. This paper proposes an analytical study on a three-dimensional stress concentration problem that involves a rectangular cuboid hole in a three-dimensional elastic body under tension loading. Based on the finite element method and U-transformation method, the problem can be expressed as a set of uncoupled equations with cyclic periodicity. Displacements of the three-dimensional elastic body are derived in analytical form to study stress distribution in it. Numerical simulation is conducted using ABAQUS to verify the analytical solution. Stress concentration factors in cases of uniaxial, biaxial, and triaxial tensions and the effect of the side ratio of the hole on them are discussed.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1369-7
      Issue No: Vol. 88, No. 8 (2018)
       
  • Dynamic study of viscoelastic rotor: a comparative study using analytical
           and finite element model considering higher-order system
    • Authors: H. Roy; S. Chandraker
      Pages: 1243 - 1261
      Abstract: In the past, many researchers developed rotor models using either lump system or finite element approach, where material damping played a crucial role in dynamic behaviour. Such damping in any rotating structure triggers instability at the supercritical range. In most of the literatures, material damping has been incorporated either by frequency-independent hysteretic damping or frequency-dependent viscous damping, but these models are insufficient to estimate the dynamic characteristics of the system. The motivation for using general viscoelastic model arises from a need to capture the influence of both types of damping. Such type of modelling is done through operator-based constitutive relationship. The numerator and denominator of material modulus are a polynomial of differential time operator, and polynomial coefficients are known as a viscoelastic parameter. The operator-based constitutive relationship is further utilized to bring down higher-order equations of motion by using two different techniques, i.e. (a) analytical approach and (b) finite element approach.The shaft damping is tackled in such a manner that the dissipation effects can be considered through all coordinates. The significance of both approaches is explained with the help of stability and response analysis at various disc positions.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1370-1
      Issue No: Vol. 88, No. 8 (2018)
       
  • Complete vibrational bandgap in thin elastic metamaterial plates with
           periodically slot-embedded local resonators
    • Authors: Jia-Hao He; Hsin-Haou Huang
      Pages: 1263 - 1274
      Abstract: This paper presents a metamaterial plate (metaplate) consisting of a periodic array of holes on a homogeneous thin plate with slot-embedded resonators. The study numerically proves that the proposed model can generate a complete vibrational bandgap in the low-frequency range. A simplified analytical model was proposed for feasibly and accurately capturing the dispersion behavior and first bandgap characteristics in the low-frequency range, which can be used for initial design and bandgap study of the metaplate. A realistic and practical unit metaplate was subsequently designed to verify the analytical model through finite element simulations. The metaplate not only generated a complete vibrational bandgap but also exhibited excellent agreement in both analytical and finite element models for predicting the bandgap characteristics. This study facilitates the design of opening and tuning bandgaps for potential applications such as low-frequency vibration isolation and stress wave mitigation.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1371-0
      Issue No: Vol. 88, No. 8 (2018)
       
  • Longitudinal impact into viscoelastic media
    • Authors: George A. Gazonas; Raymond A. Wildman; David A. Hopkins; Michael J. Scheidler
      Pages: 1275 - 1304
      Abstract: We consider several one-dimensional impact problems involving finite or semi-infinite, linear elastic flyers that collide with and adhere to a finite stationary linear viscoelastic target backed by a semi-infinite linear elastic half-space. The impact generates a shock wave in the target which undergoes multiple reflections from the target boundaries. Laplace transforms with respect to time, together with impact boundary conditions derived in our previous work, are used to derive explicit closed-form solutions for the stress and particle velocity in the Laplace transform domain at any point in the target. For several stress relaxation functions of the Wiechert (Prony series) type, a modified Dubner–Abate–Crump algorithm is used to numerically invert those solutions to the time domain. These solutions are compared with numerical solutions obtained using both a finite-difference method and the commercial finite element code, COMSOL Multiphysics. The final value theorem for Laplace transforms is used to derive new explicit analytical expressions for the long-time asymptotes of the stress and velocity in viscoelastic targets; these results are useful for the verification of viscoelastic impact simulations taken to long observation times.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1372-z
      Issue No: Vol. 88, No. 8 (2018)
       
  • Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with
           rub-impact
    • Authors: Chuanzong Sun; Yushu Chen; Lei Hou
      Pages: 1305 - 1324
      Abstract: In this paper, the nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact are investigated. A novel framework is proposed, in which the sophisticated geometrical structure is considered by finite solid element method and efficient model order reduction is applied to the model. The validity and efficiency of the reduced-order model are verified through critical speed and eigen problems. Its stable and unstable solutions are calculated by means of the assembly technique and the multiple harmonic balance method combined with the alternating frequency/time domain technique (MHB–AFT). The accurate frequency amplitudes are obtained accordingly for each harmonic component. The stabilities of the solutions are checked by the Floquet theory. Through the numerical computations, some complex nonlinear phenomena, such as combined frequency vibration, hysteresis, and resonant peak shifting, are discovered when the rub-impact occurs. The results also show that the control parameters of mass eccentricity, rub-impact stiffness, and rotational speed ratio make significant but different influences on the dynamical characteristics of the system. Therefore, a key innovation of this paper is the marriage of a hybrid modeling method—accurate modeling technique combined with model order reduction and solution method—highly efficient semi-analytic method of MHB–AFT. The proposed framework is benefit for parametric study and provides a better understanding of the nonlinear dynamical behaviors of the real complicated dual-rotor aero-engine with rub-impact.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1373-y
      Issue No: Vol. 88, No. 8 (2018)
       
  • A time-domain system identification numerical procedure for obtaining
           linear dynamical models of multibody mechanical systems
    • Authors: Carmine M. Pappalardo; Domenico Guida
      Pages: 1325 - 1347
      Abstract: This paper is focused on the development of a numerical procedure for solving the system identification problem of linear dynamical models that mathematically describe multibody mechanical systems. To this end, an input–output representation of the time evolution of a general mechanical system based on a sequence of matrices referred to as Markov parameters is employed. The set of Markov parameters incorporate the state-space matrices that allow for describing the dynamic behavior of a general mechanical system considering the assumption of structural linearity. The system Markov parameters are defined by means of a discretization process applied to the analytical description of a mechanical system, and therefore, they are difficult to obtain directly from observable measurements. However, a state observer can be introduced in order to define a set of observer Markov parameters that can be readily recovered from input–output experimental data. The observer Markov parameters obtained by using a least-square approach allow for computing in a recursive manner the system Markov parameters as well as another discrete sequence of matrices referred to as observer gain Markov parameters. Subsequently, the system and observer gain Markov parameters identified from observable input–output data are used for constructing a sequence of generalized Hankel matrices from which a state-space model of the mechanical system of interest can be extracted. This fundamental step of the identification procedure is performed in the algorithm elaborated in this work employing a numerical procedure which relies on the use of the Moore–Penrose pseudoinverse matrix obtained by means of the singular value decomposition. In the paper, the principal analytical and numerical aspects of the proposed identification algorithm are described in detail. Furthermore, a numerical example based on a simple vehicle model is discussed in order to verify by means of numerical experiments the effectiveness of the identification procedure developed in this work.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1374-x
      Issue No: Vol. 88, No. 8 (2018)
       
  • Vibration performance of a vertical conveyor system under two simultaneous
           resonances
    • Authors: H. S. Bauomy; A. T. EL-Sayed
      Pages: 1349 - 1368
      Abstract: This study focused on the vibration behavior of a modified vertical conveyor system. The calculated system is exhibited by 2-degree-of-freedom counting quadratic and cubic nonlinearities among both external and parametric forces. Technique of multiple scales connected to gain approximate solutions and study stability of measured structure. All resonances from mathematical solution are extracted. The performance of the system is measured by means of Runge–Kutta fourth-order process (e.g., ode45 in MATLAB). Moreover, two simultaneous resonance cases of this system have been studied analytically and numerically. Stability of acquired numerical solution discovered via frequency response equations. Influences contained by important coefficients scheduled frequency response curves of the considered structure are studied inside numerical results. Methodical results obtained in this work agreed well through the numerical outcome. The description outcome is matched up to available recently published articles.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1375-9
      Issue No: Vol. 88, No. 8 (2018)
       
