for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 910 journals)
    - APPLIED MATHEMATICS (75 journals)
    - GEOMETRY AND TOPOLOGY (20 journals)
    - MATHEMATICS (677 journals)
    - MATHEMATICS (GENERAL) (41 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (78 journals)

MATHEMATICS (677 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 3)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 7)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 25)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 9)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 6)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 18)
Advances in Decision Sciences     Open Access   (Followers: 5)
Advances in Difference Equations     Open Access   (Followers: 2)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 11)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 2)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 6)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 9)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Al-Jabar : Jurnal Pendidikan Matematika     Open Access  
Algebra and Logic     Hybrid Journal   (Followers: 4)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 7)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 8)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 6)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 6)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 3)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 21)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 3)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access   (Followers: 1)
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access   (Followers: 2)
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 11)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 4)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 20)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
CHANCE     Hybrid Journal   (Followers: 6)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Combinatorics and Optimization     Open Access  
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 7)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
Contributions to Game Theory and Management     Open Access  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Current Research in Biostatistics     Open Access   (Followers: 10)
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 3)
Differentsial'nye Uravneniya     Open Access  
Discrete Mathematics     Hybrid Journal   (Followers: 8)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae - General Algebra and Applications     Open Access  
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Diskretnaya Matematika     Full-text available via subscription  
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Akademii Nauk     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Eco Matemático     Open Access  
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Differential Equations     Open Access  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 4)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 5)

        1 2 3 4 | Last

Journal Cover BIT Numerical Mathematics
  [SJR: 1.221]   [H-I: 40]   [0 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-9125 - ISSN (Online) 0006-3835
   Published by Springer-Verlag Homepage  [2355 journals]
  • Time filters increase accuracy of the fully implicit method
    • Authors: Ahmet Guzel; William Layton
      Abstract: This report considers the effect of adding a simple time filter to the fully implicit or backward Euler method. The approach is modular and requires the addition of only one line of additional code. Error estimation and variable time step are straightforward and the individual effect of each step is conceptually clear. The backward Euler method with a curvature reducing time filter induces an equivalent 2-step, second order, A-stable, linear multistep method.
      PubDate: 2018-02-03
      DOI: 10.1007/s10543-018-0695-z
       
  • Computing scattering resonances using perfectly matched layers with
           frequency dependent scaling functions
    • Authors: Lothar Nannen; Markus Wess
      Abstract: Using perfectly matched layers for the computation of resonances in open systems typically produces artificial or spurious resonances. We analyze the dependency of these artificial resonances with respect to the discretization parameters and the complex scaling function. In particular, we study the differences between a standard frequency independent complex scaling and a frequency dependent one. While the standard scaling leads to a linear eigenvalue problem, the frequency dependent scaling leads to a polynomial one. Our studies show that the location of artificial resonances is more convenient for the frequency dependent scaling than for a standard scaling. Moreover, the artificial resonances of a frequency dependent scaling are less sensitive to the discretization parameters. Hence, the use of a frequency dependent scaling simplifies the choice of the corresponding discretization parameters.
      PubDate: 2018-01-20
      DOI: 10.1007/s10543-018-0694-0
       
  • Composite symmetric general linear methods (COSY-GLMs) for the long-time
           integration of reversible Hamiltonian systems
    • Authors: Terence J. T. Norton
      Abstract: In choosing a numerical method for the long-time integration of reversible Hamiltonian systems one must take into consideration several key factors: order of the method, ability to preserve invariants of the system, and efficiency of the computation. In this paper, 6th-order composite symmetric general linear methods (COSY-GLMs) are constructed using a generalisation of the composition theory associated with Runge–Kutta methods (RKMs). A novel aspect of this approach involves a nonlinear transformation which is used to convert the GLM to a canonical form in which its starting and finishing methods are trivial. Numerical experiments include efficiency comparisons to symmetric diagonally-implicit RKMs, where it is shown that COSY-GLMs of the same order typically require half the number of function evaluations, as well as long-time computations of both separable and non-separable Hamiltonian systems which demonstrate the preservation properties of the new methods.
      PubDate: 2018-01-10
      DOI: 10.1007/s10543-017-0692-7
       
