Subjects -> ASTRONOMY (Total: 94 journals)
Showing 1 - 46 of 46 Journals sorted alphabetically
Advances in Astronomy     Open Access   (Followers: 51)
Annual Review of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 39)
Annual Review of Earth and Planetary Sciences     Full-text available via subscription   (Followers: 63)
Artificial Satellites     Open Access   (Followers: 23)
Astrobiology     Hybrid Journal   (Followers: 14)
Astronomical & Astrophysical Transactions: The Journal of the Eurasian Astronomical Society     Hybrid Journal   (Followers: 6)
Astronomical Journal     Full-text available via subscription   (Followers: 8)
Astronomical Review     Open Access   (Followers: 4)
Astronomische Nachrichten     Hybrid Journal   (Followers: 4)
Astronomy & Geophysics     Hybrid Journal   (Followers: 48)
Astronomy and Astrophysics     Full-text available via subscription   (Followers: 60)
Astronomy and Astrophysics     Open Access   (Followers: 32)
Astronomy and Computing     Hybrid Journal   (Followers: 2)
Astronomy Letters     Hybrid Journal   (Followers: 22)
Astronomy Reports     Hybrid Journal   (Followers: 15)
Astronomy Studies Development     Open Access   (Followers: 12)
Astroparticle Physics     Hybrid Journal   (Followers: 8)
Astrophysical Bulletin     Hybrid Journal   (Followers: 3)
Astrophysical Journal     Full-text available via subscription   (Followers: 19)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 14)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 14)
Astrophysics     Hybrid Journal   (Followers: 29)
Astrophysics and Space Science     Hybrid Journal   (Followers: 46)
Astrophysics and Space Sciences Transactions (ASTRA)     Open Access   (Followers: 56)
Astropolitics: The International Journal of Space Politics & Policy     Hybrid Journal   (Followers: 12)
Celestial Mechanics and Dynamical Astronomy     Hybrid Journal   (Followers: 11)
Chinese Astronomy and Astrophysics     Full-text available via subscription   (Followers: 24)
Colloid Journal     Hybrid Journal   (Followers: 3)
Comptes Rendus Physique     Full-text available via subscription   (Followers: 2)
Computational Astrophysics and Cosmology     Open Access   (Followers: 3)
COSPAR Colloquia Series     Full-text available via subscription   (Followers: 11)
Earth, Moon, and Planets     Hybrid Journal   (Followers: 55)
Earth, Planets and Space     Open Access   (Followers: 74)
EAS Publications Series     Full-text available via subscription   (Followers: 8)
EPL Europhysics Letters     Partially Free   (Followers: 8)
Experimental Astronomy     Hybrid Journal   (Followers: 39)
Expert Opinion on Astronomy and Astrophysics     Open Access   (Followers: 7)
Extreme Life, Biospeology & Astrobiology - International Journal of the Bioflux Society     Full-text available via subscription   (Followers: 6)
Few-Body Systems     Hybrid Journal   (Followers: 1)
Foundations of Physics     Hybrid Journal   (Followers: 41)
Frontiers in Astronomy and Space Sciences     Open Access   (Followers: 12)
Galaxies     Open Access   (Followers: 6)
Globe, The     Full-text available via subscription   (Followers: 4)
Gravitation and Cosmology     Hybrid Journal   (Followers: 4)
Icarus     Hybrid Journal   (Followers: 75)
International Journal of Advanced Astronomy     Open Access   (Followers: 28)
International Journal of Astrobiology     Hybrid Journal   (Followers: 4)
International Journal of Astronomy     Open Access   (Followers: 19)
International Journal of Astronomy and Astrophysics     Open Access   (Followers: 29)
International Journal of Satellite Communications Policy and Management     Hybrid Journal   (Followers: 13)
International Letters of Chemistry, Physics and Astronomy     Open Access   (Followers: 12)
ISRN Astronomy and Astrophysics     Open Access   (Followers: 7)
Journal for the History of Astronomy     Full-text available via subscription   (Followers: 19)
Journal of Astrobiology & Outreach     Open Access   (Followers: 3)
Journal of Astronomical Instrumentation     Open Access   (Followers: 3)
Journal of Astronomical Telescopes, Instruments, and Systems     Hybrid Journal   (Followers: 5)
Journal of Astrophysics     Open Access   (Followers: 26)
Journal of Astrophysics and Astronomy     Open Access   (Followers: 52)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 199)
Journal of Cosmology and Astroparticle Physics     Hybrid Journal   (Followers: 38)
Journal of Geophysical Research : Planets     Full-text available via subscription   (Followers: 179)
Journal of Geophysical Research : Space Physics     Full-text available via subscription   (Followers: 178)
Journal of High Energy Astrophysics     Full-text available via subscription   (Followers: 22)
Kinematics and Physics of Celestial Bodies     Hybrid Journal   (Followers: 10)
KronoScope     Hybrid Journal   (Followers: 1)
Macalester Journal of Physics and Astronomy     Open Access   (Followers: 4)
MNASSA : Monthly Notes of the Astronomical Society of South Africa     Full-text available via subscription   (Followers: 1)
Molecular Astrophysics     Full-text available via subscription   (Followers: 1)
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 14)
Monthly Notices of the Royal Astronomical Society : Letters     Hybrid Journal  
Nature Astronomy     Hybrid Journal   (Followers: 8)
New Astronomy     Hybrid Journal   (Followers: 27)
New Astronomy Reviews     Full-text available via subscription   (Followers: 17)
Nonlinear Dynamics     Hybrid Journal   (Followers: 19)
NRIAG Journal of Astronomy and Geophysics     Open Access   (Followers: 5)
Open Astronomy     Open Access   (Followers: 2)
Physics of the Dark Universe     Open Access   (Followers: 4)
Planetary and Space Science     Hybrid Journal   (Followers: 101)
Planetary Science     Open Access   (Followers: 52)
Proceedings of the International Astronomical Union     Full-text available via subscription   (Followers: 2)
Publications of the Astronomical Society of Australia     Hybrid Journal   (Followers: 2)
Publications of the Astronomical Society of Japan     Hybrid Journal   (Followers: 3)
Publications of the Astronomical Society of the Pacific     Full-text available via subscription   (Followers: 4)
Research & Reviews : Journal of Space Science & Technology     Full-text available via subscription   (Followers: 17)
Research in Astronomy and Astrophysics     Full-text available via subscription   (Followers: 29)
Revista Mexicana de AstronomĂ­a y AstrofĂ­sica     Open Access   (Followers: 2)
Science China Physics, Mechanics & Astronomy     Hybrid Journal   (Followers: 4)
Solar Physics     Hybrid Journal   (Followers: 34)
Solar System Research     Hybrid Journal   (Followers: 14)
Space Science International     Open Access   (Followers: 192)
Space Science Reviews     Hybrid Journal   (Followers: 97)
Space Weather     Full-text available via subscription   (Followers: 24)
Transport and Aerospace Engineering     Open Access   (Followers: 13)
Universe     Open Access   (Followers: 5)
Similar Journals
Journal Cover
Advances in Astronomy
Journal Prestige (SJR): 0.257
Citation Impact (citeScore): 1
Number of Followers: 51  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-7969 - ISSN (Online) 1687-7977
Published by Hindawi Homepage  [343 journals]
  • Model of Charged Anisotropic Strange Stars in Minimally Coupled Gravity

