A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 110 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 3)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 43)
Advances in Climate Change Research     Open Access   (Followers: 28)
Advances in Meteorology     Open Access   (Followers: 24)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 7)
Aeolian Research     Hybrid Journal   (Followers: 6)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 18)
American Journal of Climate Change     Open Access   (Followers: 27)
Atmósfera     Open Access   (Followers: 3)
Atmosphere     Open Access   (Followers: 25)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 14)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 10)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 47)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 14)
Atmospheric Environment     Hybrid Journal   (Followers: 72)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 69)
Atmospheric Science Letters     Open Access   (Followers: 36)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 31)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 1)
Bulletin of the American Meteorological Society     Open Access   (Followers: 49)
Carbon Balance and Management     Open Access   (Followers: 4)
Change and Adaptation in Socio-Ecological Systems     Open Access   (Followers: 4)
Ciencia, Ambiente y Clima     Open Access   (Followers: 3)
Climate     Open Access   (Followers: 5)
Climate Change Economics     Hybrid Journal   (Followers: 14)
Climate Change Research Letters     Open Access   (Followers: 7)
Climate Change Responses     Open Access   (Followers: 8)
Climate Dynamics     Hybrid Journal   (Followers: 44)
Climate law     Hybrid Journal   (Followers: 7)
Climate of the Past (CP)     Open Access   (Followers: 5)
Climate of the Past Discussions (CPD)     Open Access  
Climate Policy     Hybrid Journal   (Followers: 36)
Climate Research     Hybrid Journal   (Followers: 6)
Climate Risk Management     Open Access   (Followers: 4)
Climate Services     Open Access   (Followers: 3)
Climate Summary of South Africa     Full-text available via subscription   (Followers: 2)
Climatic Change     Open Access   (Followers: 60)
Current Climate Change Reports     Hybrid Journal   (Followers: 4)
Developments in Atmospheric Science     Full-text available via subscription   (Followers: 27)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 5)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 18)
Earth Perspectives - Transdisciplinarity Enabled     Open Access  
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 2)
Energy & Environment     Hybrid Journal   (Followers: 23)
Environmental and Climate Technologies     Open Access   (Followers: 4)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 6)
Frontiers in Climate     Open Access   (Followers: 2)
GeoHazards     Open Access   (Followers: 1)
Global Meteorology     Open Access   (Followers: 17)
International Journal of Atmospheric Sciences     Open Access   (Followers: 21)
International Journal of Biometeorology     Hybrid Journal   (Followers: 1)
International Journal of Climatology     Hybrid Journal   (Followers: 31)
International Journal of Environment and Climate Change     Open Access   (Followers: 3)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 2)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 35)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 33)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 199)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 21)
Journal of Climate     Hybrid Journal   (Followers: 54)
Journal of Climate Change     Full-text available via subscription   (Followers: 2)
Journal of Climatology     Open Access   (Followers: 3)
Journal of Hydrology and Meteorology     Open Access   (Followers: 29)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 11)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 1)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 14)
Journal of Space Weather and Space Climate     Open Access   (Followers: 27)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 79)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 6)
Journal of Weather Modification     Full-text available via subscription   (Followers: 2)
Large Marine Ecosystems     Full-text available via subscription   (Followers: 1)
Mathematics of Climate and Weather Forecasting     Open Access   (Followers: 6)
Mediterranean Marine Science     Open Access   (Followers: 1)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Hybrid Journal   (Followers: 4)
Meteorological Monographs     Hybrid Journal  
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 3)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 26)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal  
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 14)
Monthly Weather Review     Hybrid Journal   (Followers: 34)
Nature Climate Change     Full-text available via subscription   (Followers: 125)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 35)
Nīvār     Open Access  
npj Climate and Atmospheric Science     Open Access   (Followers: 3)
Open Atmospheric Science Journal     Open Access   (Followers: 2)
Open Journal of Modern Hydrology     Open Access   (Followers: 6)
Revista Brasileira de Meteorologia     Open Access  
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access  
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Space Weather     Full-text available via subscription   (Followers: 24)
Studia Geophysica et Geodaetica     Hybrid Journal  
Tellus A     Open Access   (Followers: 22)
Tellus B     Open Access   (Followers: 21)
The Cryosphere (TC)     Open Access   (Followers: 5)
The Cryosphere Discussions (TCD)     Open Access   (Followers: 4)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 27)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 12)
Tropical Cyclone Research and Review     Open Access   (Followers: 1)
