for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 886 journals)
    - APPLIED MATHEMATICS (72 journals)
    - GEOMETRY AND TOPOLOGY (20 journals)
    - MATHEMATICS (656 journals)
    - MATHEMATICS (GENERAL) (42 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (77 journals)

MATHEMATICS (656 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 3)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 8)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 22)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 5)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 8)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Decision Sciences     Open Access   (Followers: 5)
Advances in Difference Equations     Open Access   (Followers: 1)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 2)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 6)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 8)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Al-Jabar : Jurnal Pendidikan Matematika     Open Access  
Algebra and Logic     Hybrid Journal   (Followers: 4)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Biostatistics     Open Access   (Followers: 9)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 6)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 7)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 9)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 4)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 4)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 3)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 20)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 2)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access   (Followers: 1)
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 20)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 8)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 3)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 20)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
CHANCE     Hybrid Journal   (Followers: 5)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 1)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 2)
Discrete Mathematics     Hybrid Journal   (Followers: 8)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 3)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 5)
European Journal of Mathematics     Hybrid Journal   (Followers: 1)
European Scientific Journal     Open Access   (Followers: 2)
Experimental Mathematics     Hybrid Journal   (Followers: 4)
Expositiones Mathematicae     Hybrid Journal   (Followers: 2)
Facta Universitatis, Series : Mathematics and Informatics     Open Access  
Fasciculi Mathematici     Open Access  
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 4)
Fixed Point Theory and Applications     Open Access   (Followers: 1)

        1 2 3 4 | Last

Journal Cover Archives of Computational Methods in Engineering
  [SJR: 2.841]   [H-I: 40]   [4 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1886-1784 - ISSN (Online) 1134-3060
   Published by Springer-Verlag Homepage  [2352 journals]
  • Application of the Numerical Techniques for Modelling Fluidization Process
           Within Industrial Scale Boilers
    • Authors: Wojciech P. Adamczyk
      Pages: 669 - 702
      Abstract: Abstract The numerical simulation of the large scale industrial circulating fluidized bed (CFB) boilers, working under air- and oxy-fuel combustion are presented in this paper. Moreover, two-dimensional experimental rig used for numerical model validation is described. For three-dimensional numerical simulations two industrial compact CFB boilers were selected installed in Polish Power Plants. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler–Lagrange approach. Within the paper, readers can find information about used computational technique and a number of reference to specific work. The impact of radiative heat transfer on predicted temperature profile within the CFB boiler was investigated in presented work. Moreover, the novel model for retrieving radiative properties of gases under oxy-fuel combustion process was used. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of composition of the oxidizer were studied. This simulations were evaluated to check the response of the numerical model on changing the combustion conditions from air- to oxy-fuel combustion process. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9186-z
      Issue No: Vol. 24, No. 4 (2017)
       
  • Game Theory Based Evolutionary Algorithms: A Review with Nash Applications
           in Structural Engineering Optimization Problems
    • Authors: David Greiner; Jacques Periaux; Jose M. Emperador; Blas Galván; Gabriel Winter
      Pages: 703 - 750
      Abstract: Abstract A general review of game-theory based evolutionary algorithms (EAs) is presented in this study. Nash equilibrium, Stackelberg game and Pareto optimality are considered, as game-theoretical basis of the evolutionary algorithm design, and also, as problems solved by evolutionary computation. Applications of game-theory based EAs in computational engineering are listed, with special emphasis in structural optimization and, particularly, in skeletal structures. Additionally, a set of three problems are solved: reconstruction inverse problem, fully stressed design problem and minimum constrained weight, for discrete sizing of frame skeletal structures. We compare panmictic EAs, Nash EAs using 4 different static domain decompositions, including also a new dynamic domain decomposition. Two frame structural test cases of 55 member size and 105 member size are evaluated with the linear stiffness matrix method. Numerical experiments show the efficiency of the Nash EAs approach, confirmed with statistical significance analysis of results, and enhanced with the dynamic domain decomposition.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9187-y
      Issue No: Vol. 24, No. 4 (2017)
       