  • GCV for Tikhonov regularization by partial SVD
    • Authors: Caterina Fenu; Lothar Reichel; Giuseppe Rodriguez; Hassane Sadok
      Pages: 1019 - 1039
      Abstract: Tikhonov regularization is commonly used for the solution of linear discrete ill-posed problems with error-contaminated data. A regularization parameter that determines the quality of the computed solution has to be chosen. One of the most popular approaches to choosing this parameter is to minimize the Generalized Cross Validation (GCV) function. The minimum can be determined quite inexpensively when the matrix A that defines the linear discrete ill-posed problem is small enough to rapidly compute its singular value decomposition (SVD). We are interested in the solution of linear discrete ill-posed problems with a matrix A that is too large to make the computation of its complete SVD feasible, and show how upper and lower bounds for the numerator and denominator of the GCV function can be determined fairly inexpensively for large matrices A by computing only a few of the largest singular values and associated singular vectors of A. These bounds are used to determine a suitable value of the regularization parameter. Computed examples illustrate the performance of the proposed method.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0662-0
      Issue No: Vol. 57, No. 4 (2017)
       
  • Direct approximation on spheres using generalized moving least squares
    • Authors: Davoud Mirzaei
      Pages: 1041 - 1063
      Abstract: In this paper a direct approximation method on the sphere, constructed by generalized moving least squares, is presented and analyzed. It is motivated by numerical solution of partial differential equations on spheres and other manifolds. The new method generalizes the finite difference methods, someway, for scattered data points on each local subdomain. As an application, the Laplace–Beltrami equation is solved and the theoretical and experimental results are given. The new approach eliminates some drawbacks of the previous methods.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0659-8
      Issue No: Vol. 57, No. 4 (2017)
       
  • A new method for eigenvector derivatives of a quadratic eigenvalue problem
    • Authors: Huiqing Xie
      Pages: 1065 - 1082
      Abstract: A new method is proposed to compute the eigenvector derivative of a quadratic eigenvalue problem (QEP) analytically dependent on a parameter. It avoids the linearization of the QEP. The proposed method can be seen as an improved incomplete modal method. Only a few eigenvectors of the QEP are required. The contributions of other eigenvectors to the desired eigenvector derivative are obtained by an iterative scheme. From this point of view, our method also can be seen as an iterative method. The convergence properties of the proposed method are analyzed. The techniques to accelerate the proposed method are provided. A strategy is developed for simultaneously computing several eigenvector derivatives by the proposed method. Finally some numerical examples are given to demonstrate the efficiency of our method.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0680-y
      Issue No: Vol. 57, No. 4 (2017)
       
  • On the structured backward error of inexact Arnoldi methods for
           (skew)-Hermitian and (skew)-symmetric eigenvalue problems
    • Authors: Ching-Sung Liu; Che-Rung Lee
      Pages: 1083 - 1108
      Abstract: In this paper, we present the inexact structure preserving Arnoldi methods for structured eigenvalue problems. They are called structure preserving because the computed eigenvalues and eigenvectors can preserve the desirable properties of the structures of the original matrices, even with large errors involved in the computation of matrix-vector products. A backward error matrix is called structured if it has the same structure as the original matrix. We derive a common form for the structured backward errors that can be used for different structure preserving processes, and prove the derived form has the minimum Frobenius norm among all possible backward errors. Furthermore, we employ the derived backward errors for some specific structure preserving processes to estimate the accuracy of the solutions obtained by inexact Arnoldi methods for eigenvalue problems. We aim to give, wherever possible, formulae that are inexpensive to compute so that they can be used routinely in practice. Numerical experiments are provided to support the theoretical results.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0660-2
      Issue No: Vol. 57, No. 4 (2017)
       