Urban Climate     Hybrid Journal   (Followers: 4)
Weather     Hybrid Journal   (Followers: 19)
Weather and Climate Dynamics     Open Access  
Weather and Climate Extremes     Open Access   (Followers: 16)
Weather and Forecasting     Hybrid Journal   (Followers: 28)
Weatherwise     Hybrid Journal   (Followers: 4)
气候与环境研究     Full-text available via subscription   (Followers: 1)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Advances in Atmospheric Sciences
Journal Prestige (SJR): 0.956
Citation Impact (citeScore): 2
Number of Followers: 43  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1861-9533 - ISSN (Online) 0256-1530
Published by Springer-Verlag Homepage  [2626 journals]
  • Sensitivity of Snowfall Characteristics to Meteorological Conditions in
           the Yeongdong Region of Korea
    • Abstract: Abstract This study investigates the characteristics of cold clouds and snowfall in both the Yeongdong coastal and mountainous regions under different meteorological conditions based on the integration of numerical modeling and three-hourly rawinsonde observations with snow crystal photographs for a snowfall event that occurred on 29–30 January 2016. We found that rimed particles predominantly observed turned into dendrite particles in the latter period of the episode when the 850 hPa temperature decreased at the coastal site, whereas the snow crystal habits at the mountainous site were largely needle or rimed needle. Rawinsonde soundings showed a well-defined, two-layered cloud structure along with distinctive wind-directional shear, and an inversion in the equivalent potential temperature above the low-level cloud layer. The first experiment with a decrease in lower-layer temperature showed that the low-level cloud thickness was reduced to less than 1.5 km, and the accumulated precipitation was decreased by 87% compared with the control experiment. The difference in precipitation amount between the single-layered experiment and control experiment (two-layered) was not so significant to attribute it to the effect of the seeder-feeder mechanism. The precipitation in the last experiment by weakening wind-directional shear was increased by 1.4 times greater than the control experiment specifically at the coastal site, with graupel particles accounting for the highest proportion (∼62%). The current results would improve snowfall forecasts in complicated geographical environments such as Yeongdong in terms of snow crystal habit as well as snowfall amount in both time and space domains.
      PubDate: 2021-01-14
  • Determination of Surface Precipitation Type Based on the Data Fusion
    • Abstract: Abstract Hazardous events related to atmospheric precipitation depend not only on the intensity of surface precipitation, but also on its type. Uncertainty related to determination of the precipitation type (PT) leads to financial losses in many areas of human activity, such as the power industry, agriculture, transportation, and many more. In this study, we use machine learning (ML) algorithms with the data fusion approach to more accurately determine surface PT. Based on surface synoptic observations, ERA5 reanalysis, and radar data, we distinguish between liquid, mixed, and solid precipitation types. The study domain considers the entire area of Poland and a period from 2015 to 2017. The purpose of this work is to address the question: “How can ML techniques applied in observational and NWP data help to improve the recognition of the surface PT'” Despite testing 33 parameters, it was found that a combination of the near-surface air temperature and the depth of the warm layer in the 0–1000 m above ground level (AGL) layer contains most of the signal needed to determine surface PT. The accrued probability of detection for liquid, solid, and mixed PTs according to the developed Random Forest model is 98.0%, 98.8%, and 67.3%, respectively. The application of the ML technique and data fusion approach allows to significantly improve the robustness of PT prediction compared to commonly used baseline models and provides promising results for operational forecasters.
      PubDate: 2021-01-14
  • Skill Assessment of Copernicus Climate Change Service Seasonal Ensemble
           Precipitation Forecasts over Iran
    • Abstract: Abstract Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems. Recently, the Copernicus Climate Change Service (C3S) database has been releasing monthly forecasts for lead times of up to three months for public use. This study evaluated the ensemble forecasts of three C3S models over the period 1993–2017 in Iran’s eight classified precipitation clusters for one- to three-month lead times. Probabilistic and non-probabilistic criteria were used for evaluation. Furthermore, the skill of selected models was analyzed in dry and wet periods in different precipitation clusters. The results indicated that the models performed best in western precipitation clusters, while in the northern humid cluster the models had negative skill scores. All models were better at forecasting upper-tercile events in dry seasons and lower-tercile events in wet seasons. Moreover, with increasing lead time, the forecast skill of the models worsened. In terms of forecasting in dry and wet years, the forecasts of the models were generally close to observations, albeit they underestimated several severe dry periods and overestimated a few wet periods. Moreover, the multi-model forecasts generated via multivariate regression of the forecasts of the three models yielded better results compared with those of individual models. In general, the ECMWF and UKMO models were found to be appropriate for one-month-ahead precipitation forecasting in most clusters of Iran. For the clusters considered in Iran and for the long-range system versions considered, the Météo France model had lower skill than the other models.