  • High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume
           Schemes for Hyperbolic Systems on Unstructured Meshes
    • Authors: Walter Boscheri
      Pages: 751 - 801
      Abstract: Abstract In this work we develop a new class of high order accurate Arbitrary-Lagrangian–Eulerian (ALE) one-step finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations. The numerical algorithm is designed for two and three space dimensions, considering moving unstructured triangular and tetrahedral meshes, respectively. As usual for finite volume schemes, data are represented within each control volume by piecewise constant values that evolve in time, hence implying the use of some strategies to improve the order of accuracy of the algorithm. In our approach high order of accuracy in space is obtained by adopting a WENO reconstruction technique, which produces piecewise polynomials of higher degree starting from the known cell averages. Such spatial high order accurate reconstruction is then employed to achieve high order of accuracy also in time using an element-local space–time finite element predictor, which performs a one-step time discretization. Specifically, we adopt a discontinuous Galerkin predictor which can handle stiff source terms that might produce jumps in the local space–time solution. Since we are dealing with moving meshes the elements deform while the solution is evolving in time, hence making the use of a reference system very convenient. Therefore, within the space–time predictor, the physical element is mapped onto a reference element using a high order isoparametric approach, where the space–time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space–time nodes. The computational mesh continuously changes its configuration in time, following as closely as possible the flow motion. The entire mesh motion procedure is composed by three main steps, namely the Lagrangian step, the rezoning step and the relaxation step. In order to obtain a continuous mesh configuration at any time level, the mesh motion is evaluated by assigning each node of the computational mesh with a unique velocity vector at each timestep. The nodal solver algorithm preforms the Lagrangian stage, while we rely on a rezoning algorithm to improve the mesh quality when the flow motion becomes very complex, hence producing highly deformed computational elements. A so-called relaxation algorithm is finally employed to partially recover the optimal Lagrangian accuracy where the computational elements are not distorted too much. We underline that our scheme is supposed to be an ALE algorithm, where the local mesh velocity can be chosen independently from the local fluid velocity. Once the vertex velocity and thus the new node location has been determined, the old element configuration at time \(t^n\) is connected with the new one at time \(t^{n+1}\) with straight edges to represent the local mesh motion, in order to maintain algorithmic simplicity. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing system of hyperbolic balance laws. The nonlinear system is reformulated more compactly using a space–time divergence operator and is then integrated on a moving space–time control volume. We adopt a linear parametrization of the space–time element boundaries and Gaussian quadrature rules of suitable order of accuracy to compute the integrals. We apply the new high order direct ALE finite volume schemes to several hyperbolic systems, namely the multidimensional Euler equations of compressible gas dynamics, the ideal classical magneto-hydrodynamics equations and the non-conservative seven-equation Baer–Nunziato model of compressible multi-phase flows with stiff relaxation source terms. Numerical convergence studies as well as several classical test problems will be shown to assess the accuracy and the robustness of our schemes. Finally we briefly present some variants of the algorithm that aim at improving the overall computational efficiency.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9188-x
      Issue No: Vol. 24, No. 4 (2017)
       
  • Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and
           Minimum Volume in Planar Stress Problems
    • Authors: S. Ivvan Valdez; Salvador Botello; Miguel A. Ochoa; José L. Marroquín; Victor Cardoso
      Pages: 803 - 839
      Abstract: Abstract This article proposes a benchmark set of problems for fixed mesh topology optimization in 2 dimensions. We have established the problems based on an analysis of more than 100 articles from the topology optimization specialized literature, gathering the most common dimensions, loads and fixed regions used by researchers. Most of the problems reported in specialized literature present differences in specifications such as lengths, units, materials among others. For instance, some articles propose the same proportions and geometrical shapes but different dimensions. Hence, the purpose of this benchmark is to unify geometrical and mechanical characteristics and load conditions, considering that the proposed problems must be realistic, in the sense that the units are in the International System and a real-world material and load conditions are used. The final benchmark integrates 13 problems for plane stress using ASTM A-36 steel. Additionally, we report approximations to the optimum solutions for both: compliance and volume minimization problems using the Solid Isotropic Material with Penalization (SIMP) and a novel version of SIMP proposed in this article.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9190-3
      Issue No: Vol. 24, No. 4 (2017)
       