    • Abstract: In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled theory of gravity. The strange matter bag model equation of state (EoS) has been considered along with the usual forms of the Karori–Barua metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of strange matter EoS and type ansatz by employing the two viable and cosmologically well-consistent models of and . Thereafter, we have checked the physical acceptability of the proposed results such as pressure, energy density, energy conditions, equation, stability conditions, mass function, compactness, and surface redshift by using graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or free from central singularity and always regular at every interior point of the compact sphere. The numerical values of such parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact stars such as (,, and and are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of two well-known models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit to compose the strange quark star object.
      PubDate: Mon, 04 Jan 2021 08:50:01 +000
  • Evolution of Periodic Orbits within the Frame of Formation Satellites

    • Abstract: In the framework of formation satellites, the periodic orbits of deputy satellite are analyzed when the chief satellite is moving in an elliptical orbit. This analysis is developed on 1- to 10-loop periodic orbits of the deputy satellite. These orbits along with their associated loops are discussed under some specific initial position sets. The effects of different initial velocities, initial true anomalies, and eccentricities on the initial position and orbital period of periodic orbits of deputy satellite are investigated.
      PubDate: Mon, 21 Dec 2020 15:20:01 +000
  • Motion of the Infinitesimal Variable Mass in the Generalized Circular
           Restricted Three-Body Problem under the Effect of Asteroids Belt

