for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> EARTH SCIENCES (Total: 636 journals)
    - EARTH SCIENCES (462 journals)
    - GEOLOGY (68 journals)
    - GEOPHYSICS (27 journals)
    - HYDROLOGY (21 journals)
    - OCEANOGRAPHY (58 journals)

EARTH SCIENCES (462 journals)                  1 2 3 4 5 | Last

Acta Geodaetica et Geophysica     Hybrid Journal   (Followers: 1)
Acta Geodaetica et Geophysica Hungarica     Full-text available via subscription   (Followers: 2)
Acta Geophysica     Open Access   (Followers: 7)
Acta Geotechnica     Hybrid Journal   (Followers: 9)
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 4)
Advances in High Energy Physics     Open Access   (Followers: 11)
Advances In Physics     Hybrid Journal   (Followers: 7)
Aeolian Research     Hybrid Journal   (Followers: 3)
African Journal of Aquatic Science     Hybrid Journal   (Followers: 12)
Algological Studies     Full-text available via subscription   (Followers: 2)
Alpine Botany     Hybrid Journal   (Followers: 6)
AMBIO     Hybrid Journal   (Followers: 13)
Anales del Instituto de la Patagonia     Open Access   (Followers: 2)
Andean geology     Open Access   (Followers: 5)
Annales Henri Poincaré     Hybrid Journal   (Followers: 1)
Annales UMCS, Geographia, Geologia, Mineralogia et Petrographia     Open Access   (Followers: 2)
Annals of Geophysics     Full-text available via subscription   (Followers: 10)
Annals of GIS     Hybrid Journal   (Followers: 18)
Annals of Glaciology     Full-text available via subscription   (Followers: 2)
Annual Review of Marine Science     Full-text available via subscription   (Followers: 11)
Anthropocene     Hybrid Journal  
Anthropocene Review     Hybrid Journal   (Followers: 3)
Applied Clay Science     Hybrid Journal   (Followers: 3)
Applied Geochemistry     Hybrid Journal   (Followers: 8)
Applied Geomatics     Hybrid Journal   (Followers: 7)
Applied Geophysics     Hybrid Journal   (Followers: 6)
Applied Ocean Research     Hybrid Journal   (Followers: 6)
Applied Petrochemical Research     Open Access   (Followers: 3)
Applied Remote Sensing Journal     Open Access   (Followers: 10)
Aquatic Conservation Marine and Freshwater Ecosystems     Hybrid Journal   (Followers: 20)
Arctic Science     Open Access   (Followers: 4)
Arctic, Antarctic, and Alpine Research     Full-text available via subscription   (Followers: 9)
Artificial Satellites     Open Access   (Followers: 14)
Asia-Pacific Journal of Atmospheric Sciences     Hybrid Journal   (Followers: 2)
Asian Journal of Earth Sciences     Open Access   (Followers: 19)
Atlantic Geology : Journal of the Atlantic Geoscience Society / Atlantic Geology : revue de la Société Géoscientifique de l'Atlantique     Full-text available via subscription   (Followers: 3)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 7)
Atmospheric and Climate Sciences     Open Access   (Followers: 15)
Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia     Hybrid Journal   (Followers: 12)
Boletim de Ciências Geodésicas     Open Access  
Boreas: An International Journal of Quaternary Research     Hybrid Journal   (Followers: 10)
Bragantia     Open Access   (Followers: 2)
Bulletin of Earthquake Engineering     Hybrid Journal   (Followers: 10)
Bulletin of Geosciences     Open Access   (Followers: 9)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Seismological Society of America     Full-text available via subscription   (Followers: 18)
Bulletin of Volcanology     Hybrid Journal   (Followers: 16)
Canadian Journal of Plant Science     Full-text available via subscription   (Followers: 13)
Canadian Mineralogist     Full-text available via subscription   (Followers: 2)
Canadian Water Resources Journal     Hybrid Journal   (Followers: 20)
