A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 110 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 3)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 43)
Advances in Climate Change Research     Open Access   (Followers: 28)
Advances in Meteorology     Open Access   (Followers: 24)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 7)
Aeolian Research     Hybrid Journal   (Followers: 6)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 18)
American Journal of Climate Change     Open Access   (Followers: 27)
Atmósfera     Open Access   (Followers: 3)
Atmosphere     Open Access   (Followers: 25)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 14)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 10)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 47)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 14)
Atmospheric Environment     Hybrid Journal   (Followers: 72)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 69)
Atmospheric Science Letters     Open Access   (Followers: 36)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 31)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 1)
Bulletin of the American Meteorological Society     Open Access   (Followers: 49)
Carbon Balance and Management     Open Access   (Followers: 4)
Change and Adaptation in Socio-Ecological Systems     Open Access   (Followers: 4)
Ciencia, Ambiente y Clima     Open Access   (Followers: 3)
Climate     Open Access   (Followers: 5)
Climate Change Economics     Hybrid Journal   (Followers: 14)
Climate Change Research Letters     Open Access   (Followers: 7)
Climate Change Responses     Open Access   (Followers: 8)
Climate Dynamics     Hybrid Journal   (Followers: 44)
Climate law     Hybrid Journal   (Followers: 7)
Climate of the Past (CP)     Open Access   (Followers: 5)
Climate of the Past Discussions (CPD)     Open Access  
Climate Policy     Hybrid Journal   (Followers: 36)
Climate Research     Hybrid Journal   (Followers: 6)
Climate Risk Management     Open Access   (Followers: 4)
Climate Services     Open Access   (Followers: 3)
Climate Summary of South Africa     Full-text available via subscription   (Followers: 2)
Climatic Change     Open Access   (Followers: 60)
Current Climate Change Reports     Hybrid Journal   (Followers: 4)
Developments in Atmospheric Science     Full-text available via subscription   (Followers: 27)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 5)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 18)
Earth Perspectives - Transdisciplinarity Enabled     Open Access  
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 2)
Energy & Environment     Hybrid Journal   (Followers: 23)
Environmental and Climate Technologies     Open Access   (Followers: 4)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 6)
Frontiers in Climate     Open Access   (Followers: 2)
GeoHazards     Open Access   (Followers: 1)
Global Meteorology     Open Access   (Followers: 17)
International Journal of Atmospheric Sciences     Open Access   (Followers: 21)
International Journal of Biometeorology     Hybrid Journal   (Followers: 1)
International Journal of Climatology     Hybrid Journal   (Followers: 31)
International Journal of Environment and Climate Change     Open Access   (Followers: 3)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 2)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 35)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 33)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 199)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 21)
Journal of Climate     Hybrid Journal   (Followers: 54)
Journal of Climate Change     Full-text available via subscription   (Followers: 2)
Journal of Climatology     Open Access   (Followers: 3)
Journal of Hydrology and Meteorology     Open Access   (Followers: 29)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 11)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 1)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 14)
Journal of Space Weather and Space Climate     Open Access   (Followers: 27)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 79)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 6)
Journal of Weather Modification     Full-text available via subscription   (Followers: 2)
Large Marine Ecosystems     Full-text available via subscription   (Followers: 1)
Mathematics of Climate and Weather Forecasting     Open Access   (Followers: 6)
Mediterranean Marine Science     Open Access   (Followers: 1)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Hybrid Journal   (Followers: 4)
Meteorological Monographs     Hybrid Journal  
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 3)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 26)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal  
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 14)
Monthly Weather Review     Hybrid Journal   (Followers: 34)
Nature Climate Change     Full-text available via subscription   (Followers: 125)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 35)
Nīvār     Open Access  
npj Climate and Atmospheric Science     Open Access   (Followers: 3)
Open Atmospheric Science Journal     Open Access   (Followers: 2)
Open Journal of Modern Hydrology     Open Access   (Followers: 6)
Revista Brasileira de Meteorologia     Open Access  
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access  
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Space Weather     Full-text available via subscription   (Followers: 24)
Studia Geophysica et Geodaetica     Hybrid Journal  
Tellus A     Open Access   (Followers: 22)
Tellus B     Open Access   (Followers: 21)
The Cryosphere (TC)     Open Access   (Followers: 5)
The Cryosphere Discussions (TCD)     Open Access   (Followers: 4)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 27)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 12)
Tropical Cyclone Research and Review     Open Access   (Followers: 1)
Urban Climate     Hybrid Journal   (Followers: 4)
Weather     Hybrid Journal   (Followers: 19)
Weather and Climate Dynamics     Open Access  
Weather and Climate Extremes     Open Access   (Followers: 16)
Weather and Forecasting     Hybrid Journal   (Followers: 28)
Weatherwise     Hybrid Journal   (Followers: 4)
气候与环境研究     Full-text available via subscription   (Followers: 1)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Number of Followers: 5  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2225-1154
Published by MDPI Homepage  [233 journals]
  • Climate, Vol. 9, Pages 7: Sociological Perspectives on Climate Change and
           Society: A Review

    • Authors: Md Saidul Islam, Edson Kieu
      First page: 7
      Abstract: Society is at an important intersection in dealing with the challenges of climate change, and this paper is presented at a critical juncture in light of growing recognition that the natural sciences are insufficient to deal with these challenges. Critical aspects of sociological perspectives related to climate change research are brought together in this review in the hope of fostering greater interdisciplinary collaboration between the natural and social sciences. We fervently argue for the need to inculcate interdisciplinary approaches that can provide innovative perspectives and solutions to the challenges we face from the impacts of climate change. As such, some critical sociological perspectives are addressed, with two objectives: (a) to provide a foundational opening for readers seeking an introductory perspective and potential core contributions of sociological insights on climate change; and (b) to explore opportunities and obstacles that may occur with increased interdisciplinary cooperation and collaboration. We lay out fundamental ideas by assembling a loosely connected body of sociological research, hoping to develop and advance the collaborative research agenda between sociology and other disciplines for the near future.
      Citation: Climate
      PubDate: 2021-01-04
      DOI: 10.3390/cli9010007
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 8: Future Hydrology of the Cryospheric Driven Lake
           Como Catchment in Italy under Climate Change Scenarios

    • Authors: Flavia Fuso, Francesca Casale, Federico Giudici, Daniele Bocchiola
      First page: 8
      Abstract: We present an assessment of climate change impact on the hydrology of the Lago di Como lake catchment of Italy. On one side, the lake provides water for irrigation of the Po valley during summer, and on the other side its regulation is crucial to prevent flood risk, especially in fall and winter. The dynamics of lake Como are linked to the complex cryospheric hydrology of its Alpine contributing catchment, which is in turn expected to change radically under prospective global warming. The Poli-Hydro model is used here to simulate the cryospheric processes affecting the hydrology of this high-altitude catchment. We demonstrated the model’s accuracy against historical hydrological observations, available during 2002–2018. We then used four Representative Concentration Pathways scenarios, provided by three Global Circulation Models under the AR6 of IPCC, to project potential climate change until 2100. We thereby derived daily series of rainfall and temperature, to be used as inputs for hydrological simulations. The climate projections here highlight a substantial increase in temperature at the end of the century, between +0.61° and +5.96°, which would lead to a decrease in the total ice volume in the catchment, by −50% to −77%. Moreover, there would be a decrease in the contribution of snow melt to the annual lake inflow, and an increase in ice melt under the worst-case scenarios. Overall, the annual Lake inflows would increase during autumn and winter and would decrease in summer. Our study may provide a tool to help policy makers to henceforth evaluate adaptation strategies in the area.
      Citation: Climate
      PubDate: 2021-01-06
      DOI: 10.3390/cli9010008
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 9: Impacts of Global Warming of 1.5, 2.0 and 3.0
           °C on Hydrologic Regimes in the Northeastern U.S.