  • A new method for computing a  p -solution to parametric interval linear
           systems with affine-linear and nonlinear dependencies
    • Authors: Iwona Skalna; Milan Hladík
      Pages: 1109 - 1136
      Abstract: We propose a new approach to computing a parametric solution (the so-called p-solution) to parametric interval linear systems. Solving such system is an important part of many scientific and engineering problems involving uncertainties. The parametric solution has many useful properties. It permits to compute an outer solution, an inner estimate of the interval hull solution, and intervals containing the lower and upper bounds of the interval hull solution. It can also be employed for solving various constrained optimisation problems related to the parametric interval linear system. The proposed approach improves both outer and inner bounds for the parametric solution set. In this respect, the new approach is competitive to most of the existing methods for solving parametric interval linear systems. Improved bounds on the parametric solution set guarantees improved bounds for the solutions of related optimisation problems.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0679-4
      Issue No: Vol. 57, No. 4 (2017)
       
  • Accuracy of singular vectors obtained by projection-based SVD methods
    • Authors: Yuji Nakatsukasa
      Pages: 1137 - 1152
      Abstract: The standard approach to computing an approximate SVD of a large-scale matrix is to project it onto lower-dimensional trial subspaces from both sides, compute the SVD of the small projected matrix, and project it back to the original space. This results in a low-rank approximate SVD to the original matrix, and we can then obtain approximate left and right singular subspaces by extracting subsets from the approximate SVD. In this work we assess the quality of the extraction process in terms of the accuracy of the approximate singular subspaces, measured by the angle between the exact and extracted subspaces (relative to the angle between the exact and trial subspaces). The main message is that the extracted approximate subspaces are optimal usually to within a modest constant.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0665-x
      Issue No: Vol. 57, No. 4 (2017)
       
  • Parametric finite elements with bijective mappings
    • Authors: Patrick Zulian; Teseo Schneider; Kai Hormann; Rolf Krause
      Pages: 1185 - 1203
      Abstract: The discretization of the computational domain plays a central role in the finite element method. In the standard discretization the domain is triangulated with a mesh and its boundary is approximated by a polygon. The boundary approximation induces a geometry-related error which influences the accuracy of the solution. To control this geometry-related error, iso-parametric finite elements and iso-geometric analysis allow for high order approximation of smooth boundary features. We present an alternative approach which combines parametric finite elements with smooth bijective mappings leaving the choice of approximation spaces free. Our approach allows to represent arbitrarily complex geometries on coarse meshes with curved edges, regardless of the domain boundary complexity. The main idea is to use a bijective mapping for automatically warping the volume of a simple parameterization domain to the complex computational domain, thus creating a curved mesh of the latter. Numerical examples provide evidence that our method has lower approximation error for domains with complex shapes than the standard finite element method, because we are able to solve the problem directly on the exact domain without having to approximate it.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0669-6
      Issue No: Vol. 57, No. 4 (2017)
       
  • General order conditions for stochastic partitioned Runge–Kutta
           methods
    • Authors: Sverre Anmarkrud; Kristian Debrabant; Anne Kværnø
      Abstract: In this paper stochastic partitioned Runge–Kutta (SPRK) methods are considered. A general order theory for SPRK methods based on stochastic B-series and multicolored, multishaped rooted trees is developed. The theory is applied to prove the order of some known methods, and it is shown how the number of order conditions can be reduced in some special cases, especially that the conditions for preserving quadratic invariants can be used as simplifying assumptions.
      PubDate: 2017-12-22
      DOI: 10.1007/s10543-017-0693-6
       