  • Symbolic linearization and vibration analysis of constrained multibody
           systems
    • Authors: Nguyen Van Khang; Nguyen Sy Nam; Nguyen Van Quyen
      Pages: 1369 - 1384
      Abstract: A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1376-8
      Issue No: Vol. 88, No. 8 (2018)
       
  • Pochhammer–Chree waves: polarization of the axially symmetric modes
    • Authors: Alla V. Ilyashenko; Sergey V. Kuznetsov
      Pages: 1385 - 1394
      Abstract: The exact solutions of the linear Pochhammer–Chree equation for propagating harmonic waves in a cylindrical rod are analyzed. Spectral analysis of the matrix dispersion equation for longitudinal axially symmetric modes is performed. Analytical expressions for displacement fields are obtained. Variation of wave polarization on the free surface due to variation of Poisson’s ratio and circular frequency is analyzed. It is observed that at the phase speed coinciding with the bulk shear speed ( \(c_2\) ) all the components of the displacement field vanish, meaning that no longitudinal axisymmetric Pochhammer–Chree wave can propagate at \(c_2\) phase speed.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1377-7
      Issue No: Vol. 88, No. 8 (2018)
       
  • Numerical and experimental analysis of the vibroacoustic behavior of an
           electric window-lift gear motor
    • Authors: Emmanuel Rigaud; Pierre-Henri Cornuault; Benoît Bazin; Emmanuel Grandais-Menant
      Pages: 1395 - 1410
      Abstract: This paper focuses on the numerical analysis of the vibroacoustic behavior of an electric window-lift gear motor for automotive vehicle which consists of a DC motor and a worm gear. A dynamic modeling of the gear motor is proposed. The excitation sources correspond to radial electromagnetic forces applied to steel stator, electromagnetic input torque fluctuation, rotor mechanical imbalance, worm gear static transmission error and mesh stiffness fluctuations and gear wheel eccentricity. Parametric equations of motion are solved using an iterative spectral method. It allows the computing of the vibroacoustic response of the system, taking account of the interaction between the mesh stiffness fluctuation and the other excitations. The simulation results are validated from comparison with experimental vibroacoustic measurements performed with a specific test bench. Spectrograms of the dynamic response show components corresponding to the harmonics of the excitation spectra, as well as lateral components arising around the mesh frequency and the input torque fluctuation frequency. This spectral enrichment is generated by the interaction between the mesh stiffness fluctuation and the other excitations. The lateral components contribute little to the overall level of the vibroacoustic response, but they may have a significant impact on the quality of noise radiated directly by the gear motor or indirectly by its supporting structure. Finally, the weights of the different excitation sources to the spatial-average mean-square velocity of the radiating surface and the equivalent global dynamic force transmitted to the supporting structure are compared.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1378-6
      Issue No: Vol. 88, No. 8 (2018)
       
  • On the parametric and external resonances of rectangular plates on an
           elastic foundation traversed by sequential masses
    • Authors: Ehsan Torkan; Mostafa Pirmoradian; Mohammad Hashemian
      Pages: 1411 - 1428
      Abstract: Elastodynamic behavior analysis of structures under moving loads is of great interest in most engineering fields. In this study, dynamic instability due to parametric and external resonances of simply supported thin rectangular plates on an elastic foundation under successive moving masses is investigated as a linear time-periodic problem. Effects of all components of moving mass inertia are considered in the analysis. The governing partial differential equation of motion is transformed to a set of ordinary differential equations using the Galerkin method. A comprehensive study of resonance conditions is carried out for two cases: (1) the masses move on a rectilinear path parallel to the longitudinal edges of the plate, and (2) a sequence of moving masses along the diagonal of the plate. Homotopy perturbation method (HPM) is employed as a semi-analytical method to obtain stable and unstable zones in a parameters space in additions to external resonance curves. In order to validate the HPM results, Floquet theory is applied to the state-space equations. A good agreement between two methods is observed. The results of this study are useful for the design of road pavements resting on foundation soil, slab-type bridges, airport pavements, and decks of ships on which aircrafts land.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1379-5
      Issue No: Vol. 88, No. 8 (2018)
       