      PubDate: 2021-01-14
  • Upper Ocean Temperatures Hit Record High in 2020
    • PubDate: 2021-01-13
  • Intermodel Diversity of Simulated Long-term Changes in the Austral Winter
           Southern Annular Mode: Role of the Southern Ocean Dipole
    • Abstract: Abstract The Southern Annular Mode (SAM) plays an important role in regulating Southern Hemisphere extratropical circulation. State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM. Results from Atmospheric Model Intercomparison Project (AMIP) experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter (June–July–August) SAM is significant, with an intermodel standard deviation of 0.28 (10 yr)−1, larger than the multimodel ensemble mean of 0.18 (10 yr)−1. This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature (SST). Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes, referred to as the Southern Ocean Dipole (SOD). The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations. Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD-SAM relationship. Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend. The explained variance is about 40% in the AMIP runs. These results suggest improved simulation of the SOD-SAM relationship may help reproduce long-term changes in the SAM.
      PubDate: 2021-01-08
  • Increases in Anthropogenic Heat Release from Energy Consumption Lead to
           More Frequent Extreme Heat Events in Urban Cities
    • Abstract: Abstract With economic development and rapid urbanization, increases in Gross Domestic Product and population in fast-growing cities since the turn of the 21st Century have led to increases in energy consumption. Anthropogenic heat flux released to the near-surface atmosphere has led to changes in urban thermal environments and severe extreme temperature events. To investigate the effects of energy consumption on urban extreme temperature events, including extreme heat and cold events, a dynamic representation scheme of anthropogenic heat release (AHR) was implemented in the Advanced Research version of the Weather Research and Forecasting (WRF) model, and AHR data were developed based on energy consumption and population density in a case study of Beijing, China. Two simulations during 1999–2017 were then conducted using the developed WRF model with 3-km resolution with and without the AHR scheme. It was shown that the mean temperature increased with the increase in AHR, and more frequent extreme heat events were produced, with an annual increase of 0.02–0.19 days, as well as less frequent extreme cold events, with an annual decrease of 0.26–0.56 days, based on seven extreme temperature indices in the city center. AHR increased the sensible heat flux and led to surface energy budget changes, strengthening the dynamic processes in the atmospheric boundary layer that reduce AHR heating efficiency more in summer than in winter. In addition, it was concluded that suitable energy management might help to mitigate the impact of extreme temperature events in different seasons.
      PubDate: 2021-01-08
  • Numerical Simulation to Evaluate the Effects of Upward Lightning
           Discharges on Thunderstorm Electrical Parameters
    • Abstract: Abstract A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper, and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C, and the average value is 19.0 C, while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9% to 47.3%, with an average value of 14.7%. Moreover, the average value of the space electrostatic energy consumed by upward lightning is 1.06×109 J. The above values are lower than those related to intracloud lightning discharges. The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area, and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength. In addition, these opposite-polarity charges are redistributed with the development of thunderstorms. The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm, and the complexity gradually decreases with the charge neutralization process.
      PubDate: 2021-01-05
  • Understanding the Soil Temperature Variability at Different Depths:
           Effects of Surface Air Temperature, Snow Cover, and the Soil Memory
    • Abstract: Abstract The soil temperature (ST) is closely related to the surface air temperature (AT), but their coupling may be affected by other factors. In this study, significant effects of the AT on the underlying ST were found, and the time taken to propagate downward to 320 cm can be up to 10 months. Besides the AT, the ST is also affected by memory effects—namely, its prior thermal conditions. At deeper depth (i.e., 320 cm), the effects of the AT from a particular season may be exceeded by the soil memory effects from the last season. At shallower layers (i.e., < 80 cm), the effects of the AT may be blocked by the snow cover, resulting in a poorly synchronous correlation between the AT and the ST. In northeastern China, this snow cover blockage mainly occurs in winter and then vanishes in the subsequent spring. Due to the thermal insulation effect of the snow cover, the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during the recent global warming hiatus period. These findings may be instructive for better understanding ST variations, as well as land-atmosphere interactions.