    • Authors: Ridwan Siddique, Alfonso Mejia, Naoki Mizukami, Richard N. Palmer
      First page: 9
      Abstract: Regional climate change impacts show a wide range of variations under different levels of global warming. Watersheds in the northeastern region of the United States (NEUS) are projected to undergo the most severe impacts from climate change in the forms of extreme precipitation events, floods and drought, sea level rise, etc. As such, there is high possibility that hydrologic regimes in the NEUS may be altered in the future, which can be absolutely devastating for managing water resources and ecological balance across different watersheds. In this study, we present a comprehensive impact analysis using different hydrologic indicators across selected watersheds in the NEUS under different thresholds of global temperature increases (1.5, 2.0 and 3.0 °C). Precipitation and temperature projections from fourteen downscaled Global Circulation Models (GCMs) under the representative concentration pathway (RCP) 8.5 greenhouse gas concentration pathway are used as inputs into a distributed hydrological model to obtain future streamflow conditions. Overall, the results indicate that the majority of the selected watersheds will enter a wetter regime, particularly during the months of winter, while flow conditions during late summer and fall indicate a dry future under all three thresholds of temperature increase. The estimation of time of emergence of new hydrological regimes show large uncertainties under 1.5 and 2.0 °C global temperature increases; however, most of the GCM projections show a strong consensus that new hydrological regimes may appear in the NEUS watersheds under 3.0 °C temperature increase.
      Citation: Climate
      PubDate: 2021-01-07
      DOI: 10.3390/cli9010009
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 10: Climate Change and Thermal Comfort in Greece

    • Authors: Harry D. Kambezidis
      First page: 10
      Abstract: Global warming is an environmental issue keeping all nations alert. Under this consideration, the present work investigates the future thermal sensation of the Greek population. Three periods are selected (2021–2050, 2046–2075, 2071–2100) and two Intergovernmental Panel for Climate Change (IPCC) representative concentration pathway (RCP) 4.5 and 8.5 scenarios. Use of Thom’s discomfort index (TDI) is made, which is calculated from air temperature and relative humidity included in typical meteorological years (TMYs) derived for 1985–2014 and future periods (both IPCC scenarios) for 33 locations in Greece. TDI is discriminated into 6 classes. The analysis shows that there is no significant shift from past to future annual mean TDIs in terms of its classification. The same is found for the summer TDI values. Nevertheless, a distribution of the various TDI classes is provided within the TMYs. Maps of annual TDI values are prepared for Greece by using the kriging method; higher values are found in the southern part of Greece and lower values in the northern. Best-fit regression equations derived show the intra-annual TDI variation in all periods. Also, scatter plots of annual TDIs in the future epochs in comparison with the historical period show a linear relationship.
      Citation: Climate
      PubDate: 2021-01-08
      DOI: 10.3390/cli9010010
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 11: Increasing Trend on Storm Wave Intensity in the
           Western Mediterranean

    • Authors: Khalid Amarouche, Adem Akpınar
      First page: 11
      Abstract: Annual trends in storm wave intensity over the past 41 years were evaluated during the present study. Storm wave intensity is evaluated in terms of total storm wave energy (TSWE) and storm power index (SPI) of Dolan and Davis (1992). Using an accurate long-term wave hindcast developed using a calibrated SWAN model, all storm wave events occurring over the past 41 years were characterized in terms of significant wave height (Hs) and total storm duration. Thus, both SPI and TSWE was computed for each storm wave event. The Theil–Sen slope estimator was used to estimate the annual slopes of the SPI and TSWE and the Mann–Kendall test was used to test the trend significance with different confidence levels. The present study is spatially performed for the western Mediterranean Sea basin considering 2308 grid points in a regular grid of 0.198° resolution in both directions. Results allow as to define five hotspots covering a large area, experienced a significant increasing slope in both SPI and TSWE (annual maxima and average). The confidence level in this area exceed 95%, with a steep slope between 100 kWh·m−1·year−1 and 240 kWh·m−1·year−1 for annual max TSWE and between 28 m²·h·year−1 and 49 m²·h·year−1 for annual max SPI. Consideration of the present findings is strongly recommended for risk assessment and for sustainable development in coastal and offshore area and to identify areas sensitive to global climate change in the western Mediterranean Sea.
      Citation: Climate
      PubDate: 2021-01-08
      DOI: 10.3390/cli9010011
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 12: Flood Vulnerability Analysis in Urban Context:
           A Socioeconomic Sub-Indicators Overview

    • Authors: Velia Bigi, Elena Comino, Magda Fontana, Alessandro Pezzoli, Maurizio Rosso
      First page: 12
      Abstract: Despite indicators-based assessment models for flood vulnerability being a well-established methodology, a specific set of indicators that are universally or widely accepted has not been recognized yet. This work aims to review previous studies in the field of vulnerability analysis in order to overcome this knowledge gap identifying the most accepted sub-indicators of exposure, sensitivity and adaptive capacity. Moreover, this review aims to clarify the use of the terms of vulnerability and risk in vulnerability assessment. Throughout a three-phase process, a matrix containing all the sub-indicators encountered during the review process was constructed. Then, based on an adaptation of the Pareto diagram, a set of the most relevant sub-indicators was identified. According to the citation count of each sub-indicator, indeed, 33 sub-indicators were chosen to represent the most universally or widely accepted sub-indicators.
      Citation: Climate
      PubDate: 2021-01-09
      DOI: 10.3390/cli9010012
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 13: The Influence of Socioeconomic Factors on
           Households’ Vulnerability to Climate Change in Semiarid Towns of Mopani,
           South Africa

    • Authors: Musa Yusuf Jimoh, Peter Bikam, Hector Chikoore
      First page: 13
      Abstract: The changing climate and its current rate, frequency, as well as its life-threatening impacts are undoubtedly abnormal and globally worrisome. Its effects are expected to be severely different across segments of the society. It is disposed to leaving no facet of human endeavor immune, particularly in vulnerable cities of developing countries where there is dearth of empirical studies. For the context-specific nature of climate change impacts and place-based character of vulnerability, this study explores the influence of socioeconomic attributes on household vulnerability in Mopani District northeast of South Africa to provide basis for targeting, formulating, evaluating, and monitoring adaptation policies, programs, and projects. The study adopted a multistage random sampling to draw 500 households from six towns in Mopani District, Limpopo Province. Mixed methods approach was used for data collection, while Household Vulnerability Index (HVI) was estimated using principal component analysis and regressed with socioeconomic attributes. The study reveals that climate is changing with high HVI across selected towns. It further depicted that age and marital status have positive and significant relationships with HVI, while gender and educational levels have inverse and significant relationship with HVI in some towns. The study recommends the need for municipalities to partner with private sector to empower household and mainstream micro level coping strategies in urban planning across the district.
      Citation: Climate
      PubDate: 2021-01-13
      DOI: 10.3390/cli9010013
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 14: Excess Mortality in England during the 2019
           Summer Heatwaves

    • Authors: Natasha Rustemeyer, Mark Howells
      First page: 14
      Abstract: There is increasing evidence that rising temperatures and heatwaves in the United Kingdom are associated with an increase in heat-related mortality. However, the Public Health England (PHE) Heatwave mortality monitoring reports, which use provisional death registrations to estimate heat-related mortality in England during heatwaves, have not yet been evaluated. This study aims to retrospectively quantify the impact of heatwaves on mortality during the 2019 summer period using daily death occurrences. Second, using the same method, it quantifies the heat-related mortality for the 2018 and 2017 heatwave periods. Last, it compares the results to the estimated excess deaths for the same period in the PHE Heatwave mortality monitoring reports. The number of cumulative excess deaths during the summer 2019 heatwaves were minimal (161) and were substantially lower than during the summer 2018 heatwaves (1700 deaths) and summer 2017 heatwaves (1489 deaths). All findings were at variance with the PHE Heatwave mortality monitoring reports which estimated cumulative excess deaths to be 892, 863 and 778 during the heatwave periods of 2019, 2018 and 2017, respectively. Issues are identified in the use of provisional death registrations for mortality monitoring and the reduced reliability of the Office for National Statistics (ONS) daily death occurrences database before 2019. These findings may identify more reliable ways to monitor heat mortality during heatwaves in the future.
      Citation: Climate
      PubDate: 2021-01-14
      DOI: 10.3390/cli9010014
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 15: Promoting Low-Carbon Tourism through Adaptive
           Regional Certification

    • Authors: Alex Baumber, John Merson, Chris Lockhart Smith
      First page: 15
      Abstract: Climate change is a key issue in sustainable tourism, both in terms of the greenhouse gas emissions generated by the tourism sector and the potential impacts of climate change on tourism-dependent regions. Low-carbon tourism is an emerging paradigm based around emissions reduction by tourism businesses, as well as broader values of adaptation, transition and behavioral change. This article presents the results of a low-carbon tourism case study in the Blue Mountains of New South Wales, Australia, where the Low-Carbon Living Program has successfully designed and implemented a low-carbon rating and certification scheme. This scheme covers emissions related to energy, waste and water and is based on regionally-specific data. The program has also succeeded in its aim of using the tourism industry as a catalyst for broader community action, having been expanded to schools and retailers in the case study region. A transferable regional model has been developed that is being adapted for use in new regions under a modular and decentralised program structure. However, questions remain around the impact of the program on participants’ carbon footprints and customer levels over time, as well as the suitability of a common scorecard system to diverse participant types.
      Citation: Climate
      PubDate: 2021-01-14
      DOI: 10.3390/cli9010015
      Issue No: Vol. 9, No. 1 (2021)
  • Climate, Vol. 9, Pages 1: Long-Term Changes and Variability of
           Ecologically-Based Climate Indices along an Altitudinal Gradient on the
           Qinghai-Tibetan Plateau

