Abstract: Abstract
We study a class of graph Hamiltonians given by a type of quiver representation to which we can associate (non)-commutative geometries. By selecting gauging data, these geometries are realized by matrices through an explicit construction or a Kan extension. We describe the changes in gauge via the action of a re-gauging groupoid. It acts via matrices that give rise to a noncommutative 2-cocycle and hence to a groupoid extension (gerbe). We furthermore show that automorphisms of the underlying graph of the quiver can be lifted to extended symmetry groups of re-gaugings. In the commutative case, we deduce that the extended symmetries act via a projective representation. This yields isotypical decompositions and super-selection rules. We apply these results to the primitive cubic, diamond, gyroid and honeycomb wire networks using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the G(yroid) and the honeycomb systems. PubDate: 2016-06-01

Abstract: Abstract
We study the probabilities with which chordal Schramm–Loewner evolutions (SLE) visit small neighborhoods of boundary points. We find formulas for general chordal SLE boundary visiting probability amplitudes, also known as SLE boundary zig-zags or order refined SLE multi-point Green’s functions on the boundary. Remarkably, an exact answer can be found to this important SLE question for an arbitrarily large number of marked points. The main technique employed is a spin chain–Coulomb gas correspondence between tensor product representations of a quantum group and functions given by Dotsenko–Fateev type integrals. We show how to express these integral formulas in terms of regularized real integrals, and we discuss their numerical evaluation. The results are universal in the sense that apart from an overall multiplicative constant the same formula gives the amplitude for many different formulations of the SLE boundary visit problem. The formula also applies to renormalized boundary visit probabilities for interfaces in critical lattice models of statistical mechanics: we compare the results with numerical simulations of percolation, loop-erased random walk, and Fortuin–Kasteleyn random cluster models at Q = 2 and Q = 3, and find good agreement. PubDate: 2016-06-01

Abstract: Abstract
We show that the definition of global hyperbolicity in terms of the compactness of the causal diamonds and non-total imprisonment can be extended to spacetimes with continuous metrics, while retaining all of the equivalences to other notions of global hyperbolicity. In fact, global hyperbolicity is equivalent to the compactness of the space of causal curves and to the existence of a Cauchy hypersurface. Furthermore, global hyperbolicity implies causal simplicity, stable causality and the existence of maximal curves connecting any two causally related points. PubDate: 2016-06-01

Abstract: Abstract
We first summarize the characterization of smooth spacelike spherically symmetric constant mean curvature (SS-CMC) hypersurfaces in the Schwarzschild spacetime and Kruskal extension. Then use the characterization to prove special SS-CMC foliation property, and verify part of the conjecture by Malec and Ó Murchadha (Phys Rev D (3) 68:124019, 2003). PubDate: 2016-06-01

Abstract: Abstract
We define the (total) center of mass for suitably asymptotically hyperbolic time-slices of asymptotically anti-de Sitter spacetimes in general relativity. We do so in analogy to the picture that has been consolidated for the (total) center of mass of suitably asymptotically Euclidean time-slices of asymptotically Minkowskian spacetimes (isolated systems). In particular, we unite—an altered version of—the approach based on Hamiltonian charges with an approach based on CMC-foliations near infinity. The newly defined center of mass transforms appropriately under changes of the asymptotic coordinates and evolves in the direction of an appropriately defined linear momentum under the Einstein evolution equations. PubDate: 2016-06-01

Abstract: Abstract
In this paper, the initial value problem for the drift-diffusion equation which stands for a model of a semiconductor device is studied. When the dissipative effect on the drift-diffusion equation is given by the half Laplacian, the dissipation balances to the extra force term. This case is called critical. The goal of this paper is to derive decay and asymptotic expansion of the solution to the drift-diffusion equation as time variable tends to infinity. PubDate: 2016-06-01

Abstract: Abstract
In this sequel paper, we give a shorter, second proof of the monotonicity of the Hawking mass for time flat surfaces under spacelike uniformly area expanding flows in spacetimes that satisfy the dominant energy condition. We also include a third proof which builds on a known formula and describe a class of sufficient conditions of divergence type for the monotonicity of the Hawking mass. These flows of surfaces may have connections to the problem in general relativity of bounding the total mass of a spacetime from below by the quasi-local mass of spacelike 2-surfaces in the spacetime. PubDate: 2016-06-01