Carbonates and Evaporites     Hybrid Journal   (Followers: 4)
CATENA     Hybrid Journal   (Followers: 4)
Chemical Geology     Hybrid Journal   (Followers: 10)
Chemie der Erde - Geochemistry     Hybrid Journal   (Followers: 3)
Chinese Geographical Science     Hybrid Journal   (Followers: 5)
Chinese Journal of Geochemistry     Hybrid Journal   (Followers: 3)
Chinese Journal of Oceanology and Limnology     Hybrid Journal   (Followers: 2)
Ciencia del suelo     Open Access  
Ciencias Espaciales     Open Access  
Climate and Development     Hybrid Journal   (Followers: 12)
Coastal Management     Hybrid Journal   (Followers: 17)
Cogent Geoscience     Open Access  
Comptes Rendus Geoscience     Full-text available via subscription   (Followers: 6)
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computers and Geotechnics     Hybrid Journal   (Followers: 7)
Contemporary Trends in Geoscience     Open Access   (Followers: 2)
Continental Shelf Research     Hybrid Journal   (Followers: 8)
Contributions to Mineralogy and Petrology     Hybrid Journal   (Followers: 8)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)
Coral Reefs     Hybrid Journal   (Followers: 16)
Cretaceous Research     Hybrid Journal   (Followers: 6)
Cybergeo : European Journal of Geography     Open Access   (Followers: 5)
Depositional Record     Open Access  
Developments in Geotectonics     Full-text available via subscription   (Followers: 3)
Developments in Quaternary Science     Full-text available via subscription   (Followers: 3)
Développement durable et territoires     Open Access   (Followers: 2)
Diatom Research     Hybrid Journal  
Doklady Physics     Hybrid Journal   (Followers: 1)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 3)
E&S Engineering and Science     Open Access  
E3S Web of Conferences     Open Access  
Earth and Planetary Science Letters     Hybrid Journal   (Followers: 84)
Earth and Space Science     Open Access  
Earth Interactions     Full-text available via subscription   (Followers: 11)
Earth Science Research     Open Access   (Followers: 7)
Earth Surface Dynamics (ESurf)     Open Access   (Followers: 3)
Earth Surface Processes and Landforms     Hybrid Journal   (Followers: 13)
Earth System Dynamics     Open Access   (Followers: 7)
Earth System Dynamics Discussions     Open Access   (Followers: 4)
Earth's Future     Open Access   (Followers: 1)
Earth, Planets and Space     Open Access   (Followers: 3)
Earthquake Engineering and Engineering Vibration     Hybrid Journal   (Followers: 7)
Earthquake Science     Hybrid Journal   (Followers: 8)
Earthquake Spectra     Full-text available via subscription   (Followers: 13)
Ecohydrology     Hybrid Journal   (Followers: 10)
Electromagnetics     Hybrid Journal   (Followers: 2)
Energy Efficiency     Hybrid Journal   (Followers: 12)
Energy Exploration & Exploitation     Full-text available via subscription   (Followers: 3)
Environmental Earth Sciences     Hybrid Journal   (Followers: 12)

        1 2 3 4 5 | Last

Journal Cover   Annales Henri Poincaré
  [SJR: 1.016]   [H-I: 28]   [1 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1424-0637 - ISSN (Online) 1424-0661
   Published by Springer-Verlag Homepage  [2291 journals]
  • Exponential Decay for the Schrödinger Equation on a Dissipative
    • Abstract: Abstract We prove exponential decay for the solution of the Schrödinger equation on a dissipative waveguide. The absorption is effective everywhere on the boundary, but the geometric control condition is not satisfied. The proof relies on separation of variables and the Riesz basis property for the eigenfunctions of the transverse operator. The case where the absorption index takes negative values is also discussed.