  • Prediction of Progressive Ply Failure of Laminated Composite Structures: A
           Review
    • Authors: Nagaraj Murugesan; Vasudevan Rajamohan
      Pages: 841 - 853
      Abstract: Abstract A review of recent developments in the progressive failure analysis of laminated composite structural elements such as beams, plates, panels and shells is presented in this paper. Composite materials are increasingly used to harness their advantages such as high strength to light weight, easy fabrication of structural components to the desired complicated geometry particularly in aerospace structures. Since the failure of composite laminates are progressive in nature compared to their metallic counter parts, it signifies to have better analysis methods to predict the progressive failure of laminated composites. A vast number of researches have taken place in this field. A few of the most relevant research articles are reviewed and presented here briefly.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9191-2
      Issue No: Vol. 24, No. 4 (2017)
       
  • Different Kinds of Maximum Power Point Tracking Control Method for
           Photovoltaic Systems: A Review
    • Authors: Mohammad Junaid Khan; Lini Mathew
      Pages: 855 - 867
      Abstract: Abstract In modern years due to rising environmental issues such as energy cost and greenhouse gas emission have motivated new research into alternative methods of generation of electrical power. A vast deal of new research and enlargement for the renewable energy photovoltaic (PV) system. The PV module is conducted to search out non-polluting and renewable sources. New inventions are in development and exploring the perfection of solar cells to increase the efficiency and reduce the cost of power in per peak watt. The analysis of different kinds of control methods in PV system according to reviewed previous studies, shows that the most useful method is a hybrid technique as compared to other maximum power point tracking (MPPT) control methods. MPPT control method used to optimize the output of solar PV system with variable inputs such as solar radiations and temperature. The MPPT may include the use of a different DC–DC converter and also some different MPPT algorithms such as current based MPPT. Multi-input energy systems for the hybrid wind/solar energy systems need to be developed.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9192-1
      Issue No: Vol. 24, No. 4 (2017)
       
  • Complex Hybrid Numerical Model in Application to Failure Modelling in
           Multiphase Materials
    • Authors: Konrad Perzynski; Lukasz Madej
      Pages: 869 - 890
      Abstract: Abstract Development of a discrete/continuum numerical model of different failure modes operating in dual phase steels during deformation is the main goal of the research. Proposed approach is based on a random cellular automata (RCA) model incorporated in a fully coupled manner to the finite element (FE) framework. As a result, the RCAFE model that can take into account fracture initiation within martensite phase, delamination between martensite and ferrite phases, ferrite phase fracture and delamination between ferrite and ferrite grain boundaries was established. Details on the developed cellular automata model including random space definition, state of CA cells as well as properly defined transition rules are recapitulated in the work. Developed data bridging technique between RCA and FE models is discussed within that part. Particular attention, however, is put on model parameters identification stage, which was realized with the inverse analysis technique on the basis of in situ tensile tests. Finally, examples of model application to multiscale numerical simulation of three point bending, which was selected as a case study, are presented to highlight predictive capabilities of the developed RCAFE solution.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9195-y
      Issue No: Vol. 24, No. 4 (2017)
       
  • An Overview of the Combined Interface Boundary Condition Method for
           Fluid–Structure Interaction
    • Authors: Tao He; Kai Zhang
      Pages: 891 - 934
      Abstract: Abstract This review article summarizes the basis and recent developments on the combined interface boundary condition (CIBC) method for the numerical simulation of fluid–structure interaction (FSI) problems. To represent the continual reciprocity between both media better, the CIBC method employs a Gauss–Seidel-like procedure to transform the traditional interface conditions into the velocity and traction corrections. A free parameter is adopted to control the effect of such a treatment on the fluid–structure interface. The thorough derivation of the CIBC method is presented, hence providing the theoretical basis of two improved formulations of the method. The relevant issues are deeply discussed for the numerical implementation. The CIBC method is subsequently introduced into various partitioned solution schemes. After describing all ingredients of our coupling strategies in detail, intensive FSI examples are tested to justify the feasibility, robustness and efficiency of the developed methodologies.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9193-0
      Issue No: Vol. 24, No. 4 (2017)
       