  • Multivariate polynomial interpolation using even and odd polynomials
    • Authors: J. M. Carnicer; C. Godés
      Abstract: The Lebesgue constant is a measure for the stability of the Lagrange interpolation. The decomposition of the Lagrange interpolation operator in their even and odd parts with respect to the last variable can be used to find a relation between the Lebesgue constant for a space of polynomials and the corresponding Lebesgue constants for subspaces of even and odd polynomials. It is shown that such a decomposition preserves the stability properties of the Lagrange interpolation operator. We use the Lebesgue functions to provide pointwise quantitative measures of the stability properties and illustrate with examples the behaviour in simple cases.
      PubDate: 2017-12-01
      DOI: 10.1007/s10543-017-0674-9
       
  • Lagrangian and Hamiltonian Taylor variational integrators
    • Authors: Jeremy Schmitt; Tatiana Shingel; Melvin Leok
      Abstract: In this paper, we present a variational integrator that is based on an approximation of the Euler–Lagrange boundary-value problem via Taylor’s method. This can be viewed as a special case of the shooting-based variational integrator. The Taylor variational integrator exploits the structure of the Taylor method, which results in a shooting method that is one order higher compared to other shooting methods based on a one-step method of the same order. In addition, this method can generate quadrature nodal evaluations at the cost of a polynomial evaluation, which may increase its efficiency relative to other shooting-based variational integrators. A symmetric version of the method is proposed, and numerical experiments are conducted to exhibit the efficacy and efficiency of the method.
      PubDate: 2017-11-24
      DOI: 10.1007/s10543-017-0690-9
       
  • Optimally zero stable explicit peer methods with variable nodes
    • Authors: Marcel Klinge; Rüdiger Weiner; Helmut Podhaisky
      Abstract: In this paper, explicit peer methods are studied in which some of the stage values are copies of stage values from previous steps. This allows to reduce the number of function calls per step and can be interpreted as being a generalization of the first-same-as-last principle known from Runge–Kutta methods. The variable step size implementation is more complex as the nodes depend on the history of previous step size changes. Optimally zero stable explicit peer methods up to order \(p=8\) are constructed using constraint numerical optimization. In addition the constructed methods are superconvergent of order \(s+1\) for constant step sizes. The new methods show their efficiency in comparison with the Matlab codes ode23, ode45 and ode113 in numerical experiments.
      PubDate: 2017-11-22
      DOI: 10.1007/s10543-017-0691-8
       
  • Ubiquitous evaluation of layer potentials using Quadrature by
           Kernel-Independent Expansion
    • Authors: Abtin Rahimian; Alex Barnett; Denis Zorin
      Abstract: We introduce a quadrature scheme—QBKIX —for the ubiquitous high-order accurate evaluation of singular layer potentials associated with general elliptic PDEs, i.e., a scheme that yields high accuracy at all distances to the domain boundary as well as on the boundary itself. Relying solely on point evaluations of the underlying kernel, our scheme is essentially PDE-independent; in particular, no analytic expansion nor addition theorem is required. Moreover, it applies to boundary integrals with singular, weakly singular, and hypersingular kernels. Our work builds upon quadrature by expansion, which approximates the potential by an analytic expansion in the neighborhood of each expansion center. In contrast, we use a sum of fundamental solutions lying on a ring enclosing the neighborhood, and solve a small dense linear system for their coefficients to match the potential on a smaller concentric ring. We test the new method with Laplace, Helmholtz, Yukawa, Stokes, and Navier (elastostatic) kernels in two dimensions (2D) using adaptive, panel-based boundary quadratures on smooth and corner domains. Advantages of the algorithm include its relative simplicity of implementation, immediate extension to new kernels, dimension-independence (allowing simple generalization to 3D), and compatibility with fast algorithms such as the kernel-independent FMM.
      PubDate: 2017-11-06
      DOI: 10.1007/s10543-017-0689-2
       