      PubDate: 2015-08-01
  • A Ballistic Motion Disrupted by Quantum Reflections
    • Abstract: Abstract I study a Lindblad dynamics modeling a quantum test particle in a Dirac comb that collides with particles from a background gas. The main result is a homogenization theorem in an adiabatic limiting regime involving large initial momentum for the test particle. Over the time interval considered, the particle would exhibit essentially ballistic motion if either the singular periodic potential or the kicks from the gas were removed. However, the particle behaves diffusively when both sources of forcing are present. The conversion of the motion from ballistic to diffusive is generated by occasional quantum reflections that result when the test particle’s momentum is driven through a collision near to an element of the half-spaced reciprocal lattice of the Dirac comb.
      PubDate: 2015-08-01
  • Gupta–Bleuler Quantization of the Maxwell Field in Globally
           Hyperbolic Space-Times
    • Abstract: Abstract We give a complete framework for the Gupta–Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta–Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta–Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.
      PubDate: 2015-08-01
  • Poisson Eigenvalue Statistics for Random Schrödinger Operators on
           Regular Graphs
    • Abstract: Abstract For random operators it is conjectured that spectral properties of an infinite-volume operator are related to the distribution of spectral gaps of finite-volume approximations. In particular, localization and pure point spectrum in infinite volume is expected to correspond to Poisson eigenvalue statistics. Motivated by results on the Anderson model on the infinite tree we consider random Schrödinger operators on finite regular graphs. We study local spectral statistics: we analyze the number of eigenvalues in intervals with length comparable to the inverse of the number of vertices of the graph, in the limit where this number tends to infinity. We show that the random point process generated by the rescaled eigenvalues converges in certain spectral regimes of localization to a Poisson process. The corresponding result on the lattice was proved by Minami. However, due to the geometric structure of regular graphs the known methods turn out to be difficult to adapt. Therefore, we develop a new approach based on direct comparison of eigenvectors.
      PubDate: 2015-08-01
  • The Multiscale Loop Vertex Expansion
    • Abstract: Abstract The loop vertex expansion (LVE) is a constructive technique which uses only canonical combinatorial tools and no space–time dependent lattices. It works for quantum field theories without renormalization. Renormalization requires scale analysis. In this paper, we provide an enlarged formalism which we call the multiscale loop vertex expansion (MLVE). We test it on what is probably the simplest quantum field theory which requires some kind of renormalization, namely a combinatorial model of the vector type with quartic interaction and a propagator which mimicks the power counting of \({\phi^4_2}\) . An ordinary LVE would fail to treat even this simplest superrenormalizable model, but we show how to perform the ultraviolet limit and prove its analyticity in the Borel summability domain of the model with the MLVE.
      PubDate: 2015-08-01
  • Torus Knots in Lens Spaces and Topological Strings
    • Abstract: Abstract We study the invariant of knots in lens spaces defined from quantum Chern–Simons theory. By means of the knot operator formalism, we derive a generalization of the Rosso-Jones formula for torus knots in L(p,1). In the second part of the paper, we propose a B-model topological string theory description of torus knots in L(2,1).
      PubDate: 2015-08-01
  • Super-KMS Functionals for Graded-Local Conformal Nets
    • Abstract: Abstract Motivated by a few preceding papers and a question of R. Longo, we introduce super-KMS functionals for graded translation-covariant nets over \({\mathbb{R}}\) with superderivations, roughly speaking as a certain supersymmetric modification of classical KMS states on translation-covariant nets over \({\mathbb{R}}\) , fundamental objects in chiral algebraic quantum field theory. Although we are able to make a few statements concerning their general structure, most properties will be studied in the setting of specific graded-local (super-) conformal models. In particular, we provide a constructive existence and partial uniqueness proof of super-KMS functionals for the supersymmetric free field, for certain subnets, and for the super-Virasoro net with central charge \({c\ge 3/2}\) . Moreover, as a separate result, we classify bounded super-KMS functionals for graded-local conformal nets over S 1 with respect to rotations.