    • Abstract: The present paper deals with the study of the motion’s properties of the infinitesimal variable mass body moving in the same orbital plan as two massive bodies (considered as primaries). It is assumed that the massive bodies have radiating effects, have oblate shapes, and are moving in circular orbits around their common center of mass. Using the procedures established by Singh and Abouelmagd, we determined the equations of motion of the infinitesimal body for which we assumed that under the effects of radiation and oblateness of the primaries, its mass varies following Jean’s law. We evaluated analytically and numerically the locations of equilibrium points and examined the stability of these equilibrium points. Finally, we found that all the points are unstable.
      PubDate: Fri, 18 Dec 2020 12:50:01 +000
  • Quartic Integral in Rigid Body-Gyrostat Dynamics

    • Abstract: In this work, we investigate the problem of constructing new integrable problems in the dynamics of the rigid body rotating about its fixed point as results of the effect of a combination of potential and gyroscopic forces possessing a common symmetry axis. We introduce two new integrable problems in a rigid body dynamics that generalize some integrable problems in this field, known by names of Chaplygin and Yehia–Elmandouh.
      PubDate: Fri, 11 Dec 2020 15:20:01 +000
  • New Treatment of the Rotary Motion of a Rigid Body with Estimated Natural

    • Abstract: In this paper, the problem of the motion of a rigid body about a fixed point under the action of a Newtonian force field is studied when the natural frequency . This case of singularity appears in the previous works and deals with different bodies which are classified according to the moments of inertia. Using the large parameter method, the periodic solutions for the equations of motion of this problem are obtained in terms of a large parameter, which will be defined later. The geometric interpretation of the considered motion will be given in terms of Euler’s angles. The numerical solutions for the system of equations of motion are obtained by one of the well-known numerical methods. The comparison between the obtained numerical solutions and analytical ones is carried out to show the errors between them and to prove the accuracy of both used techniques. In the end, we obtain the case of the regular precession type as a special case. The stability of the motion is considered by the phase diagram procedures.
      PubDate: Mon, 07 Dec 2020 09:50:01 +000
  • Light Speed Invariant Solution and Its Enlightenment of Field Equation of
           General Relativity

    • Abstract: A systematic examination of the basic theory of general relativity is made, the meaning of coordinates again is emphasized, the confusion caused by unclear meaning of coordinates in the past is corrected, and the expression of the theory is made more accurate. Firstly, the equation of Einstein’s gravitational field is solved in the usual coordinate system, the existence of light speed invariant solution in the spherically symmetric gravitational field is proved, and in the same time, the solution is determined. It turns out that black holes are not an inevitable prediction of general relativity. The more exact formulas for calculating the curvature of light on the surface of the Sun and the precession angle of the orbit of Mercury are given, and the convergence of general relativistic gravity and special relativistic mechanics under the weak field approximation is realized. Finally, it is shown that the coupling coefficient of the gravitational field equation is not unique. Modifying this coefficient is an ideal project to eliminate the singularities of general relativity on the condition keeping the field equation concise and elegant, and moreover, it reveals that dark matter and dark energy are the negative energy field in the matter, the expansion of the universe is the appearance of the gradual formation of galaxies in accordance with fractal rules, not only the space between galaxies is expanding but also the galaxies themselves are also expanding, new matter is continuously generated in the celestial bodies, for the first time, the unity of fractal geometry and cosmic dynamics of general relativity is realized, and the formation and evolution of galaxies are brought into the fractal generation mode. This is a living and vivacious universe in which all aspects are gradually strengthening, in sharp contrast to the dying universe under the current cosmological framework.
      PubDate: Sun, 29 Nov 2020 15:05:00 +000
  • Wormhole Models and Energy Conditions in Gravity with the Hu–Sawicki