  • Image Based Techniques for Crack Detection, Classification and
           Quantification in Asphalt Pavement: A Review
    • Authors: H. Zakeri; Fereidoon Moghadas Nejad; Ahmad Fahimifar
      Pages: 935 - 977
      Abstract: Abstract Pavement condition information is a significant component in Pavement Management Systems. The labeling and quantification of the type, severity, and extent of surface cracking is a challenging area for weighing the asphalt pavements. This paper presents a widespread review on various platform and image processing approaches for asphalt surface interpretation. The main part of this study presents a comprehensive combination of the state of the art in image processing based on crack interpretation related to asphalt pavements. An attempt is made to study the existing methodologies from different points of views accompanied by extensive comparisons on three stages of methods—distress detection, classification, and quantification to facilitate further research studies. This paper presents a survey of the developed pavement inspection systems up to date. Additionally, emerging and evolution technologies considered to automate the processes are discussed.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9194-z
      Issue No: Vol. 24, No. 4 (2017)
       
  • A Review on Recent Development of Finite Element Models for Head Injury
           Simulations
    • Authors: Prateek Dixit; G. R. Liu
      Pages: 979 - 1031
      Abstract: Abstract This paper presents an overview of the published major finite element (FE) models for simulating injuries of human brains, based on our recent comprehensive literature study on the published works since early 2000 to date. Our focus is on studies of the so-called mild traumatic brain injuries (MTBI) that have always been a major concern with respect to various contact sports, including boxing and football. In addition, papers on the investigations of various types of accidents as major cause of MTBI have also reviewed. Because concussion is known as one of the main reasons for a MTBI, and addressing it has been a pressing need in recent times. FE models have been frequently used to study the mechanism of concussions, and different types of models with various considerations have been included in this review study. This paper aims to summarize all these published efforts, models, data, finings, and understandings of concussion mechanisms reported in the open literature. We hope this can serve a useful source for initial studies for researchers planning to invest their time and energy in the investigations in the related areas.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9196-x
      Issue No: Vol. 24, No. 4 (2017)
       
  • Domain Decomposition Methods for Domain Composition Purpose: Chimera,
           Overset, Gluing and Sliding Mesh Methods
    • Authors: G. Houzeaux; J. C. Cajas; M. Discacciati; B. Eguzkitza; A. Gargallo-Peiró; M. Rivero; M. Vázquez
      Pages: 1033 - 1070
      Abstract: Abstract Domain composition methods (DCM) consist in obtaining a solution to a problem, from the formulations of the same problem expressed on various subdomains. These methods have therefore the opposite objective of domain decomposition methods (DDM). Indeed, in contrast to DCM, these last techniques are usually applied to matching meshes as their purpose consists mainly in distributing the work in parallel environments. However, they are sometimes based on the same methodology as after decomposing, DDM have to recompose. As a consequence, in the literature, the term DDM has many times substituted DCM. DCM are powerful techniques that can be used for different purposes: to simplify the meshing of a complex geometry by decomposing it into different meshable pieces; to perform local refinement to adapt to local mesh requirements; to treat subdomains in relative motion (Chimera, sliding mesh); to solve multiphysics or multiscale problems, etc. The term DCM is generic and does not give any clue about how the fragmented solutions on the different subdomains are composed into a global one. In the literature, many methodologies have been proposed: they are mesh-based, equation-based, or algebraic-based. In mesh-based formulations, the coupling is achieved at the mesh level, before the governing equations are assembled into an algebraic system (mesh conforming, Shear-Slip Mesh Update, HERMESH). The equation-based counterpart recomposes the solution from the strong or weak formulation itself, and are implemented during the assembly of the algebraic system on the subdomain meshes. The different coupling techniques can be formulated for the strong formulation at the continuous level, for the weak formulation either at the continuous or at the discrete level (iteration-by-subdomains, mortar element, mesh free interpolation). Although the different methods usually lead to the same solutions at the continuous level, which usually coincide with the solution of the problem on the original domain, they have very different behaviors at the discrete level and can be implemented in many different ways. Eventually, algebraic-based formulations treat the composition of the solutions directly on the matrix and right-hand side of the individual subdomain algebraic systems. The present work introduces mesh-based, equation-based and algebraic-based DCM. It however focusses on algebraic-based domain composition methods, which have many advantages with respect to the others: they are relatively problem independent; their implicit implementation can be hidden in the iterative solver operations, which enables one to avoid intensive code rewriting; they can be implemented in a multi-code environment.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9198-8
      Issue No: Vol. 24, No. 4 (2017)
       