      PubDate: 2021-01-05
  • Assessment of Snow Depth over Arctic Sea Ice in CMIP6 Models Using
           Satellite Data
    • Abstract: Abstract Snow depth over sea ice is an essential variable for understanding the Arctic energy budget. In this study, we evaluate snow depth over Arctic sea ice during 1993–2014 simulated by 31 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) against recent satellite retrievals. The CMIP6 models capture some aspects of the observed snow depth climatology and variability. The observed variability lies in the middle of the models’ simulations. All the models show negative trends of snow depth during 1993–2014. However, substantial spatiotemporal discrepancies are identified. Compared to the observation, most models have late seasonal maximum snow depth (by two months), remarkably thinner snow for the seasonal minimum, an incorrect transition from the growth to decay period, and a greatly underestimated interannual variability and thinning trend of snow depth over areas with frequent occurrence of multi-year sea ice. Most models are unable to reproduce the observed snow depth gradient from the Canadian Arctic to the outer areas and the largest thinning rate in the central Arctic. Future projections suggest that snow depth in the Arctic will continue to decrease from 2015 to 2099. Under the SSP5-8.5 scenario, the Arctic will be almost snow-free during the summer and fall and the accumulation of snow starts from January. Further investigation into the possible causes of the issues for the simulated snow depth by some models based on the same family of models suggests that resolution, the inclusion of a high-top atmospheric model, and biogeochemistry processes are important factors for snow depth simulation.
      PubDate: 2021-01-05
  • Western North Pacific Tropical Cyclone Database Created by the China
           Meteorological Administration
    • Abstract: Abstract This paper describes the access to, and the content, characteristics, and potential applications of the tropical cyclone (TC) database that is maintained and actively developed by the China Meteorological Administration, with the aim of facilitating its use in scientific research and operational services. This database records data relating to all TCs that have passed through the western North Pacific (WNP) and South China Sea (SCS) since 1949. TC data collection has expanded over recent decades via continuous TC monitoring using remote sensing and specialized field detection techniques, allowing collation of a multi-source TC database for the WNP and SCS that covers a long period, with wide coverage and many observational elements. This database now comprises a wide variety of information related to TCs, such as historical or real-time locations (i.e., best track and landfall), intensity, dynamic and thermal structures, wind strengths, precipitation amounts, and frequency. This database will support ongoing research into the processes and patterns associated with TC climatic activity and TC forecasting.
      PubDate: 2021-01-05
  • Phase Two of the Integrative Monsoon Frontal Rainfall Experiment
    • Abstract: Abstract Phase Two of the Integrative Monsoon Frontal Rainfall Experiment (IMFRE-II) was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020. This paper provides a brief overview of the IMFRE-II field campaign, including the multiple ground-based remote sensors, aircraft probes, and their corresponding measurements during the 2020 mei-yu period, as well as how to use these numerous datasets to answer scientific questions. The highlights of IMFRE-II are: (1) to the best of our knowledge, IMFRE-II is the first field campaign in China to use ground-based, airborne, and spaceborne platforms to conduct comprehensive observations over the middle and lower reaches of the Yangtze River; and (2) seven aircraft flights were successfully carried out, and the spectra of ice particles, cloud droplets, and raindrops at different altitudes were obtained. These in-situ measurements will provide a “cloud truth” to validate the ground-based and satellite-retrieved cloud and precipitation properties and quantitatively estimate their retrieval uncertainties. They are also crucial for the development of a warm (and/or cold) rain conceptual model in order to better understand the cloud-to-rain conversion and accretion processes in mei-yu precipitation events. Through an integrative analysis of ground-based, aircraft, and satellite observations and model simulations, we can significantly improve our cloud and precipitation retrieval algorithms, investigate the microphysical properties of cloud and precipitation, understand in-depth the formation and dissipation mechanisms of mei-yu frontal systems, and improve cloud microphysics parameterization schemes and model simulations.
      PubDate: 2021-01-05
  • Future Precipitation Extremes in China under Climate Change and Their
           Physical Quantification Based on a Regional Climate Model and CMIP5 Model
    • Abstract: Abstract The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation. The rates of change in future precipitation extremes are quantified with changes in surface air temperature. Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model, RegCM4, and 17 global climate models that participated in CMIP5. First, we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period (RF: 1982–2001). The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes, as well as those based on observations: OBS and XPP. Precipitation extremes over four subregions in China are predicted to increase in the mid-future (MF: 2039–58) and far-future (FF: 2079–98) relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean. The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058, and the RCM results show higher interannual variability relative to that of the CMIP5 models. Then, we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature. Finally, based on the water vapor equation, changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity (significant at the p < 0.1 level).