    • Authors: Tong Guo
      First page: 1
      Abstract: Extreme climate events are typically defined based on the statistical distributions of climatic variables; their ecological significance is often ignored. In this study, precipitation and temperature data from 78 weather stations spanning from 1960 to 2015 on the Qinghai-Tibetan Plateau were examined. Specifically, long-term and altitudinal variability in ecologically relevant climate indices and their seasonal differences was assessed. The results show that indices of daily temperatures greater than 10 °C and 25 °C show positive annual change trends during the growing season (May to September). Indices of daily rainfall greater than 2 mm, 3 mm and 5 mm positively alternate with years both in and around the growing season (May–September, April and October). In contrast, the index of daily snowfall greater than 2 mm shows opposite annual variability. Additionally, a higher altitude significantly leads to fewer days with temperature deviations above 20 °C, except for in October. The three abovementioned rainfall indices present significantly positive variability with increasing altitude during the growing season. In contrast, the snow index shows similar altitudinal changes in the months surrounding the growing season. This study allows us to better cope with the threats of climate change to vulnerable ecosystems.
      Citation: Climate
      PubDate: 2020-12-24
      DOI: 10.3390/cli9010001
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 9, Pages 2: Kelvin/Rossby Wave Partition of Madden-Julian
           Oscillation Circulations

    • Authors: Patrick Haertel
      First page: 2
      Abstract: The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.
      Citation: Climate
      PubDate: 2020-12-25
      DOI: 10.3390/cli9010002
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 9, Pages 3: Forest Resource Management and Its
           Climate-Change Mitigation Policies in Taiwan

    • Authors: Wen-Tien Tsai
      First page: 3
      Abstract: Based on high carbon emissions in recent years (i.e., about 11 metric tons in 2018) per capita in terms of carbon dioxide equivalents, Taiwan has actively development greenhouse gas (GHG) reduction action plans. One of the action plans has been to promote afforestation and reforestation in non-forested lands for carbon sequestration. Thus, this paper aims to address the forest resources in Taiwan by using the latest national survey, reporting on an interactive analysis of forest carbon sequestration, GHG emissions, and climate-change mitigation policies. In this regard, the methodology is based on the official websites of forest resources, GHG emissions, and carbon sequestration from the yearbooks, national statistics, and regulations relevant to the mitigation policies in the forestry sector. It is found that Taiwan’s forest area is estimated to be 2.197 million hectares, which corresponds to a total forest stock volume of about 502.0 million cubic meters. During the period of 1990–2018, the change in total carbon sequestration did not vary much (with the exception of 2009), decreasing from 23.4 million metric tons in 1990 to 21.4 million metric tons in 2018. Compared to the total carbon dioxide emissions (i.e., 102.4 million metric tons in 1990 and 282.8 million metric tons in 2018), the contribution to GHG mitigation in the forestry sector shows a declining trend. However, biomass (i.e., wood) carbon sequestration indicates a slight increase from 20.4 million metric tons in 2010 to 20.7 million metric tons in 2018 due to the afforestation policy. Obviously, regulatory policies, based on the Forestry Act and the Greenhouse Gas Reduction & Management Act in 2015, play a vital role in mitigating GHG emissions in Taiwan. The discussion on the regulations is further addressed to highlight climate-change mitigation policies in Taiwan’s forestry sector.
      Citation: Climate
      PubDate: 2020-12-29
      DOI: 10.3390/cli9010003
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 9, Pages 4: Determinants of Household-Level Coping
           Strategies and Recoveries from Riverine Flood Disasters: Empirical
           Evidence from the Right Bank of Teesta River, Bangladesh

    • Authors: Md. Sanaul Haque Mondal, Takehiko Murayama, Shigeo Nishikizawa
      First page: 4
      Abstract: Although recurrent floods cause detrimental impact for the people living in riverine floodplains, households are taking up various risks management strategies to deal with them. This paper examined household’s post-disaster coping strategies to respond and recover from riverine floods in 2017. Data were collected through a questionnaire survey from 377 households from the right bank of Teesta River in Bangladesh. Households employed different coping strategies including borrowing money, assets disposal, consumption reduction, temporary migration, and grants from external sources, to cope with flood. Results from logistic regression models suggested that increasing severity of flood reduced households’ consumption. Exposed households were more likely to borrow money. Consumption reduction and temporary migration were mostly adopted by agricultural landless households. Income from nonfarm sources was found to be an important factor influencing household’s decisions on coping. Furthermore, households that recovered from the last flood disaster seek insurance through their own savings and available physical assets, highlighting the role of disaster preparedness in resilient recovery. This study calls for the policy intervention at the household-level to enhance the adaptive capacity of riverine households so that people at risk can cope better and recover from flood disaster using their resources.
      Citation: Climate
      PubDate: 2020-12-29
      DOI: 10.3390/cli9010004
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 9, Pages 5: The Agro-Meteorological Caused Famines as an
           Evolutionary Factor in the Formation of Civilisation and History:
           Representative Cases in Europe

    • Authors: Ioannis Charalampopoulos, Fotoula Droulia
      First page: 5
      Abstract: Throughout history, food adequacy has been one of the most critical parameters for the survival of human societies. The prevailing atmospheric conditions have always been recognised as the primary and most uncontrolled factors that determine crop production, both quantitatively and qualitatively. However, this is only a part of the effects chain. In order to assess the magnitude of the potential cultural impacts of weather changes in a region, it is crucial to comprehend the underlying mechanism of successive consequences that relate the proximate causes, which in our case are the adverse Agro-Meteorological Conditions (AMC), to their effects on society. The present study focuses on the analysis of the impacts’ mechanism on human societies. Moreover, several characteristic agro-meteorological events that have led to significant changes in European civilisation are presented as case studies. The results highlight the linkage between weather and its impact on history evolution based on Agro-Meteorological Famine (AMF). The proposed concept and its analysis by the schematic presentation are in corroboration with the documented historical events of European history. Moreover, the presented connections between weather, agricultural production, and society revealed the significant contribution of the short-term adverse weather conditions on the mechanism of the human civilisation evolution.
      Citation: Climate
      PubDate: 2020-12-31
      DOI: 10.3390/cli9010005
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 9, Pages 6: Impact of Climate Change on Crop Production and
           Potential Adaptive Measures in the Olifants Catchment, South Africa

    • Authors: Mary Funke Olabanji, Thando Ndarana, Nerhene Davis
      First page: 6
      Abstract: Climate change is expected to substantially reduce future crop yields in South Africa, thus affecting food security and livelihood. Adaptation strategies need to be implemented to mitigate the effect of climate change-induced yield losses. In this paper, we used the WEAP-MABIA model, driven by six CORDEX climate change data for representative concentration pathways (RCPs) 4.5 and 8.5, to quantify the effect of climate change on several key crops, namely maize, soya beans, dry beans, and sunflower, in the Olifants catchment. The study further investigated climate change adaptation such as the effects of changing planting dates with the application of full irrigation, rainwater harvesting, deficit irrigation method, and the application of efficient irrigation devices on reducing the impact of climate change on crop production. The results show that average monthly temperature is expected to increase by 1 °C to 5 °C while a reduction in precipitation ranging between 2.5% to 58.7% is projected for both RCP 4.5 and RCP 8.5 relative to the baseline climate for 1976–2005, respectively. The results also reveal that increased temperature and decreased precipitation during planting seasons are expected to increase crop water requirements. A steady decline in crop yield ranging between 19–65%, 11–38%, 16–42%, and 5–30% for maize, soya beans, dry beans, and sunflower, respectively, is also projected under both RCPs climate change scenarios. The study concludes that adaptation measures such as the integration of changing planting dates with full irrigation application and the use of rainwater harvest will help improve current and future crop production under the impact of climate change.
      Citation: Climate
      PubDate: 2020-12-31
      DOI: 10.3390/cli9010006
      Issue No: Vol. 9, No. 1 (2020)
  • Climate, Vol. 8, Pages 95: Growing Season Air mass Equivalent Temperature
           (TE) in the East Central USA

    • Authors: Dolly Na-Yemeh, Rezaul Mahmood, Gregory Goodrich, Keri Younger, Kevin Cary, Joshua Durkee
      First page: 95
      Abstract: Equivalent temperature (TE), which incorporates both dry (surface air temperature, T) and moist heat content associated with atmospheric moisture, is a better indicator of overall atmospheric heat content compared to T alone. This paper investigates the impacts of different types of air masses on TE during the growing season (April–September). The study used data from the Kentucky Mesonet for this purpose. The growing season was divided into early (April–May), mid (June–July), and late (August–September). Analysis suggests that TE for moist tropical (MT) air mass was as high as 61 and 81 °C for the early and mid-growing season, respectively. Further analysis suggests that TE for different parts of the growing seasons were statistically significantly different from each other. In addition, TE for different air masses was also statistically significantly different from each other. The difference between TE and T (i.e. TE-T) is smaller under dry atmospheric conditions but larger under moist conditions. For example, in Barren County, the lowest difference (20–10 °C) was 10 °C. It was reported on 18 April 2010, a dry weather day. On the other hand, the highest difference for this site was 48 °C and was reported on 11 August 2010, a humid day.
      Citation: Climate
      PubDate: 2020-08-19
      DOI: 10.3390/cli8090095
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 96: Ranchers Adapting to Climate Variability in the
           Upper Colorado River Basin, Utah