      PubDate: 2015-08-01
  • A TQFT of Turaev–Viro Type on Shaped Triangulations
    • Abstract: Abstract A shaped triangulation is a finite triangulation of an oriented pseudo-three-manifold where each tetrahedron carries dihedral angles of an ideal hyperbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3–2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann–Zagier Poisson bracket. Similarly to Turaev–Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed three-manifolds, our partition function is twice the absolute value squared of the partition function of Techmüller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev–Viro and the Witten–Reshetikhin–Turaev invariants of three-manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.
      PubDate: 2015-07-26
  • Time Flat Surfaces and the Monotonicity of the Spacetime Hawking Mass II
    • Abstract: Abstract In this sequel paper, we give a shorter, second proof of the monotonicity of the Hawking mass for time flat surfaces under spacelike uniformly area expanding flows in spacetimes that satisfy the dominant energy condition. We also include a third proof which builds on a known formula and describe a class of sufficient conditions of divergence type for the monotonicity of the Hawking mass. These flows of surfaces may have connections to the problem in general relativity of bounding the total mass of a spacetime from below by the quasi-local mass of spacelike 2-surfaces in the spacetime.
      PubDate: 2015-07-26
  • Global Hyperbolicity for Spacetimes with Continuous Metrics
    • Abstract: Abstract We show that the definition of global hyperbolicity in terms of the compactness of the causal diamonds and non-total imprisonment can be extended to spacetimes with continuous metrics, while retaining all of the equivalences to other notions of global hyperbolicity. In fact, global hyperbolicity is equivalent to the compactness of the space of causal curves and to the existence of a Cauchy hypersurface. Furthermore, global hyperbolicity implies causal simplicity, stable causality and the existence of maximal curves connecting any two causally related points.
      PubDate: 2015-07-25
  • Asymptotic Behavior of Solutions to the Drift-Diffusion Equation with
           Critical Dissipation
    • Abstract: Abstract In this paper, the initial value problem for the drift-diffusion equation which stands for a model of a semiconductor device is studied. When the dissipative effect on the drift-diffusion equation is given by the half Laplacian, the dissipation balances to the extra force term. This case is called critical. The goal of this paper is to derive decay and asymptotic expansion of the solution to the drift-diffusion equation as time variable tends to infinity.
      PubDate: 2015-07-24
  • Instanton Effects and Quantum Spectral Curves
    • Abstract: Abstract We study a spectral problem associated to the quantization of a spectral curve arising in local mirror symmetry. The perturbative WKB quantization condition is determined by the quantum periods, or equivalently by the refined topological string in the Nekrasov–Shatashvili (NS) limit. We show that the information encoded in the quantum periods is radically insufficient to determine the spectrum: there is an infinite series of instanton corrections, which are non-perturbative in \({\hbar}\) , and lead to an exact WKB quantization condition. Moreover, we conjecture the precise form of the instanton corrections: they are determined by the standard or unrefined topological string free energy, and we test our conjecture successfully against numerical calculations of the spectrum. This suggests that the non-perturbative sector of the NS refined topological string contains information about the standard topological string. As an application of the WKB quantization condition, we explain some recent observations relating membrane instanton corrections in ABJM theory to the refined topological string.
      PubDate: 2015-07-22
  • The Global Anomaly of the Self-Dual Field in General Backgrounds
    • Abstract: Abstract We prove a formula for the global gravitational anomaly of the self-dual field theory in the presence of background gauge fields, assuming the results of arXiv:1110.4639. Along the way, we also clarify various points about the self-dual field theory. In particular, we give a general definition of the theta characteristic entering its partition function and settle the issue of its possible metric dependence. We treat the cohomological version of type IIB supergravity as an example of the formalism. We show the apparent existence of a mixed gauge-gravitational global anomaly, occurring when the B-field and Ramond–Ramond two-form gauge fields have non-trivial Wilson lines, and suggest a way in which it could cancel.