  • Response sensitivity analysis of laminated composite shells based on
           higher-order shear deformation theory
    • Authors: Sandipan Nath Thakur; Chaitali Ray; Subrata Chakraborty
      Pages: 1429 - 1459
      Abstract: Laminated composite shells are widely used as structural components in important aerospace, marine, automobile engineering structures. Thus, appropriate evaluation of sensitivities of responses like deflection, frequency, buckling etc. due to changes in design variables is of great importance for efficient and safe design of such structures. The present paper deals with a comprehensive sensitivity analysis of laminated composite shells using \({C}^{0 }\) finite element with more accurate theoretical model based on higher-order shear deformation theory (HSDT). The sensitivity analysis of deflection and natural frequency with respect to important design parameters such as material parameters, angle of fiber orientation, radius of curvature, density of materials and external load is presented. Furthermore, sensitivity-based importance factor for each parameter is obtained so that the most important parameters affecting the shell responses can be readily identified. The response sensitivities obtained by the proposed formulation are compared with those obtained by the finite difference procedure. An extensive parametric study has been carried out considering different variables to understand the performance of laminated shell.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1380-z
      Issue No: Vol. 88, No. 8 (2018)
       
  • An implicit representation of phase interface motion with internal
           variables
    • Authors: Antonios I. Arvanitakis
      Abstract: Internal variables in continuous media with a microstructure of multiple phases spatially distributed within its volume are discussed in this paper. However, in our analysis phase transition boundaries are represented implicitly under the use of the level-set formulation. Each level-set function representing an interface corresponds to an internal variable of state. Employing the general thermodynamic theory of internal variables within the framework of canonical thermomechanics, we derive the evolution equations for the level-set functions describing the motion of the interfaces inside a material. Finally, the concept of two internal variables and both dissipative and non-dissipative cases is discussed.
      PubDate: 2018-07-12
      DOI: 10.1007/s00419-018-1424-4
       
  • The effect of longitudinal cracks on buckling loads of columns
    • Authors: Simon Schnabl; Igor Planinc
      Abstract: This paper focuses on development of a new mathematical model and its analytical solution for the buckling analysis of elastic longitudinally cracked columns with finite axial adhesion between the cracked sections. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated for different crack lengths and various degrees of the contact adhesion. It is shown that the critical buckling loads can be greatly affected by the crack length and degree of the connection between the cracked sections. Finally, the presented results can be used as a benchmark solution.
      PubDate: 2018-07-12
      DOI: 10.1007/s00419-018-1426-2
       
  • Non-uniform plastic deformations of crystals undergoing anti-plane
           constrained shear
    • Authors: K. C. Le; Y. Piao
      Abstract: The present paper studies non-uniform plastic deformations of crystals undergoing anti-plane constrained shear. The asymptotically exact energy density of crystals containing a moderately large density of excess dislocations is found by the averaging procedure. This energy density is extrapolated to the cases of extremely small or large dislocation densities. Taking into account the configurational temperature and the density of redundant dislocations, we develop the thermodynamic dislocation theory for non-uniform plastic deformations and use it to predict stress–strain curves and dislocation densities.
      PubDate: 2018-07-10
      DOI: 10.1007/s00419-018-1425-3
       
  • On measuring the dynamic elastic modulus for metallic materials using
           stress wave loading techniques
    • Authors: Yinggang Miao; Bing Du; Muhammad Zakir Sheikh
      Abstract: Metallic materials are mostly rate dependent in mechanical behavior, but their elastic modulus under high strain rate is hard to measure accurately. In this paper, two methodologies are proposed based on stress wave theory in hope of accurate measurement for metallic materials, for example Ti6Al4V alloy. One is based on the one-dimension stress wave propagation in a long Ti6Al4V bar, and the elastic modulus under a high strain rate is obtained from the calculated stress wave speed. The other technique is to utilize the integrated Hopkinson pressure bar made of Ti6Al4V material. The obtained elastic moduli from these methods are compared and analyzed, and the results are consistent with each other. The numerical simulations with cylindrical and dogbone-shaped specimens are conducted to show the influence of bar indentation on measurement accuracy. An alternative method is introduced based on the vertical split Hopkinson pressure bar, which can extend the integrated Hopkinson pressure bar method for most metallic materials with small bulk. The verification experiments are also conducted. Finally, the limiting strain rate is estimated for potential measurement problems.
      PubDate: 2018-07-06
      DOI: 10.1007/s00419-018-1422-6
       