  • Computational Modeling of Tumor-Induced Angiogenesis
    • Authors: Guillermo Vilanova; Ignasi Colominas; Hector Gomez
      Pages: 1071 - 1102
      Abstract: Abstract Angiogenesis is the growth of new capillaries from preexisting ones. The ability to trigger angiogenesis is one of the hallmarks of cancer, and is a necessary step for a tumor to become malignant. This paper discusses computational modeling of tumor-induced angiogenesis with particular reference to mathematical modeling, numerical simulation, and comparison with experiments. We describe the basic biological phenomena associated with angiogenesis, and discuss how they can be incorporated into mathematical models. We emphasize the crucial role of numerical methods for model development. In particular, computational methods for tumor angiogenesis need to be geometrically flexible and capable of dealing with higher-order derivatives, which suggests isogeometric analysis as an ideal candidate. Finally, we propose an algorithm based on graph theory as a potential method for quantitative validation of tumor angiogenesis models.
      PubDate: 2017-11-01
      DOI: 10.1007/s11831-016-9199-7
      Issue No: Vol. 24, No. 4 (2017)
       
  • FEMPAR : An Object-Oriented Parallel Finite Element Framework
    • Authors: Santiago Badia; Alberto F. Martín; Javier Principe
      Abstract: FEMPAR is an open source object oriented Fortran200X scientific software library for the high-performance scalable simulation of complex multiphysics problems governed by partial differential equations at large scales, by exploiting state-of-the-art supercomputing resources. It is a highly modularized, flexible, and extensible library, that provides a set of modules that can be combined to carry out the different steps of the simulation pipeline. FEMPAR includes a rich set of algorithms for the discretization step, namely (arbitrary-order) grad, div, and curl-conforming finite element methods, discontinuous Galerkin methods, B-splines, and unfitted finite element techniques on cut cells, combined with h-adaptivity. The linear solver module relies on state-of-the-art bulk-asynchronous implementations of multilevel domain decomposition solvers for the different discretization alternatives and block-preconditioning techniques for multiphysics problems. FEMPAR is a framework that provides users with out-of-the-box state-of-the-art discretization techniques and highly scalable solvers for the simulation of complex applications, hiding the dramatic complexity of the underlying algorithms. But it is also a framework for researchers that want to experience with new algorithms and solvers, by providing a highly extensible framework. In this work, the first one in a series of articles about FEMPAR, we provide a detailed introduction to the software abstractions used in the discretization module and the related geometrical module. We also provide some ingredients about the assembly of linear systems arising from finite element discretizations, but the software design of complex scalable multilevel solvers is postponed to a subsequent work.
      PubDate: 2017-10-11
      DOI: 10.1007/s11831-017-9244-1
       
  • Variational Framework for FIC Formulations in Continuum Mechanics: High
           Order Tensor-Derivative Transformations and Invariants
    • Authors: Carlos A. Felippa; Eugenio Oñate; Sergio R. Idelsohn
      Abstract: Abstract This is part of an article series on a variational framework for continuum mechanics based on the Finite Increment Calculus (FIC). The formulation utilizes high order derivatives of the classical fields of continuum mechanics integrated over control regions to construct stabilizing modification terms. Fields may include displacements, body forces, strains, stresses, pressure and volumetric strains. To support observer-invariant FIC formulations, we have catalogued field transformation equations as well as sets of linear and quadratic invariants of fields and of their derivatives up to appropriate order. Attention is focused on the two-dimensional case of a body in plane strain under the drilling-rotation transformation group. Results are presented for displacement and body-force derivatives of orders up to 4, and for stress, strain, pressure and volumetric strain derivatives of order up to 3. The material assembled here is self-contained because this catalog is believed to be useful beyond FIC applications; for example gradient-based, nonlocal constitutive models of multiscale mechanics and physics that involve finite characteristic dimensions analogous to FIC steplengths.
      PubDate: 2017-10-10
      DOI: 10.1007/s11831-017-9245-0
       