Abstract: Abstract
We give an estimate of the quantum variance for d-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity for these families of graphs. Our proof is based on a uniform control of an associated random walk on the bonds of the graph. We show that recent constructions of Ramanujan graphs, and asymptotically almost surely, random d-regular graphs, satisfy the necessary conditions to conclude that quantum ergodicity holds. PubDate: 2016-06-01

Abstract: Abstract
A self-gravitating homogeneous ball of a fluid with pressure zero where the fluid particles are initially at rest collapses to a point in finite time. We prove that this gravitational collapse can be approximated arbitrarily closely by suitable solutions of the Vlasov–Poisson system which are known to exist globally in time. PubDate: 2016-06-01

Abstract: Abstract
The Jacobian Conjecture states that any locally invertible polynomial system in
\({{\mathbb{C}}^n}\)
is globally invertible with polynomial inverse. Bass et al. (Bull Am Math Soc 7(2):287–330, 1982) proved a reduction theorem stating that the conjecture is true for any degree of the polynomial system if it is true in degree three. This degree reduction is obtained with the price of increasing the dimension
\({n}\)
. We prove here a theorem concerning partial elimination of variables, which implies a reduction of the generic case to the quadratic one. The price to pay is the introduction of a supplementary parameter
\({0 \leq n' \leq n}\)
, parameter which represents the dimension of a linear subspace where some particular conditions on the system must hold. We first give a purely algebraic proof of this reduction result and we then expose a distinct proof, in a Quantum Field Theoretical formulation, using the intermediate field method. PubDate: 2016-05-07

Abstract: Abstract
We study a classical lattice dipole gas with low activity in dimension
\({d \geq 3}\)
. We investigate long distance properties by a renormalization group analysis. We prove that various correlation functions have an infinite volume limit. We also get estimates on the decay of correlation functions. PubDate: 2016-05-03

Abstract: Abstract
We show that the product of infranilmanifolds with certain aspherical closed manifolds do not support Anosov diffeomorphisms. As a special case, we obtain that products of a nilmanifold and negatively curved manifolds of dimension at least 3 do not support Anosov diffeomorphisms. PubDate: 2016-05-03

Abstract: Abstract
We prove in a simple and coordinate-free way the equivalence between the classical definitions of the mass or of the center of mass of an asymptotically flat manifold and their alternative definitions depending on the Ricci tensor and conformal Killing fields. This enables us to prove an analogous statement in the asymptotically hyperbolic case. PubDate: 2016-05-02

Abstract: Abstract
We study a spectral problem associated to the quantization of a spectral curve arising in local mirror symmetry. The perturbative WKB quantization condition is determined by the quantum periods, or equivalently by the refined topological string in the Nekrasov–Shatashvili (NS) limit. We show that the information encoded in the quantum periods is radically insufficient to determine the spectrum: there is an infinite series of instanton corrections, which are non-perturbative in
\({\hbar}\)
, and lead to an exact WKB quantization condition. Moreover, we conjecture the precise form of the instanton corrections: they are determined by the standard or unrefined topological string free energy, and we test our conjecture successfully against numerical calculations of the spectrum. This suggests that the non-perturbative sector of the NS refined topological string contains information about the standard topological string. As an application of the WKB quantization condition, we explain some recent observations relating membrane instanton corrections in ABJM theory to the refined topological string. PubDate: 2016-05-01

Abstract: Abstract
We prove a formula for the global gravitational anomaly of the self-dual field theory in the presence of background gauge fields, assuming the results of arXiv:1110.4639. Along the way, we also clarify various points about the self-dual field theory. In particular, we give a general definition of the theta characteristic entering its partition function and settle the issue of its possible metric dependence. We treat the cohomological version of type IIB supergravity as an example of the formalism. We show the apparent existence of a mixed gauge-gravitational global anomaly, occurring when the B-field and Ramond–Ramond two-form gauge fields have non-trivial Wilson lines, and suggest a way in which it could cancel. PubDate: 2016-05-01