  • Failure assessment of cracked uni-planar square hollow section T-, Y- and
           K-joints using the new BS 7910:2013+A1:2015
    • Authors: Vipin Sukumara Pillai; Athanasios Kolios; Seng Tjhen Lie
      Abstract: This paper covers the validation of standard safety assessment procedure in the new BS 7910:2013+A1:2015 for cracked uni-planar square hollow section (SHS) T-, Y- and K-joints using the finite element analyses. The procedure is based on the failure assessment diagram (FAD) method. A completely new and robust finite element mesh generator is developed, and it is validated using the full-scale experimental test results. FAD curves are constructed using the elastic J-integral ( \(J_{\mathrm{e}}\) ), the elastic-plastic J-integral ( \(J_{\mathrm{ep}}\) ) and the plastic collapse load ( \(P_{\mathrm{c}}\) ) values calculated using the 3D cracked models of the joints. The results reveal that the standard Option 1 FAD curve of the new BS code is not always safe in assessing the safety and integrity of cracked uni-planar SHS joints. Therefore, a penalty factor of 1.2 for plastic collapse load is recommended to move all the constructed Option 3 FAD curves above the standard Option 1 curve. The new Option 3 FAD curves are found to generate optimal solutions for cracked uni-planar SHS T-, Y- and K-joints.
      PubDate: 2018-07-06
      DOI: 10.1007/s00419-018-1423-5
       
  • Interface instability of an inelastic normal collision
    • Authors: P. F. Pelz; M. M. G. Kuhr
      Abstract: The interface of two normal colliding media is always unstable. This is true even for both media showing the same density. The common precondition for a Rayleigh–Taylor instability “the lighter medium pushes the heavier” is generalised for the case that two media experience different accelerations in a short period after colliding. The arithmetic average of the accelerations determines the evolution of the wavy interface shape. The theory is applicable for various technologies of impact welding, such as explosion and magnetic pulse welding.
      PubDate: 2018-07-04
      DOI: 10.1007/s00419-018-1420-8
       
  • Energetic assessment of an embedded aircraft propulsion: an analytic
           approach
    • Authors: Peter F. Pelz; Ferdinand-J. Cloos; Jörg Sieber
      Abstract: This paper investigates the energetic advantage of the embedded propulsion compared to a state-of-the-art propulsion of an aircraft. Hereby, the integral method of boundary layer theory together with the potential theory is applied to analyze the boundary layer thickness and the impact of the flow acceleration due to the embedded propulsion. The aircraft body is treated as a flat plate and the engine as a momentum disk. For an embedded propulsion, there is a trade-off of the engine size, since the propulsion efficiency is affected by the boundary layer. On the one hand, the propulsion inlet momentum is noticeably reduced for a small engine size and the viscous friction is reduced due to boundary layer ingestion. On the other hand, a slow jet speed, i.e., a large engine size, increases the propulsion efficiency as known. The outcome of the energetic assessment is the following: the propulsion efficiency is increased and the drag of the aircraft body is reduced by the embedded propulsion compared to a conventional propulsion. The optimized aircraft engine size depending on Reynolds number is given as well as the dimensionless cost function.
      PubDate: 2018-07-02
      DOI: 10.1007/s00419-018-1417-3
       
  • Mean stress effect in multiaxial fatigue limit criteria
    • Authors: J. Papuga; R. Halama
      Abstract: The paper deals with evaluating the mean stress effect in multiaxial criteria for fatigue limit estimation, with special emphasis on the mean shear stress effect. The usual practice of accepting the mean normal stress effect and neglecting the effect of static torsion is scrutinized. Two methods—two critical plane criteria, PCr (Papuga Criterion) and QCP (Quadratic parameter on the Critical Plane)—are described, and additional local stress parameters representing the mean torsion effect are implemented. The efficiency of the new implementations is evaluated on a large data set of 407 fatigue limits. Additionally, outputs of two other well-known methods—the Crossland method and the Dang Van method—are provided for comparison. The positive outcome of including the mean shear stress effect is evident not only in cases of applied mean torsion load, but also in cases with purely axial loading or with biaxial configurations.
      PubDate: 2018-07-02
      DOI: 10.1007/s00419-018-1421-7
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.198.104.202
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-