    • Authors: Hadia Akbar, L. Niel Allen, David E. Rosenberg, Yoshimitsu Chikamoto
      First page: 96
      Abstract: In the Upper Colorado River Basin, agriculture is a major contributor to Utah’s economy, which may be stressed due to the changing climate. In this study, two data-mining techniques and interview data are used to explore how climate variability affects agricultural production and the way the farmers have been adapting their practices to these changes. In the first part of the study, we used multilinear regression and random forest regression to understand the relationship between climate and agricultural production using temperature, precipitation, water availability, hay production, and cattle herd size. The quantitative results showed weak relations among variables. In the second part of the study, we interviewed ranchers to fill the gaps in the quantitative analysis. Over the 35 years (1981–2015), the quantitative analysis shows that temperature has affected cattle and hay production more than precipitation. Among non-climatic variables, resource availability and commodity prices are the most important factors that influence year-to-year production. Farmers are well-aware of these effects and have adapted accordingly. They have changed irrigation practices, cropping patterns, and are experimenting to produce a hybrid species of cattle, that are resilient to a hotter temperature and can use a wider variety of forage.
      Citation: Climate
      PubDate: 2020-08-21
      DOI: 10.3390/cli8090096
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 97: Impact of Climate Change on Land Suitability
           for the Optimization of the Irrigation System in the Anger River Basin,

    • Authors: Meseret Dawit, Megarsa Olumana Dinka, Olkeba Tolessa Leta, Fiseha Behulu Muluneh
      First page: 97
      Abstract: Evaluating climate change impacts and the suitability of potential land resources is crucial for sustainable irrigated agricultural systems. This study applied a multi-criteria analysis supported by the Geographic Information System (GIS) application to produce irrigation suitability maps for the Anger River basin’s (Ethiopia) irrigation command area to optimize its irrigation system. Six irrigation suitability factors, such as distance to water sources (rivers), slope, land use/land cover, soil texture, drainage, and depth, including climate change impacts, were used. These factors were spatially analyzed using a comparison matrix and overlying the factors with 30 m resolutions to estimate the potential irrigable area. About 40% of the study area was classified as moderately to highly suitable for surface water irrigation systems. Moreover, we found that a large proportion of the study area is suitable for surface irrigation system, suggesting the relevance of implementing an enhanced irrigation system for improving the surface irrigation water productivity of the basin. However, future climate change is predicted to negatively affect the irrigation suitable area due to water scarcity. Therefore, this study provides useful information on the irrigation suitability and potential of the study area that could be used to facilitate the water resource development and food security plans.
      Citation: Climate
      PubDate: 2020-08-21
      DOI: 10.3390/cli8090097
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 98: Building Coastal Agricultural Resilience in
           Bangladesh: A Systematic Review of Progress, Gaps and Implications

    • Authors: Shilpi Kundu, Mohammad Ehsanul Kabir, Edward A. Morgan, Peter Davey, Moazzem Hossain
      First page: 98
      Abstract: This paper presents the results of a systematic literature review of climate change adaptation and resilience in coastal agriculture in Bangladesh. It explores the existing adaptation measures against climatic stresses. It investigates the extent of resilience-building by the use of these adaptation measures and identifies major challenges that hinder the adaptation process within the country. The review was conducted by following the systematic methods of the protocol of Preferred Items for Systematic Review Recommendations (PRISMA) to comprehensively synthesize, evaluate and track scientific literature on climate-resilient agriculture in coastal Bangladesh. It considered peer-reviewed English language articles from the databases Scopus, Web of Science and Science Direct between the years 2000 and 2018. A total of 54 articles were selected following the four major steps of a systematic review, i.e., identification, screening, eligibility and inclusion. Adaptation measures identified in the review were grouped into different themes: Agricultural adaptation, alternative livelihoods, infrastructure development, technological advancement, ecosystem management and policy development. The review revealed that within the adaptation and resilience literature for coastal Bangladesh, maladaptation, gender imbalance and the notable absence of studies of island communities were gaps that require future research.
      Citation: Climate
      PubDate: 2020-08-25
      DOI: 10.3390/cli8090098
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 99: Projected Impacts of Climate Change on the
           Protected Areas of Myanmar

    • Authors: Thazin Nwe, Robert J. Zomer, Richard T. Corlett
      First page: 99
      Abstract: Protected areas are the backbone of biodiversity conservation but are fixed in space and vulnerable to anthropogenic climate change. Myanmar is exceptionally rich in biodiversity but has a small protected area system. This study aimed to assess the potential vulnerability of this system to climate change. In the absence of good biodiversity data, we used a spatial modeling approach based on a statistically derived bioclimatic stratification (the Global Environmental Stratification, GEnS) to understand the spatial implications of projected climate change for Myanmar’s protected area system by 2050 and 2070. Nine bioclimatic zones and 41 strata were recognized in Myanmar, but their representation in the protected area system varied greatly, with the driest zones especially underrepresented. Under climate change, most zones will shift upslope, with some protected areas projected to change entirely to a new bioclimate. Potential impacts on biodiversity include mountaintop extinctions of species endemic to isolated peaks, loss of climate specialists from small protected areas and those with little elevational range, and woody encroachment into savannas and open forests as a result of both climate change and rising atmospheric CO2. Myanmar needs larger, better connected, and more representative protected areas, but political, social, and economic problems make this difficult.
      Citation: Climate
      PubDate: 2020-08-25
      DOI: 10.3390/cli8090099
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 100: Influence of Climate Conditions on the
           Temporal Development of Wheat Yields in a Long-Term Experiment in an Area
           with Pleistocene Loess

    • Authors: Kurt Heil, Anna Lehner, Urs Schmidhalter
      First page: 100
      Abstract: Field experiments were conducted to test different agronomic practices, such as soil cultivation, fertilization, and pest and weed management, in highly controlled plot cultivation. The inter-annual yields and the interpretation of such experiments is highly affected by the variability of climatic conditions and fertilization level. We examined the effect of different climate indices, such as winterkill, late spring frost, early autumn frost, different drought parameters, precipitation-free periods, and heat-related stress, on winter wheat yield. This experiment was conducted in an agricultural area with highly fertile conditions, characterized by a high available water capacity and considerable C and N contents in lower soil depths. Residuals were calculated from long-term yield trends with a validated method (time series autoregressive integrated moving average ARIMA) and these served as base values for the detection of climate-induced, short-term, and inter-annual variations. In a subsequent step, the real yield values were used for their derivations from climate factors. Residuals and real yields were correlated with climate variables in multiple regression of quantitative analyses of the yield sensitivity. The inter-annual variation of yields varied considerably within the observation period. However, the variation was less an effect of the climatic conditions during the main growing time periods, being more of an effect of the prevailing climate conditions in the winter period as well as of the transition periods from winter to the warmer season and vice versa. The high storage capacity of plant available water exerted a remarkable dampening effect on drought-induced effects during the main vegetation periods. Increasing fertilization led to increased susceptibility to drought stress. The results indicate a changed picture of the yield development in these fertile locations.
      Citation: Climate
      PubDate: 2020-08-27
      DOI: 10.3390/cli8090100
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 101: Analysis of Temperature Change in Uzbekistan
           and the Regional Atmospheric Circulation of Middle Asia During 1961–2016

    • Authors: Bakhtiyar M. Kholmatjanov, Yuriy V. Petrov, Temur Khujanazarov, Nigora N. Sulaymonova, Farrukh I. Abdikulov, Kenji Tanaka
      First page: 101
      Abstract: Climate change and shrinking of the Aral Sea have significantly affected the region's temperature variations. Observed interannual changes in Uzbekistan's air temperature compared to the duration of synoptic weather types (SWT) in Middle Asia were analyzed. Nonparametric Mann–Kendall statistical test and climate trends coefficients were used to identify trend characteristics of observed temperature from 1961–2016 to the baseline period of 1961–1990. The results showed increasing temperature trends average to 1 °C in warm and cold half years over Uzbekistan. The 1991–2016 decadal temperature trend ranged from 0.25 °C/decade in the northwest to 0.52 °C/decade in the center, especially pronounced in the oasis and Aral Sea zones. There were also significant changes in the structure of regional SWT. The main difference in the structure of SWT in Middle Asia relative to the baseline period was expressed in a decrease of cold mass invasion duration from 113.4 to 76.1 days and an increase in low-gradient baric field duration from 65.8 to 134.6 days. The process of anthropogenic warming, which began in Uzbekistan in the 1960s of the twentieth century, has accelerated from the mid-1970s with a higher mean annual air temperature than the baseline period's climate normals (1961–1990) and is associated with changes in the regional SWT over Middle Asia.
      Citation: Climate
      PubDate: 2020-09-18
      DOI: 10.3390/cli8090101
      Issue No: Vol. 8, No. 9 (2020)
  • Climate, Vol. 8, Pages 88: A Methodology for the Assessment of Climate
           Change Adaptation Options for Cultural Heritage Sites