      PubDate: 2021-01-05
  • Classification of Northeast China Cold Vortex Activity Paths in Early
           Summer Based on K-means Clustering and Their Climate Impact
    • Abstract: Abstract The classification of the Northeast China Cold Vortex (NCCV) activity paths is an important way to analyze its characteristics in detail. Based on the daily precipitation data of the northeastern China (NEC) region, and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours, the NCCV processes during the early summer (June) seasons from 1979 to 2018 were objectively identified. Then, the NCCV processes were classified using a machine learning method (k-means) according to the characteristic parameters of the activity path information. The rationality of the classification results was verified from two aspects, as follows: (1) the atmospheric circulation configuration of the NCCV on various paths; and (2) its influences on the climate conditions in the NEC. The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin, movement direction, and movement velocity of the NCCV. These included the generation-eastward movement type in the east of the Mongolia Plateau (eastward movement type or type A); generation-southeast longdistance movement type in the upstream of the Lena River (southeast long-distance movement type or type B); generation-eastward less-movement type near Lake Baikal (eastward less-movement type or type C); and the generation-southward less-movement type in eastern Siberia (southward less-movement type or type D). There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths, which indicated that the classification results were reasonable.
      PubDate: 2021-01-05
  • CAS-ESM2.0 Model Datasets for the CMIP6 Flux-Anomaly-Forced Model
           Intercomparison Project (FAFMIP)
    • Abstract: Abstract The second version of the Chinese Academy of Sciences Earth System Model (CAS-ESM2.0) is participating in the Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) experiments in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models (AOGCMs), including the simulations of ocean heat content (OHC) change, ocean circulation change, and sea level rise due to thermal expansion. FAFMIP experiments (including faf-heat, faf-stress, faf-water, faf-all, faf-passiveheat, faf-heat-NA50pct and faf-heat-NA0ct) have been conducted. All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download. This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments. The simulations of the changes in global ocean temperature, Atlantic Meridional Overturning Circulation (AMOC), OHC., and dynamic sea level (DSL), are all reasonably reproduced.
      PubDate: 2021-01-04
  • Growing Operational Use of FY-3 Data in the ECMWF System
    • Abstract: Abstract This paper reviews the data quality and impact of observations from the FY-3 satellite series used operationally in the ECMWF system. This includes data from the passive microwave radiometers MWHS-1, MWHS-2 and MWRI, as well as observations from the radio occultation receiver GNOS. Evaluations against background equivalents show that the quality of the observations is broadly comparable to that of similar instruments on other polar-orbiting satellites, even though biases for the passive microwave observations can be somewhat larger and more complex for some channels. An observing system experiment shows that the FY-3 instruments jointly contribute significantly to the forecast skill in the ECMWF system. Positive impact of up to 2% is seen for most variables out to the day-2 forecasts over hemispheric scales, with significant benefits for total column water vapor or for temperature and wind in the stratosphere out to day 4.
      PubDate: 2021-01-04
  • NUIST ESM v3 Data Submission to CMIP6
    • Abstract: Abstract This paper introduces the experimental designs and outputs of the Diagnostic, Evaluation and Characterization of Klima (DECK), historical, Scenario Model Intercomparison Project (MIP), and Paleoclimate MIP (PMIP) experiments from the Nanjing University of Information Science and Technology Earth System Model version 3 (NESM3). Results show that NESM3 reasonably simulates the modern climate and the major internal modes of climate variability. In the Scenario MIP experiment, changes in the projected surface air temperature (SAT) show robust “Northern Hemisphere (NH) warmer than Southern Hemisphere (SH)” and “land warmer than ocean” patterns, as well as an El Niño-like warming over the tropical Pacific. Changes in the projected precipitation exhibit “NH wetter than SH” and “eastern hemisphere gets wetter and western hemisphere gets drier” patterns over the tropics. These precipitation patterns are driven by circulation changes owing to the inhomogeneous warming patterns. Two PMIP experiments show enlarged seasonal cycles of SAT and precipitation over the NH due to the seasonal redistribution of solar radiation. Changes in the climatological mean SAT, precipitation, and ENSO amplitudes are consistent with the results from PMIP4 models. The NESM3 outputs are available on the Earth System Grid Federation nodes for data users.