    • Abstract: In this recent study, we shall investigate the wormhole models with a Hu–Sawicki model in the framework of gravity. Spherically static symmetric space-time is considered to construct wormhole models with the anisotropic fluid distribution. The traceless matter is discussed by imposing a particular equation of state. To address the important conditions of the shape function of the wormhole geometry, we have used the particular values of the involved parameters. Furthermore, different energy conditions are discussed to check the nature of matter against two specific models. The null energy condition is observed to be violated for both of the models. It is mentioned that our inquired results are acceptable.
      PubDate: Mon, 23 Nov 2020 16:20:01 +000
  • Isotropic Gravastar Model in Rastall Gravity

    • Abstract: In the present paper, we have introduced a new model of gravastar with an isotropic matter distribution in Rastall gravity by the Mazur–Mottola (2004) mechanism. Mazur–Mottola approach is about the construction of gravastar which is predicted as an alternative to black hole. By following this convention, we define gravastar in the form of three phases. The first one is an interior phase which has negative density; the second part consists of thin shell comprising ultrarelativistic stiff fluid for which we have discussed the length, energy, and entropy. By the graphical analysis of entropy, we have shown that our proposed thin shell gravastar model is potentially stable. The third phase of gravastar is defined by the exterior Schwarzschild geometry. For the interior of gravastar, we have found the analytical solutions free from any singularity and the event horizon in the framework of Rastall gravity.
      PubDate: Mon, 16 Nov 2020 16:50:01 +000
  • Approximate Analytical Three-Dimensional Multiple Time Scales Solution to
           a Circular Restricted Three-Body Problem

    • Abstract: We illustrate the chaotic nature of the circular restricted three-body problem from the perspective of the bifurcation diagram with respect to the mass ratio parameter. Moreover, it is shown that when the frequency ratio in different directions of the classical problem is irrational, it has the quasiperiodic characteristics. In addition, a three-dimensional approximate solution to this problem under two time scales is proposed by using the multiple time scales method.
      PubDate: Wed, 11 Nov 2020 07:50:01 +000
  • Oceans, Lakes, and Stromatolites on Mars

    • Abstract: Billions of years ago, the Northern Hemisphere of Mars may have been covered by at least one ocean and thousands of lakes and rivers. These findings, based initially on telescopic observations and images by the Mariner and Viking missions, led investigators to hypothesize that stromatolite fashioning cyanobacteria may have proliferated in the surface waters, and life may have been successfully transferred between Earth and Mars via tons of debris ejected into the space following bolide impact. Studies conducted by NASA’s robotic rovers also indicate that Mars was wet and habitable and may have been inhabited in the ancient past. It has been hypothesized that Mars subsequently lost its magnetic field, oceans, and atmosphere when bolides negatively impacted its geodynamo and that the remnants of the Martian seas began to evaporate and became frozen beneath the surface. As reviewed here, twenty-five investigators have published evidence of Martian sedimentary structures that resemble microbial mats and stromatolites, which may have been constructed billions of years ago on ancient lake shores and in receding bodies of water, although if these formations are abiotic or biotic is unknown. These findings parallel the construction of the first stromatolites on Earth. The evidence reviewed here does not prove but supports the hypothesis that ancient Mars had oceans (as well as lakes) and was habitable and inhabited, and life may have been transferred between Earth and Mars billions of years ago due to powerful solar winds and life-bearing ejecta propelled into the space following the bolide impact.
      PubDate: Sat, 17 Oct 2020 13:50:01 +000
  • Nucleonic Direct Urca Processes and Cooling of the Massive Neutron Star by
           Antikaon Condensations

    • Abstract: Nucleonic direct Urca processes and cooling of the massive neutron stars are studied by considering antikaon condensations. Calculations are performed in the relativistic mean field and isothermal interior approximations. Neutrino energy losses of the nucleonic direct Urca processes are reduced when the optical potential of antikaons changes from to  MeV. If the center density of the massive neutron stars is a constant, the masses taper off with the optical potential of antikaons, and neutrino luminosities of the nucleonic direct Urca processes decrease for but first increase and then decrease for larger . Large optical potential of antikaons results in warming of the nonsuperfluid massive neutron stars. Massive neutron stars turn warmer with the protonic superfluids. However, the decline of the critical temperatures of the protonic superfluids for the large optical potential of antikaons can speed up the cooling of the massive neutron stars.
      PubDate: Sat, 17 Oct 2020 06:50:01 +000
  • The Slow Spinning Motion of a Rigid Body in Newtonian Field and External