    • Authors: Bethune Carmichael, Greg Wilson, Ivan Namarnyilk, Sean Nadji, Jacqueline Cahill, Sally Brockwell, Bob Webb, Deanne Bird, Cathy Daly
      First page: 88
      Abstract: Cultural sites are particularly important to Indigenous peoples, their identity, cosmology and sociopolitical traditions. The benefits of local control, and a lack of professional resources, necessitate the development of planning tools that support independent Indigenous cultural site adaptation. We devised and tested a methodology for non-heritage professionals to analyse options that address site loss, build site resilience and build local adaptive capacity. Indigenous rangers from Kakadu National Park and the Djelk Indigenous Protected Area, Arnhem Land, Australia, were engaged as fellow researchers via a participatory action research methodology. Rangers rejected coastal defences and relocating sites, instead prioritising routine use of a risk field survey, documentation of vulnerable sites using new digital technologies and widely communicating the climate change vulnerability of sites via a video documentary. Results support the view that rigorous approaches to cultural site adaptation can be employed independently by local Indigenous stakeholders.
      Citation: Climate
      PubDate: 2020-07-24
      DOI: 10.3390/cli8080088
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 89: Trend Analysis of air Temperature in the
           Federal District of Brazil: 1980–2010

    • Authors: Valdir Adilson Steinke, Luis Alberto Martins Palhares de Melo, Mamedes Luiz Melo, Rafael Rodrigues da Franca, Rebecca Luna Lucena, Ercilia Torres Steinke
      First page: 89
      Abstract: This study was designed to identify trends in maximum, minimum, and average air temperatures in the Federal District of Brazil from 1980 to 2010, measured at five weather stations. Three statistical tests (Wald–Wolfowitz, Cox–Stuart, and Mann–Kendall) were tested for their applicability for this purpose, and the ones found to be most suitable for the data series were validated. For this data sample, it was observed that the application of the Wald–Wolfowitz test and its validation by the Cox–Stuart and Mann–Kendall tests was the best solution for analyzing the air temperature trends. The results showed an upward trend in average and maximum air temperature at three weather stations, a downward trend at one, and the absence of any trend at two. If the trend of increasing air temperature in the Federal District persists, it could have a negative impact on various sectors of society, mainly on the health of the population, especially during the dry season when more cases of respiratory diseases are registered. These results could serve as inputs for public administrators involved in the planning and formulation of public policies.
      Citation: Climate
      PubDate: 2020-07-29
      DOI: 10.3390/cli8080089
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 90: Spatial and Temporal Distribution of Biomass
           Open Burning Emissions in the Greater Mekong Subregion

    • Authors: Agapol Junpen, Jirataya Roemmontri, Athipthep Boonman, Penwadee Cheewaphongphan, Pham Thi Bich Thao, Savitri Garivait
      First page: 90
      Abstract: Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area products are widely used to assess the damaged area after wildfires and agricultural burning have occurred. This study improved the accuracy of the assessment of the burnt areas by using the MCD45A1 and MCD64A1 burnt area products with the finer spatial resolution product from the Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) surface reflectance data. Thus, more accurate wildfires and agricultural burning areas in the Greater Mekong Subregion (GMS) for the year 2015 as well as the estimation of the fire emissions were reported. In addition, the results from this study were compared with the data derived from the fourth version of the Global Fire Emissions Database (GFED) that included small fires (GFED4.1s). Upon analysis of the data of the burnt areas, it was found that the burnt areas obtained from the MCD64A1 and MCD45A1 had lower values than the reference fires for all vegetation fires. These results suggested multiplying the MCD64A1 and MCD45A1 for the GMS by the correction factors of 2.11−21.08 depending on the MODIS burnt area product and vegetation fires. After adjusting the burnt areas by the correction factor, the total biomass burnt area in the GMS during the year 2015 was about 33.3 million hectares (Mha), which caused the burning of 109 ± 22 million tons (Mt) of biomass. This burning emitted 178 ± 42 Mt of CO2, 469 ± 351 kilotons (kt) of CH4, 18 ± 3 kt of N2O, 9.4 ± 4.9 Mt of CO, 345 ± 206 kt of NOX, 46 ± 25 kt of SO2, 147 ± 117 kt of NH3, 820 ± 489 kt of PM2.5, 60 ± 32 kt of BC, and 350 ± 205 kt of OC. Furthermore, the emission results of fine particulate matter (PM2.5) in all countries were slightly lower than GFED4.1s in the range between 0.3 and 0.6 times.
      Citation: Climate
      PubDate: 2020-08-06
      DOI: 10.3390/cli8080090
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 91: SI: Air Pollution and Plant Ecosystems

    • Authors: Evgenios Agathokleous, Elisa Carrari, Pierre Sicard
      First page: 91
      Abstract: Air pollution continues to be a serious issue for plant health and terrestrial ecosystems. In this issue of climate, some papers relevant to air pollution and its potential impacts on plant health and terrestrial ecosystems are collated. The papers provide some new insights and offer the opportunity to further advance the current understandings of air pollution and its linked impacts at different levels.
      Citation: Climate
      PubDate: 2020-08-09
      DOI: 10.3390/cli8080091
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 92: Greening and Browning Trends of Vegetation in
           India and Their Responses to Climatic and Non-Climatic Drivers

    • Authors: Bikash Ranjan Parida, Arvind Chandra Pandey, N.R. Patel
      First page: 92
      Abstract: It is imperative to know the spatial distribution of vegetation trends in India and its responses to both climatic and non-climatic drivers because many ecoregions are vulnerable to global climate change. Here we employed the NDVI3g satellite data over the span of 35 years (1981/82–2015) to estimate vegetation trends and corresponding climatic variables trends (i.e., precipitation, temperature, solar radiation and soil moisture) by using the Mann–Kendall test (τ) and the Theil–Sen median trend. Analysis was performed separately for the two focal periods—(i) the earlier period (1981/82–2000) and (ii) later period (2000–2015)—because many ecoregions experienced more warming after 2000 than the 1980s and 1990s. Our results revealed that a prominent large-scale greening trend (47% of area) of vegetation continued from the earlier period to the later period (80% of area) across the northwestern Plain and Central India. Despite climatologically drier regions, the stronger greening trend was also evident over croplands which was attributed to moisture-induced greening combined with cooling trends of temperature. However, greening trends of vegetation and croplands diminished (i.e., from 84% to 40% of area in kharif season), especially over the southern peninsula, including the west-central area. Such changes were mostly attributed to warming trends and declined soil moisture trends, a phenomenon known as temperature-induced moisture stress. This effect has an adverse impact on vegetation growth in the Himalayas, Northeast India, the Western Ghats and the southern peninsula, which was further exaggerated by human-induced land-use change. Therefore, it can be concluded that vegetation trend analysis from NDVI3g data provides vital information on two mechanisms (i.e., temperature-induced moisture stress and moisture-induced greening) operating in India. In particular, the temperature-induced moisture stress is alarming, and may be exacerbated in the future under accelerated warming as it may have potential implications on forest and agriculture ecosystems, including societal impacts (e.g., food security, employment, wealth). These findings are very valuable to policymakers and climate change awareness-raising campaigns at the national level.
      Citation: Climate
      PubDate: 2020-08-09
      DOI: 10.3390/cli8080092
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 93: Development of a Parametric Regional
           Multivariate Statistical Weather Generator for Risk Assessment Studies in
           Areas with Limited Data Availability

    • Authors: Saddam Q. Waheed, Neil S. Grigg, Jorge A. Ramirez
      First page: 93
      Abstract: Risk analysis of water resources systems can use statistical weather generators coupled with hydrologic models to examine scenarios of extreme events caused by climate change. These require multivariate, multi-site models that mimic the spatial, temporal, and cross correlations of observed data. This study developed a statistical weather generator to facilitate bottom-up approaches to assess the impact of climate change on water resources systems for cases of limited data. While existing weather generator models have impressive features, this study suggested a simple weather generator which is straightforward to implement and can employ any distribution function for variables such as precipitation or temperature. It is based on (1) a first-order, two-state Markov chain to simulate precipitation occurrences; (2) the use of Wilks’ technique to produce correlated weather variables at multiple sites with the conservation of spatial, temporal, and cross correlations; (3) the capability to vary the statistical parameters of the weather variables. The model was applied to studies of the Diyala River basin in Iraq, which is a case with limited observed records. Results show that it exhibits high values (e.g., over 0.95) for the Nash–Sutcliffe and Kling–Gupta metric tests, preserves the statistical properties of the observed variables, and conserves the spatial, temporal, and cross correlations among the weather variables in the meteorological stations.
      Citation: Climate
      PubDate: 2020-08-11
      DOI: 10.3390/cli8080093
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 94: Assessing the Potential Impacts of Climate
           Changes on Rainfall and Evapotranspiration in the Northwest Region of