  • Robust three-field finite element methods for Biot’s consolidation
           model in poroelasticity
    • Authors: Jeonghun J. Lee
      Abstract: We propose a new finite element method for a three-field formulation of Biot’s consolidation model in poroelasticity and prove the a priori error estimates. Uniform-in-time error estimates of all the unknowns are obtained for both semidiscrete solutions and fully discrete solutions with the backward Euler time discretization. In contrast to previous results, the implicit constants in our error estimates are uniformly bounded as the Lamé coefficient indicating incompressiblity of poroelastic medium is arbitrarily large, and as the constrained specific storage coefficient is arbitrarily small. Therefore the method does not suffer from the volumetric locking of linear elasticity and provides robust error estimates without additional assumptions on the constrained specific storage coefficient.
      PubDate: 2017-10-22
      DOI: 10.1007/s10543-017-0688-3
       
  • On singular BVPs with nonsmooth data: convergence of the collocation
           schemes
    • Authors: Jana Burkotová; Irena Rachůnková; Ewa B. Weinmüller
      Abstract: This paper deals with the collocation method applied to solve systems of singular linear ordinary differential equations with variable coefficient matrices and nonsmooth inhomogeneities. The classical stage convergence order is shown to hold for the piecewise polynomial collocation applied to boundary value problems with time singularities of the first kind provided that their solutions are appropriately smooth. The convergence theory is illustrated by numerical examples.
      PubDate: 2017-10-16
      DOI: 10.1007/s10543-017-0686-5
       
  • Energy dissipative numerical schemes for gradient flows of planar curves
    • Authors: Tomoya Kemmochi
      Abstract: In this paper, we develop an energy dissipative numerical scheme for gradient flows of planar curves, such as the curvature flow and the elastic flow. Our study presents a general framework for solving such equations. To discretize the time variable, we use a similar approach to the discrete partial derivative method, which is a structure-preserving method for gradient flows of graphs. For the approximation of curves, we use B-spline curves. Owing to the smoothness of B-spline functions, we can directly address higher order derivatives. Moreover, since B-spline curves require few degrees of freedom, we can reduce the computational cost. In the last part of the paper, we present some numerical examples of the elastic flow, which exhibit topology-changing solutions and more complicated evolution. Videos illustrating our method are available on YouTube.
      PubDate: 2017-09-27
      DOI: 10.1007/s10543-017-0685-6
       
  • Mean-square stability analysis of approximations of stochastic
           differential equations in infinite dimensions
    • Authors: Annika Lang; Andreas Petersson; Andreas Thalhammer
      Abstract: The (asymptotic) behaviour of the second moment of solutions to stochastic differential equations is treated in mean-square stability analysis. This property is discussed for approximations of infinite-dimensional stochastic differential equations and necessary and sufficient conditions ensuring mean-square stability are given. They are applied to typical discretization schemes such as combinations of spectral Galerkin, finite element, Euler–Maruyama, Milstein, Crank–Nicolson, and forward and backward Euler methods. Furthermore, results on the relation to stability properties of corresponding analytical solutions are provided. Simulations of the stochastic heat equation illustrate the theory.
      PubDate: 2017-09-14
      DOI: 10.1007/s10543-017-0684-7
       
  • A generalization of Filon–Clenshaw–Curtis quadrature for
           highly oscillatory integrals
    • Authors: Jing Gao; Arieh Iserles
      Abstract: The Filon–Clenshaw–Curtis method (FCC) for the computation of highly oscillatory integrals is known to attain surprisingly high precision. Yet, for large values of frequency \(\omega \) it is not competitive with other versions of the Filon method, which use high derivatives at critical points and exhibit high asymptotic order. In this paper we propose to extend FCC to a new method, FCC \(+\) , which can attain an arbitrarily high asymptotic order while preserving the advantages of FCC. Numerical experiments are provided to illustrate that FCC \(+\) shares the advantages of both familiar Filon methods and FCC, while avoiding their disadvantages.
      PubDate: 2017-09-12
      DOI: 10.1007/s10543-017-0682-9
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.227.48.147
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-