    • Abstract: In this paper, the problem of the slow spinning motion of a rigid body about a point O, being fixed in space, in the presence of the Newtonian force field and external torque is considered. We achieve the slow spin by giving the body slow rotation with a sufficiently small angular velocity component about the moving z-axis. We obtain the periodic solutions in a new domain of the angular velocity vector component , define a large parameter proportional to , and use the technique of the large parameter for solving this problem. Geometric interpretations of motions will be illustrated. Comparison of the results with the previous works is considered. A discussion of obtained solutions and results is presented.
      PubDate: Thu, 15 Oct 2020 12:50:01 +000
  • Solving a Problem of Rotary Motion for a Heavy Solid Using the Large
           Parameter Method

    • Abstract: The small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the small one. In this manner, a lot of energy used for making the motion initially is saved. The obtained analytical periodic solutions are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval of time. In the end, the geometric interpretation of the stability of a motion is given.
      PubDate: Tue, 01 Sep 2020 00:20:10 +000
  • Balanced Low Earth Satellite Orbits

    • Abstract: The present work aims at constructing an atlas of the balanced Earth satellite orbits with respect to the secular and long periodic effects of Earth oblateness with the harmonics of the geopotential retained up to the 4th zonal harmonic. The variations of the elements are averaged over the fast and medium angles, thus retaining only the secular and long periodic terms. The models obtained cover the values of the semi-major axis from 1.1 to 2 Earth’s radii, although this is applicable only for 1.1 to 1.3 Earth’s radii due to the radiation belts. The atlas obtained is useful for different purposes, with those having the semi-major axis in this range particularly for remote sensing and meteorology.
      PubDate: Wed, 19 Aug 2020 13:20:07 +000
  • The Existence and Effect of Dark Energy Redshift on Cosmological Age

    • Abstract: A derivation of Cosmological Age explicitly constrained by Cosmic Microwave Background Radiation (CMBR) is presented, demonstrating that the correct value of Cosmological Age is equal to the Hubble Age. It is shown that utilizing “z = 0” for Cosmological Redshift in the Present Epoch introduces a fundamental flaw into Cosmological Age calculations. However, this flaw is captured and corrected by the Polarizable-Vacuum (PV) Model of Gravity developed by Puthoff, suggesting that the Dark Energy Field exists as a massive photonic field. Consequently, it is demonstrated that for a Dark Energy Driven description of Accelerated Cosmological Expansion, Cosmological Redshift takes a negative value in the Present Epoch.
      PubDate: Tue, 11 Aug 2020 13:20:02 +000
  • Central Configurations and Action Minimizing Orbits in Kite Four-Body

    • Abstract: In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical configurations. In each of the two cases, the existence of a continuous family of central configurations for positive masses is shown. We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical explorations via Poincaré cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader dynamical context of the four-body problem.
      PubDate: Sat, 01 Aug 2020 01:20:06 +000
  • Analysis and Research on the Centimeter Band Receiver Amplitude
           Calibration Method

    • Abstract: The receiver is a signal receiving device in a radio telescope system. As an important parameter to characterize the receiver performance, noise temperature is very practical to calibrate accurately. The traditional receiver noise temperature calibration method is the cold and ambient load method. Through the establishment of K-band ambient receiver, and its amplitude calibration test platform of the cold and ambient load method, chopper wheel method, and ambient and hot load method, comparison and analysis of the above three methods were carried out. The test and calculation results show that the test accuracy of the cold and ambient load method is about 1.3%, that of the chopper wheel method (nonlow elevation) is about 3%, and that of the ambient and hot load method is about 9%. The test accuracy of the ambient and hot load method is slightly lower than that of the above two methods. The analysis is mainly due to the uncertainty of the hot load temperature and the small temperature difference between the two loads, which leads to the deterioration of the overall accuracy. But the advantage is that the method can perform real-time calibration in the process of observation, and it is easier to implement than the traditional cold and ambient load method. The results of noise temperature measurement are compared with those of theoretical calculation, the error is basically within 10%, and it can satisfy the demand of the noise temperature test. In the future, we expect that on the basis of increasing the hot load temperature, further experiments were carried out on the thermostatic treatment of hot load and the accuracy of temperature acquisition, and finally we hope that this method can better meet the testing requirements of receiver noise temperature and radio source amplitude calibration.
      PubDate: Fri, 03 Jul 2020 08:35:02 +000
  • Introducing Our New Chief Editor