    • Authors: Fazlul Karim, Mohammed Mainuddin, Masud Hasan, Mac Kirby
      First page: 94
      Abstract: Changes in the natural climate is a major concern for food security across the world, including Bangladesh. This paper presents results from an analysis on quantitative assessment of changes in rainfall and potential evapotranspiration (PET) in the northwest region of Bangladesh, which is a major agricultural hub in the country. The study was conducted using results from 28 global climate models (GCMs), based on IPCC’s 5th assessment report (AR5) for two emission scenarios. Projections were made over the period of 2045 to 2075 for 16 administrative districts in the study area, and the changes were estimated at annual, seasonal and monthly time scale. More projections result in an increase in rainfall than decrease, while almost all projections show an increase in PET. Although annual rainfall is generally projected to increase, some projections show a decrease in some months, especially in December and January. Across the region, the average change projected by the 28 GCMs for the moderate emission was an increase of 235 mm (12.4%) and 44 mm (3.4%) for rainfall and PET, respectively. Increases in rainfall and PET are slightly higher (0.6% and 0.2%, respectively) under high emission scenarios. Increases in both rainfall and PET were projected for two major cropping seasons, Kharif (May-Oct) and Rabi (Nov-Apr). Projections of rainfall show increase in the range of 160 to 250 mm (with an average of 200 mm) during the Kharif season. Although an increase is projected in the Rabi season, the amount is very small (~10mm). It is important to note that rainfall increases mostly in the Kharif season, but PET increases for both Kharif and Rabi seasons. Contrary to rainfall, increase in PET is higher during Rabi season. This information is crucial for better adaptation under increased water demand for agricultural and domestic use.
      Citation: Climate
      PubDate: 2020-08-12
      DOI: 10.3390/cli8080094
      Issue No: Vol. 8, No. 8 (2020)
  • Climate, Vol. 8, Pages 82: Willingness to Pay for Urban Heat Island
           Mitigation: A Case Study of Singapore

    • Authors: Borzino, Chng, Mughal, Schubert
      First page: 82
      Abstract: In many countries, urban heat island (UHI) effects come along with urbanization in metropolitan areas. They have relevant adverse effects on the health and wellbeing of citizens. Singapore is strongly affected by UHI. In this study, we assess Singaporeans’ willingness to pay (WTP) for UHI mitigation by implementing a contingent valuation analysis. Specifically, we employ a double-bounded dichotomous survey design on a representative sample of 1822 online respondents. We find that Singaporeans are willing to sacrifice on average 0.43% of their annual income to mitigate UHI. The total WTP for mitigation strategies among Singapore citizens and permanent residents is estimated at SGD$ 783.08 million per year, the equivalent of USD$563.80 per year. Our findings suggest that there is a positive and significant relationship between the size of UHI effects and the citizens’ WTP. People living in the region with the highest intensity of UHI are willing to pay 3.09 times more than those living in the region with the lowest UHI intensity. Furthermore, demographic and socio-economic characteristics are significant determinants of Singaporeans’ WTP. The WTP increases with income and education but decreases with age. Students, men, and people with children are willing to pay more. Additional analyses show that the level of UHI awareness, positive attitudes towards UHI mitigation strategies as well as preferences for outdoor activities are positively correlated with the WTP. Our findings suggest that citizens are aware of the impacts of UHI and support UHI mitigation measures to be financed by their taxes. Policy interventions to promote UHI-related education and disseminating UHI-related information might increase the support of UHI mitigation policies.
      Citation: Climate
      PubDate: 2020-06-27
      DOI: 10.3390/cli8070082
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 83: Impact of Climate and Land Use/Land Cover
           Change on the Water Resources of a Tropical Inland Valley Catchment in
           Uganda, East Africa

    • Authors: Gabiri, Diekkrüger, Näschen, Leemhuis, Linden, Majaliwa, Obando
      First page: 83
      Abstract: The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976-2005) and future climate (2021-2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.
      Citation: Climate
      PubDate: 2020-06-29
      DOI: 10.3390/cli8070083
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 84: Using the CHIRPS Dataset to Investigate
           Historical Changes in Precipitation Extremes in West Africa

    • Authors: Didi Sacré Regis Sacré Regis M., Ly Mouhamed, Kouadio Kouakou, Bichet Adeline, Diedhiou Arona, Coulibaly Houebagnon Saint. Houebagnon Saint. J., Kouadio Koffi Claude Koffi Claude A., Coulibaly Talnan Jean Talnan Jean H., Salomon Obahoundje, Savané Issiaka
      First page: 84
      Abstract: This study aims to provide improved knowledge and evidence on current (1986–2015) climate variation based on six rainfall indices over five West African countries (Senegal, Niger, Burkina Faso, Ivory Coast, and Benin) using the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset. On average, precipitation has increased over the central Sahel and the western Sahel. This increase is associated with increase in the number of rainy days, longer wet spells and shorter dry spells. Over the Guinea Coast, the slight increase in precipitation is associated with an increase in the intensity of rainfall with a shorter duration of wet spells. However, these mean changes in precipitation are not all statistically significant and uniform within a country. While previous studies are focused on regional and sub-regional scales, this study contributes to deliver a climate information at a country level that is more relevant for decision making and for policy makers, and to document climate-related risks within a country to feed impact studies in key sectors of the development, such as agriculture and water resources.
      Citation: Climate
      PubDate: 2020-06-30
      DOI: 10.3390/cli8070084
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 85: Bias Correction of RCM Precipitation by
           TIN-Copula Method: A Case Study for Historical and Future Simulations in

    • Authors: Georgia Lazoglou, George Zittis, Christina Anagnostopoulou, Panos Hadjinicolaou, Jos Lelieveld
      First page: 85
      Abstract: Numerical models are being used for the simulation of recent climate conditions as well as future projections. Due to the complexity of the Earth’s climate system and processes occurring at sub-grid scales, model results often diverge from the observed values. Different methods have been developed to minimize such biases. In the present study, the recently introduced “triangular irregular networks (TIN)-Copula” method was used for the bias correction of modelled monthly total and extreme precipitation in Cyprus. The method was applied to a 15-year historical period and two future periods of the same duration. Precipitation time-series were derived from a 12-km resolution EURO-CORDEX regional climate simulation. The results show that the TIN-Copula method significantly reduces the positive biases between the model results and observations during the historical period of 1986–2000, for both total and extreme precipitation (>80%). However, the level of improvement differs temporally and spatially. For future periods, the model tends to project significantly higher total precipitation rates prior to bias correction, while for extremes the differences are smaller. The adjustments slightly affect the overall climate change signal, which tends to be enhanced after bias correction, especially for total precipitation and for the autumn period.
      Citation: Climate
      PubDate: 2020-07-04
      DOI: 10.3390/cli8070085
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 86: Climatology of the Mascarene High and Its
           Influence on Weather and Climate over Southern Africa

    • Authors: Nkosinathi G. Xulu, Hector Chikoore, Mary-Jane M. Bopape, Nthaduleni S. Nethengwe
      First page: 86
      Abstract: Globally, subtropical circulation in the lower troposphere is characterized by anticyclones over the oceans. Subtropical anticyclones locate over subtropical belts, modulating weather and climate patterns in those regions. The Mascarene High is an anticyclone located over the Southern Indian Ocean and has a vital role in weather and climate variability over Southern Africa. The warm Western Indian Ocean is a major source of moisture for the subcontinent also permitting tropical cyclone genesis. In this study, we review the dynamics of the Mascarene High, its interactions with the ocean, and its impact on weather and climate over Southern Africa. We also review studies on the evolution of subtropical anticyclones in a future warmer climate. The links between SST modes over the Indian Ocean and the strengthening and weakening of the Mascarene High have been demonstrated. One important aspect is atmospheric blocking due to the Mascarene High, which leads to anomalous rainfall and temperature events over the subcontinent. Blocking leads to landfall of tropical cyclones and slow propagation of cut-off lows resulting in severe weather and flooding over the subcontinent. Understanding how expansion of the Mascarene High due to warming will alter trade winds and storm tracks and change the mean climate of Southern Africa is crucial.
      Citation: Climate
      PubDate: 2020-07-07
      DOI: 10.3390/cli8070086
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 87: Investigating the Role of Extreme Synoptic
           Patterns and Complex Topography During Two Heavy Rainfall Events in Crete
           in February 2019