      PubDate: 2015-07-22
  • Matrix Models from Operators and Topological Strings
    • Abstract: Abstract We propose a new family of matrix models whose 1/N expansion captures the all-genus topological string on toric Calabi–Yau threefolds. These matrix models are constructed from the trace class operators appearing in the quantization of the corresponding mirror curves. The fact that they provide a non-perturbative realization of the (standard) topological string follows from a recent conjecture connecting the spectral properties of these operators, to the enumerative invariants of the underlying Calabi–Yau threefolds. We study in detail the resulting matrix models for some simple geometries, like local \({\mathbb{P}^2}\) and local \({\mathbb{F}_2}\) , and we verify that their weak ’t Hooft coupling expansion reproduces the topological string free energies near the conifold singularity. These matrix models are formally similar to those appearing in the Fermi-gas formulation of Chern–Simons matter theories, and their 1/N expansion receives non-perturbative corrections determined by the Nekrasov–Shatashvili limit of the refined topological string.
      PubDate: 2015-07-19
  • Gravitational Collapse and the Vlasov–Poisson System
    • Abstract: Abstract A self-gravitating homogeneous ball of a fluid with pressure zero where the fluid particles are initially at rest collapses to a point in finite time. We prove that this gravitational collapse can be approximated arbitrarily closely by suitable solutions of the Vlasov–Poisson system which are known to exist globally in time.
      PubDate: 2015-07-19
  • Generalizations of Poisson Structures Related to Rational Gaudin Model
    • Abstract: Abstract The Poisson structure arising in the Hamiltonian approach to the rational Gaudin model looks very similar to the so-called modified Reflection Equation Algebra. Motivated by this analogy, we realize a braiding of the mentioned Poisson structure, i.e. we introduce a “braided Poisson” algebra associated with an involutive solution to the quantum Yang–Baxter equation. Also, we exhibit another generalization of the Gaudin type Poisson structure by replacing the first derivative in the current parameter, entering the so-called local form of this structure, by a higher order derivative. Finally, we introduce a structure, which combines both generalizations. Some commutative families in the corresponding braided Poisson algebra are found.
      PubDate: 2015-07-01
  • Erratum to: Excitation Spectrum of Interacting Bosons in the Mean-Field
           Infinite-Volume Limit
    • PubDate: 2015-07-01
  • Chaotic Dynamics in an Impact Problem
    • Abstract: Abstract We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We show that a modification of a method of Angenent based on sub- and super-solutions can be applied in order to detect chaotic dynamics. Using the theory of exact symplectic twist maps of the cylinder one can prove the result under “natural” conditions on the function f.
      PubDate: 2015-07-01
  • Explicit Riemannian Manifolds with Unexpectedly Behaving Center of Mass
    • Abstract: The (relativistic) center of mass (CoM) of an asymptotically flat Riemannian manifold is often defined by certain surface integral expressions evaluated along a foliation of the manifold near infinity, e.g. by Arnowitt, Deser, and Misner (ADM). There are also what we call abstract definitions of the CoM in terms of a foliation near infinity itself, going back to the constant mean curvature (CMC-) foliation studied by Huisken and Yau; these give rise to surface integral expressions when equipped with suitable systems of coordinates. We discuss subtle asymptotic convergence issues regarding the ADM- and the coordinate expressions related to the CMC-CoM. In particular, we give explicit examples demonstrating that both can diverge—in a setting where Einstein’s equation is satisfied. We also give explicit examples of the same asymptotic order of decay with prescribed mass and CoM. We illustrate both phenomena by providing analogs in Newtonian gravity. Our examples conflict with some results in the literature.
      PubDate: 2015-07-01
  • On Perturbations of Extreme Kerr–Newman Black Holes and their
    • Abstract: Abstract Using black hole inequalities and the increase of the horizon’s areas, we show that there are arbitrarily small electro-vacuum perturbations of the standard initial data of the extreme Reissner–Nordström black hole that (by contradiction) cannot decay in time into any extreme Kerr–Newman black hole. This proves that, in a formal sense, the reduced family of the extreme Kerr–Newman black holes is unstable. It remains of course to be seen whether the whole family of charged black holes, including those extremes, is stable or not.
      PubDate: 2015-07-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015