Abstract: Abstract
For the fundamental representations of the simple Lie algebras of type B
n
, C
n
and D
n
, we derive the braiding and fusion matrices from the generalized Yang–Yang function and prove that the corresponding knot invariants are Kauffman polynomial. PubDate: 2016-05-01

Abstract: Abstract
We propose a new family of matrix models whose 1/N expansion captures the all-genus topological string on toric Calabi–Yau threefolds. These matrix models are constructed from the trace class operators appearing in the quantization of the corresponding mirror curves. The fact that they provide a non-perturbative realization of the (standard) topological string follows from a recent conjecture connecting the spectral properties of these operators, to the enumerative invariants of the underlying Calabi–Yau threefolds. We study in detail the resulting matrix models for some simple geometries, like local
\({\mathbb{P}^2}\)
and local
\({\mathbb{F}_2}\)
, and we verify that their weak ’t Hooft coupling expansion reproduces the topological string free energies near the conifold singularity. These matrix models are formally similar to those appearing in the Fermi-gas formulation of Chern–Simons matter theories, and their 1/N expansion receives non-perturbative corrections determined by the Nekrasov–Shatashvili limit of the refined topological string. PubDate: 2016-05-01

Abstract: Abstract
We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates with the decay rate
\({t^{-1}\log^{-2}t}\)
, which is optimal with the chosen weights and appears to be so generally. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate. PubDate: 2016-05-01

Abstract: Abstract
The van der Waals–London’s law, for a collection of atoms at large separation, states that their interaction energy is pairwise attractive and decays proportionally to one over their distance to the sixth. The first rigorous result in this direction was obtained by Lieb and Thirring (Phys Rev A 34(1):40–46, 1986), by proving an upper bound which confirms this law. Recently the van der Waals–London’s law was proven under some assumptions by Anapolitanos and Sigal (arXiv:1205.4652v2). Following the strategy of Anapolitanos and Sigal (arXiv:1205.4652v2) and reworking the approach appropriately, we prove estimates on the remainder of the interaction energy. Furthermore, using an appropriate test function, we prove an upper bound for the interaction energy, which is sharp to leading order. For the upper bound, our assumptions are weaker, the remainder estimates stronger and the proof is simpler. The upper bound, for the cases it applies, improves considerably the upper bound of Lieb and Thirring. Their bound holds in a much more general setting, however. Here we consider only spinless Fermions. PubDate: 2016-05-01

Abstract: Abstract
We construct new concrete examples of relative differential characters, which we call Cheeger–Chern–Simons characters. They combine the well-known Cheeger–Simons characters with Chern–Simons forms. In the same way as Cheeger–Simons characters generalize Chern–Simons invariants of oriented closed manifolds, Cheeger–Chern–Simons characters generalize Chern–Simons invariants of oriented manifolds with boundary. We study the differential cohomology of compact Lie groups G and their classifying spaces BG. We show that the even degree differential cohomology of BG canonically splits into Cheeger–Simons characters and topologically trivial characters. We discuss the transgression in principal G-bundles and in the universal bundle. We introduce two methods to lift the universal transgression to a differential cohomology valued map. They generalize the Dijkgraaf–Witten correspondence between 3-dimensional Chern–Simons theories and Wess–Zumino–Witten terms to fully extended higher-order Chern–Simons theories. Using these lifts, we also prove two versions of a differential Hopf theorem. Using Cheeger–Chern–Simons characters and transgression, we introduce the notion of differential trivializations of universal characteristic classes. It generalizes well-established notions of differential String classes to arbitrary degree. Specializing to the class
\({\frac{1}{2} p_1 \in H^4(B{\rm Spin}_n;\mathbb{Z})}\)
, we recover isomorphism classes of geometric string structures on Spin
n
-bundles with connection and the corresponding spin structures on the free loop space. The Cheeger–Chern–Simons character associated with the class
\({\frac{1}{2} p_1}\)
together with its transgressions to loop space and higher mapping spaces defines a Chern–Simons theory, extended down to points. Differential String classes provide trivializations of this extended Chern–Simons theory. This setting immediately generalizes to arbitrary degree: for any universal characteristic class of principal G-bundles, we have an associated Cheeger–Chern–Simons character and extended Chern–Simons theory. Differential trivialization classes yield trivializations of this extended Chern–Simons theory. PubDate: 2016-04-22