    • Authors: Konstantinos Lagouvardos, Stavros Dafis, Christos Giannaros, Athanassios Karagiannidis, Vassiliki Kotroni
      First page: 87
      Abstract: During February 2019, two severe storms affected the island of Crete, located in south Greece. Both storms produced excessive rainfall, provoking severe damages, especially in the western part of Crete. The role of the prevailing synoptic patterns and the interaction of the flow with the high mountains of Crete were investigated. For this purpose, a variety of observational and numerical model data were exploited, including data from a dense rain gauge network, satellite imagery, and model analysis of various parameters describing the stability of the impinging flow. The first storm was a long-lasting event, with convective outbreaks embedded in a more stratiform rainfall pattern. The second storm was brief but mostly convection dominated. The analysis of the available data underlined the role of the low-level convergence upstream of the mountains during both storms, highlighting similarities and differences, as well as the role of the stability of the impinging flow. High soil moisture content was also evidenced as a key ingredient for the severe flooding that occurred during the second storm. This work complements similar studies on the role of Mediterranean islands and their topography on the spatial and temporal distribution of extreme rainfall.
      Citation: Climate
      PubDate: 2020-07-16
      DOI: 10.3390/cli8070087
      Issue No: Vol. 8, No. 7 (2020)
  • Climate, Vol. 8, Pages 66: Stakeholders’ Perception of Climate Actions
           in Some Developing Economies

    • Authors: Fadeyi, Maresova
      First page: 66
      Abstract: Resilience, adaptation and mitigation are unique but complimentary actions in the fight against climate change (CC), particularly in developing countries. Although evidence suggest the inclusion of stakeholder opinions as part of the frameworks for combating CC, this evidence is not well substantiated, and is not extensively described in sub-Sahara African CC literature. While language remains a big issue in CC discussions, processes comprised within climate actions are equally as important as both the language and the results. It is on the basis of the confusion surrounding the language adopted as actions geared towards combating CC that this study seeks to examine the opinions/perception of CC actors in three West African nations. It looks at perceived and/or suitable solutions to selected CC-imposed challenges in the midst of socio-economic and environmental concerns. A total of 475 individuals, representing NGOs, public and private organizations involved with CC issues, as well as private persons concerned about CC, were recruited across Nigeria, Niger, and Benin, over a two-year period (April 2017–April 2019). A questionnaire containing 15 items was administered. The results of data analysis using chi-square and Fischer’s exact tests show that the mean number of CC actors differs within and across all three countries for all climate action types against CC-imposed challenges. While CC adaptive plans and projects are thought to yield immediate results, they are also observed to be cheaper in comparison to mitigation and resilience projects.
      Citation: Climate
      PubDate: 2020-05-27
      DOI: 10.3390/cli8060066
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 67: An Investigation into the Future Changes in
           Onset and Cessation of Rain and their Variability over the Aswa Catchment,

    • Authors: Michael Iwadra, P.T. Odirile, B.P. Parida, D.B. Moalafhi
      First page: 67
      Abstract: Future global warming may result in extreme precipitation events leading to crop, environment and infrastructure damage. Rainfall is a major input for the livelihood of peasant farmers in the Aswa catchment where the future rainfall variability, onset and cessation are also likely to be affected. The Aswa catchment has limited rainfall data; therefore, use of secondary datasets from Tropical Rainfall Measuring Mission (TRMM) is considered in this study, based on the close correlation of the recorded and TRMM rainfall. The latter was used to calibrate the statistical downscaling model for downscaling of two general circulation models to simulate future changes in rainfall. These data were analyzed for trends, wet and dry conditions/variability; onset and cessations of rain using the Mann–Kendall test, Standardized Precipitation Index (SPI) and the cumulative percentage mean rainfall method, respectively. Results show future rainfall is likely to increase, accompanied by increasing variability reaching as high as 118.5%. The frequency of SPI values above 2 (extreme wetness) is to increase above current level during mid and end of the century. The highest rainfall variability is expected especially during the onset and cessation months, which are generally expected to come earlier and later, by up to four and five weeks, respectively. The reliability worsens from the midterm (2036–2065) to long term (2066–2099). These likely changes in rainfall quantities, variability, onset and cessation months are some of the key rainfall dynamics that have implications for future arable agriculture, environment and water resource availability and planning over the Aswa catchment, as is increasingly the case elsewhere.
      Citation: Climate
      PubDate: 2020-05-29
      DOI: 10.3390/cli8060067
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 68: Surface Temperature Trend Estimation over 12
           Sites in Guinea Using 57 Years of Ground-Based Data

    • Authors: René Tato Loua, Hassan Bencherif, Nelson Bègue, Nkanyiso Mbatha, Thierry Portafaix, Alain Hauchecorne, Venkataraman Sivakumar, Zoumana Bamba
      First page: 68
      Abstract: Trend-Run model was performed to estimate the trend in surface temperatures recorded at 12 sites in Guinea from 1960 to 2016 and to examine the contribution of each climate forcing. The coefficient of determination (R2) calculated varies between 0.60 and 0.90, it provides total information about the simulation capability of the model. The decadal trend values also calculated show an upward trend (between 0.04 °C ± 0.06 °C decade−1 and 0.21 °C ± 0.06 °C decade−1). In addition, forcings’ contributions were quantified, and the annual oscillation (AO) contribution is higher for most of the stations, followed by semiannual oscillation (SAO). Among the forcings, the tropical Northern Atlantic (TNA) contribution is greater than that of the sunspot number (SSN), Niño3.4 and Atlantic Niño (AN). Moreover, the Mann-Kendall test revealed a positive significant trend for all stations except at the Macenta site. Additionally, with sequential Mann-Kendall test, trend turning points were found only for the stations of Mamou, Koundara and Macenta at different dates. The temperature anomalies depict warming episodes (1970s, 1980s, 1984 and 1990s). Since then, the temperature is consistently increasing over the country. A significant warming has been shown, which might be further investigated using these models with additional contributing factors.
      Citation: Climate
      PubDate: 2020-05-31
      DOI: 10.3390/cli8060068
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 69: On the Efficiency of Using Transpiration
           Cooling to Mitigate Urban Heat

    • Authors: Kai Gao, Mattheos Santamouris, Jie Feng
      First page: 69
      Abstract: Trees are considered to be effective for the mitigation of urban overheating, and the cooling capacity of trees mainly comes from two mechanisms: transpiration and shading. This study explores the transpiration cooling of large trees in urban environments where the sea breeze dominates the climate. In the experiment, sap flow sensors were used to measure the transpiration rate of two large trees located in Sydney over one year. Also, the temperature difference between the inside and outside of the canopy, as well as the vertical temperature distribution below the canopy, were measured during summer. In this experiment, the temperature under the canopies decreased by about 0.5 degrees from a 0.5 m height to a 3.5 m height, and the maximum temperature difference between the inside and outside of the canopy was about 2 degrees. After applying a principal component analysis of multiple variables, we found that when a strong sea breeze is the primary cooling mechanism, the sap flow still makes a considerable contribution to cooling. Further, the sea breeze and the transpiration cooling of trees are complementary. In conclusion, the characteristics of synoptic conditions must be fully considered when planting trees for mitigation purposes. Since the patterns of sea breeze and sap often do not coincide, the transpiration cooling of trees is still effective when the area is dominated by sea breeze.
      Citation: Climate
      PubDate: 2020-06-01
      DOI: 10.3390/cli8060069
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 70: Analysis of the Spatio-Temporal Variability of
           Precipitation and Drought Intensity in an Arid Catchment in South Africa

    • Authors: Achamyeleh G. Mengistu, Weldemichael A. Tesfuhuney, Yali E. Woyessa, Leon D. van Rensburg
      First page: 70
      Abstract: Water deficit is high and precipitation varies spatio-temporally in arid areas. This study was conducted to analyse the spatio-temporal variability of precipitation and drought intensity in an arid catchment in South Africa. The Soil and Water Assessment Tool (SWAT) was used to estimate the spatio-temporal precipitation where nine meteorological stations were used as input to the model. The model was calibrated and validated by regionalization with a physical similarity approach. SWAT only predicts precipitation at sub-basin level. Hence, the mean precipitation was further interpolated by using the inverse distance weighted method (IDW). The Mann–Kendall trend test shows that there was no trend in annual precipitation whereas in the monthly precipitation there was a 0.01 mm decrease. Daily precipitation varied from 0.1 to 4 mm whereas in a monthly basis, it varied from 6 mm (September) to 43.4 mm (February). The annual precipitation varied from 169 mm (1983) to 415 mm (2003) with a long-term mean of 280.8 mm. Precipitation is also highly variable in space throughout the catchment. Generally, annual precipitation decreased from north to south; however, during the winter season, the reverse was true due to the influence of rain-bearing condition from the south- western direction. Based on the aridity index (AI), the catchment is categorized as arid. The SPI shows that the 1983 drought was the worst whereas the 2003 and 2004 years were relatively wet. The results from this study provide baseline information for further research in climate change adaptation and environmental monitoring programs in the region.
      Citation: Climate
      PubDate: 2020-06-01
      DOI: 10.3390/cli8060070
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 71: Effect of Surface Temperature on Energy
           Consumption in a Calibrated Building: A Case Study of Delhi