    • Abstract: Advances in Astronomy is pleased to announce the appointment of Prof Josep Trigo Rodríguez as its new Chief Editor. In this Editorial, Prof Trigo introduces himself, describes some of the journal’s journey and current status, and shares his vision and aspirations for its future.
      PubDate: Tue, 30 Jun 2020 14:20:04 +000
  • Astronomical Massive Data Processing Technology

    • PubDate: Fri, 01 May 2020 00:20:02 +000
  • Classification of Continuous Sky Brightness Data Using Random Forest

    • Abstract: Sky brightness measuring and monitoring are required to mitigate the negative effect of light pollution as a byproduct of modern civilization. Good handling of a pile of sky brightness data includes evaluation and classification of the data according to its quality and characteristics such that further analysis and inference can be conducted properly. This study aims to develop a classification model based on Random Forest algorithm and to evaluate its performance. Using sky brightness data from 1250 nights with minute temporal resolution acquired at eight different stations in Indonesia, datasets consisting of 15 features were created to train and test the model. Those features were extracted from the observation time, the global statistics of nightly sky brightness, or the light curve characteristics. Among those features, 10 are considered to be the most important for the classification task. The model was trained to classify the data into six classes (1: peculiar data, 2: overcast, 3: cloudy, 4: clear, 5: moonlit-cloudy, and 6: moonlit-clear) and then tested to achieve high accuracy (92%) and scores (F-score = 84% and G-mean = 84%). Some misclassifications exist, but the classification results are considerably good as indicated by posterior distributions of the sky brightness as a function of classes. Data classified as class-4 have sharp distribution with typical full width at half maximum of 1.5 mag/arcsec2, while distributions of class-2 and -3 are left skewed with the latter having lighter tail. Due to the moonlight, distributions of class-5 and -6 data are more smeared or have larger spread. These results demonstrate that the established classification model is reasonably good and consistent.
      PubDate: Wed, 01 Apr 2020 01:05:00 +000
  • Fermi Degenerate Antineutrino Star Model of Dark Energy

    • Abstract: When the Large Hadron Collider resumes operations in 2021, several experiments will directly measure the motion of antihydrogen in free fall for the first time. Our current understanding of the universe is not yet fully prepared for the possibility that antimatter has negative gravitational mass. This paper proposes a model of cosmology, where the state of high energy density of the big bang is created by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, it helps to assume that antimatter has negative gravitational mass. This assumption may also be helpful to identify dark energy. The degenerate remnant of an antineutrino star can today have an average mass density that is similar to the dark energy density of the ΛCDM model. When in hydrostatic equilibrium, this antineutrino star remnant can emit isothermal cosmic microwave background radiation and accelerate matter radially. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. Therefore, this model is useful as a purely academic exercise and as preparation for possible future discoveries.
      PubDate: Mon, 30 Mar 2020 08:20:10 +000
  • Big Data Processing and Modeling in Solar Physics

    • PubDate: Tue, 17 Mar 2020 15:20:03 +000
  • Responses and Periodic Variations of Cosmic Ray Intensity and Solar Wind
           Speed to Sunspot Numbers

    • Abstract: To investigate the periodic behaviour and relationship of sunspot numbers with cosmic ray intensity and solar wind speed, we present analysis from daily data generated from 1995 January to 2018 December. Cross-correlation and wavelet transform tools were employed to carry out the investigation. The analyses confirmed that the cosmic ray intensity correlates negatively with the sunspot numbers, exhibiting an asynchronous phase relationship with a strong negative correlation. The trend in cosmic ray intensity indicates that it undergoes the 11-year modulation that mainly depends on the solar activity in the heliosphere. On the other hand, the solar wind speed neither shows a clear phase relationship nor correlates with the sunspot numbers but shows a wide range of periodicities that could possibly be connected to the pattern of coronal hole configuration. A number of short and midterm variations were also observed from the wavelet analysis, i.e., 64–128 and 128–256 days for the cosmic ray intensity, 4–8, 32–64, 128–256, and 256–512 days for the solar wind speed, and 16–32, 32–64, 128–256, and 256–512 days for the sunspot numbers.
      PubDate: Mon, 24 Feb 2020 06:50:02 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-