      PubDate: 2021-01-04
  • Variations in Wave Energy and Amplitudes along the Energy Dispersion Paths
           of Nonstationary Barotropic Rossby Waves
    • Abstract: Abstract The variations in the wave energy and the amplitude along the energy dispersion paths of the barotropic Rossby waves in zonally symmetric basic flow are studied by solving the wave energy equation, which expresses that the wave energy variability is determined by the divergence of the group velocity and the energy budget from the basic flow. The results suggest that both the wave energy and the amplitude of a leading wave increase significantly in the propagating region that is located south of the jet axis and enclosed by a southern critical line and a northern turning latitude. The leading wave gains the barotropic energy from the basic flow by eddy activities. The amplitude continuously climbs up a peak at the turning latitude due to increasing wave energy and enlarging horizontal scale (shrinking total wavenumber). Both the wave energy and the amplitude eventually decrease when the trailing wave continuously approaches southward to the critical line. The trailing wave decays and its energy is continuously absorbed by the basic flow. Furthermore, both the wave energy and the amplitude oscillate with a limited range in the propagating region that is located near the jet axis and enclosed by two turning latitudes. Both the leading and trailing waves neither develop nor decay significantly. The jet works as a waveguide to allow the waves to propagate a long distance.
      PubDate: 2021-01-01
  • Influence of the Eastern Pacific and Central Pacific Types of ENSO on the
           South Asian Summer Monsoon
    • Abstract: Abstract Based on observational and reanalysis data, the relationships between the eastern Pacific (EP) and central Pacific (CP) types of El Niño-Southern Oscillation (ENSO) during the developing summer and the South Asian summer monsoon (SASM) are examined. The roles of these two types of ENSO on the SASM experienced notable multidecadal modulation in the late 1970s. While the inverse relationship between the EP type of ENSO and the SASM has weakened dramatically, the CP type of ENSO plays a far more prominent role in producing anomalous Indian monsoon rainfall after the late 1970s. The drought-producing El Niño warming of both the EP and CP types can excite anomalous rising motion of the Walker circulation concentrated in the equatorial central Pacific around 160°W to the date line. Accordingly, compensatory subsidence anomalies are evident from the Maritime Continent to the Indian subcontinent, leading to suppressed convection and decreased precipitation over these regions. Moreover, anomalously less moisture flux into South Asia associated with developing EP El Niño and significant northwesterly anomalies dominating over southern India accompanied by developing CP El Niño, may also have been responsible for the Indian monsoon droughts during the pre-1979 and post-1979 sub-periods, respectively. El Niño events with the same "flavor" may not necessarily produce consistent Indian monsoon rainfall anomalies, while similar Indian monsoon droughts may be induced by different types of El Niño, implying high sensitivity of monsoonal precipitation to the detailed configuration of ENSO forcing imposed on the tropical Pacific.
      PubDate: 2021-01-01
  • Precipitation Microphysical Processes in the Inner Rainband of Tropical
           Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric
    • Abstract: Abstract Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone (TC) Kajiki (2019) in the South China Sea for the first time. The precipitation of Kajiki is dominated by high concentrations and small (< 3 mm) raindrops, which contribute more than 98% to the total precipitation. The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47, respectively, indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China. The ice processes of the inner rainband are dramatically different among different stages. The riming process is dominant during the mature stage, while during the decay stage the aggregation process is dominant. The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes. Large raindrops collect cloud droplets and other raindrops, causing reflectivity, differential reflectivity, and specific differential phase to increase with decreasing height. That is, accretion and coalescence play a critical role in the formation of heavy rainfall. The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution (DSD) to further affect the warm-rain processes. The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel.
      PubDate: 2021-01-01
  • Seasonal Forecast of South China Sea Summer Monsoon Onset Disturbed by
           Cold Tongue La Niña in the Past Decade
    • Abstract: Abstract It has been suggested that a warm (cold) ENSO event in winter is mostly followed by a late (early) onset of the South China Sea (SCS) summer monsoon (SCSSM) in spring. Our results show this positive relationship, which is mainly determined by their phase correlation, has been broken under recent rapid global warming since 2011, due to the disturbance of cold tongue (CT) La Niña events. Different from its canonical counterpart, a CT La Niña event is characterized by surface meridional wind divergences in the central-eastern equatorial Pacific, which can delay the SCSSM onset by enhanced convections in the warming Indian Ocean and the western subtropical Pacific. Owing to the increased Indian-western Pacific warming and the prevalent CT La Niña events, empirical seasonal forecasting of SCSSM onset based on ENSO may be challenged in the future.
      PubDate: 2021-01-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-