  • State-of-the-Art of Research on Seismic Pounding Between Buildings with
           Aligned Slabs
    • Authors: Alireza Kharazian; Francisco López-Almansa
      Abstract: Abstract Collision between adjoining buildings with aligned slabs is relevant, since the huge impact forces significantly modify the buildings dynamic behavior. The separation required by the regulations avoids pounding; however, even in recent buildings, impact can occur due to not fulfillment of codes and seismicity underestimation. Given the importance of this issue, a significant research effort has been undertaken worldwide, and a considerable number of papers are available. The complexity of this field and this abundance of information might require a review task. This paper presents a summary of the theoretical developments, discusses the most common simulation software, provides an overview of the previous research, offers recommendations to researchers, and identifies research needs.
      PubDate: 2017-09-14
      DOI: 10.1007/s11831-017-9242-3
       
  • Erratum to: A Review of Trimming in Isogeometric Analysis: Challenges,
           Data Exchange and Simulation Aspects
    • Authors: Benjamin Marussig; Thomas J. R. Hughes
      PubDate: 2017-08-17
      DOI: 10.1007/s11831-017-9236-1
       
  • Erratum to: A Survey of the Hysteretic Duhem Model
    • Authors: Fayçal Ikhouane
      PubDate: 2017-08-08
      DOI: 10.1007/s11831-017-9235-2
       
  • Reduced Basis’ Acquisition by a Learning Process for Rapid On-line
           Approximation of Solution to PDE’s: Laminar Flow Past a Backstep
    • Authors: Patrick Gallinari; Yvon Maday; Maxime Sangnier; Olivier Schwander; Tommaso Taddei
      Abstract: Abstract Reduced basis methods for the approximation to parameter-dependent partial differential equations are now well-developed and start to be used for industrial applications. The classical implementation of the reduced basis method goes through two stages: in the first one, offline and time consuming, from standard approximation methods a reduced basis is constructed; then in a second stage, online and very cheap, a small problem, of the size of the reduced basis, is solved. The offline stage is a learning one from which the online stage can proceed efficiently. In this paper we propose to exploit machine learning procedures in both offline and online stages to either tackle different classes of problems or increase the speed-up during the online stage. The method is presented through a simple flow problem—a flow past a backward step governed by the Navier Stokes equations—which shows, however, interesting features.
      PubDate: 2017-08-05
      DOI: 10.1007/s11831-017-9238-z
       
  • Big Data in Experimental Mechanics and Model Order Reduction: Today’s
           Challenges and Tomorrow’s Opportunities
    • Authors: Jan Neggers; Olivier Allix; François Hild; Stéphane Roux
      Abstract: Abstract Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched.
      PubDate: 2017-07-28
      DOI: 10.1007/s11831-017-9234-3
       
  • Non-intrusive Sparse Subspace Learning for Parametrized Problems
    • Authors: Domenico Borzacchiello; José V. Aguado; Francisco Chinesta
      Abstract: Abstract We discuss the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive approach based on sparse adaptive sampling of the parametric space. This allows to recover the low-dimensional structure of the parametric solution subspace while also learning the functional dependency from the parameters in explicit form. A sparse low-rank approximate tensor representation of the parametric solution can be built through an incremental strategy that only needs to have access to the output of a deterministic solver. Non-intrusiveness makes this approach straightforwardly applicable to challenging problems characterized by nonlinearity or non affine weak forms. As we show in the various examples presented in the paper, the method can be interfaced with no particular effort to existing third party simulation software making the proposed approach particularly appealing and adapted to practical engineering problems of industrial interest.
      PubDate: 2017-07-18
      DOI: 10.1007/s11831-017-9241-4
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.81.178.153
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016