    • Authors: Priyanka Kumari, Sukriti Kapur, Vishal Garg, Krishan Kumar
      First page: 71
      Abstract: Rapid urbanization and associated land-use changes in cities cause an increase in the demand for electricity by altering the local climate. The present study aims to examine the variations in total energy and cooling energy demand in a calibrated building, caused by urban heat island formation over Delhi. The study used Sentinel-2A multispectral imagery for land use and land cover (LULC) of mapping of Delhi, and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for land surface temperature (LST) mapping during March 2018. It was observed that regions with dense built-up areas (i.e., with built-up area greater than 90%) had a higher annual land surface temperature (LST), i.e., 293.5 K and urban heat island intensity (UHII) ranging from 0.9K - 5.9 K. In contrast, lower annual values of LST (290K) and UHII (0.0 - 0.4 K) were observed in regions with high vegetation cover (53%). Statistical analysis reveals that a negative correlation exists between vegetation and nighttime LST, which is further confirmed by linear regression analysis. Energy simulations were performed on a calibrated building placed at three different sites, identified on the basis of land use and land cover percentage and annual LST. Simulation results showed that the site located in the central part of Delhi displayed higher annual building energy consumption (425.12 MWh/y) compared to the site located in the rural periphery (381.13 MWh/y). For all the three sites, the maximum electricity consumption and the cooling load were observed in the summer season, while the minimum were seen in the winter season. The study indicates that UHI formation leads to increased energy consumption in buildings, and thus UHI mitigation measures hold great potential for energy saving in a large city like Delhi.
      Citation: Climate
      PubDate: 2020-06-02
      DOI: 10.3390/cli8060071
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 72: Microclimate Analysis as a Design Driver of

    • Authors: Jonathan Graham, Umberto Berardi, Geoffrey Turnbull, Robert McKaye
      First page: 72
      Abstract: In the context of global climate change, it is increasingly important for architects to understand the effects of their interventions on indoor and outdoor thermal comfort. New microclimate analysis tools which are gaining appreciation among architects enable the assessment of different design options in terms of biometeorological parameters, such as the Universal Thermal Climate Index (UTCI) and the Outdoor Thermal Comfort Autonomy. This paper reflects on some recent experiences of an architectural design office attempting to incorporate local climatic considerations as a design driver in projects. The investigation shows that most of the available tools for advanced climatic modelling have been developed for research purposes and are not optimized for architectural and urban design; consequently, they require adaptations and modifications to extend their functionality or to achieve interoperability with software commonly used by architects. For this scope, project-specific Python scripts used to extract design-consequential information from simulation results, as well as to construct meteorological boundary conditions for microclimate simulations, are presented. This study describes the obstacles encountered while implementing microclimate analysis in an architectural office and the measures taken to overcome them. Finally, the benefits of this form of analysis are discussed.
      Citation: Climate
      PubDate: 2020-06-03
      DOI: 10.3390/cli8060072
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 73: Building Resilience of Critical Infrastructure:
           A Case of Impacts of Cyclones on the Power Sector in Odisha

    • Authors: Sujit Kumar Mohanty, Ranit Chatterjee, Rajib Shaw
      First page: 73
      Abstract: Odisha is multi-hazard-prone state in the eastern part of India. Among the various disasters, the frequency and severity of cyclones have increased at an alarming rate in the last two decades, which is attributed to climatic change. The state government of Odisha has made great strides in reducing the lives lost in the state, but an increase in economic losses and damage to critical infrastructure has become a point of worry. Considering the power sector as the most crucial of all critical infrastructures, this paper explores the impact that cyclones have had on the sector in the last two decades in Odisha. The 4R concept of robustness, redundancy, rapidity and resourcefulness is applied to the power sector, and how this is supported by governance is studied. The study points towards need for the master planning of critical infrastructure, based on the risk assessment, establishment of funding mechanisms for mitigation measures and the standardization and quality checking of power sector equipment to withstand the wind speeds of category 4 and above. There needs to be a good coordination between the power sector and the disaster management sector with proper legislative provision. Knowledge management, training and capacity building is another important issue which needs to be focused on.
      Citation: Climate
      PubDate: 2020-06-05
      DOI: 10.3390/cli8060073
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 74: Methane Emission Factors from Vietnamese Rice
           Production: Pooling Data of 36 Field Sites for Meta-analysis

    • Authors: Thi Bach Thuong Vo, Reiner Wassmann, Van Trinh Mai, Duong Quynh Vu, Thi Phuong Loan Bui, Thi Hang Vu, Quang Hieu Dinh, Bui Tan Yen, Folkard Asch, Bjoern Ole Sander
      First page: 74
      Abstract: Rice production is a significant source of greenhouse gas (GHG) emissions in the national budget of many Asian countries, but the extent of emissions varies strongly across agro-environmental zones. It is important to understand these differences in order to improve the national GHG inventory and effectively target mitigation options. This study presents a meta-analysis of CH4 database emission factors (EFs) from 36 field sites across the rice growing areas of Vietnam and covering 73 cropping seasons. The EFs were developed from field measurements using the closed chamber technique. The analysis for calculating baseline EFs in North, Central and South Vietnam in line with the Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology was specified for the three cropping seasons being early-(E), mid-(M) and late-year (L) seasons. Calculated average CH4 EFs are given in kg ha–1 d–1 and reflect the distinct seasons in North (E: 2.21; L: 3.89), Central (E: 2.84; M+L: 3.13) and South Vietnam (E: 1.72; M: 2.80; L: 3.58). Derived from the available data of the edapho-hydrological zones of the Mekong River Delta, season-based EFs are more useful than zone-based EFs. In totality, these average EFs indicate an enormous variability of GHG emissions in Vietnamese rice production and represent much higher values than the IPCC default. Seasonal EFs from Vietnam exceeded IPCC defaults given for Southeast Asia corresponding to 160% (E), 240% (M) and 290% (L) of the medium value, respectively.
      Citation: Climate
      PubDate: 2020-06-10
      DOI: 10.3390/cli8060074
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 75: Towards Indicators for a Negative Emissions
           Climate Stabilisation Index: Problems and Prospects

    • Authors: Mathias Fridahl, Anders Hansson, Simon Haikola
      First page: 75
      Abstract: The incongruence between the United Nations objective to hold global warming well below 2 °C and the rate of global emission reductions has intensified interest in negative emissions. Previous research has explored several pros and cons of individual negative emissions technologies. Systematised approaches to comparing and prioritising among them are, however, largely lacking. In response to this gap in the literature, this article reviews the scientific literature on indicators for designing negative emissions climate stabilisation value indexes. An index typically provides summary measures of several components, often denoted indicators. Utilizing a narrative review methodology, the article derives five categories of indicators underpinned by overlapping and often mutually reinforcing environmental and socio-economic values. A list of 21 indicators are proposed to capture both positive and negative values associated with effectiveness, efficiency, scale, risk, and synergies. While discussing indicators capable of providing guidance on negative emissions is timely, given the emerging shift away from pure emission reduction targets towards net-zero targets, numerous complexities are involved in determining their relative values. The results herein serve to inform policy making on the prioritisation and incentivisation of negative emissions technologies capable of delivering on the new objectives, and the results highlight the many risks and uncertainties involved in such exercises. The article concludes that systematic research on the comparison of NETs is incomplete. An iterative, interdisciplinary research programme exploring such questions has the potential to be extremely rewarding.
      Citation: Climate
      PubDate: 2020-06-11
      DOI: 10.3390/cli8060075
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 76: Application of Machine Learning to Attribution
           and Prediction of Seasonal Precipitation and Temperature Trends in
           Canberra, Australia

    • Authors: Joshua Hartigan, Shev MacNamara, Lance M. Leslie
      First page: 76
      Abstract: Southeast Australia is frequently impacted by drought, requiring monitoring of how the various factors influencing drought change over time. Precipitation and temperature trends were analysed for Canberra, Australia, revealing decreasing autumn precipitation. However, annual precipitation remains stable as summer precipitation increased and the other seasons show no trend. Further, mean temperature increases in all seasons. These results suggest that Canberra is increasingly vulnerable to drought. Wavelet analysis suggests that the El-Niño Southern Oscillation (ENSO) influences precipitation and temperature in Canberra, although its impact on precipitation has decreased since the 2000s. Linear regression (LR) and support vector regression (SVR) were applied to attribute climate drivers of annual precipitation and mean maximum temperature (TMax). Important attributes of precipitation include ENSO, the southern annular mode (SAM), Indian Ocean Dipole (DMI) and Tasman Sea SST anomalies. Drivers of TMax included DMI and global warming attributes. The SVR models achieved high correlations of 0.737 and 0.531 on prediction of precipitation and TMax, respectively, outperforming the LR models which obtained correlations of 0.516 and 0.415 for prediction of precipitation and TMax on the testing data. This highlights the importance of continued research utilising machine learning methods for prediction of atmospheric variables and weather pattens on multiple time scales.
      Citation: Climate
      PubDate: 2020-06-11
      DOI: 10.3390/cli8060076
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 77: Assessment of Seasonal Winter Temperature
           Forecast Errors in the RegCM Model over Northern Vietnam

    • Authors: Vo Van, Du Duc, Mai Khanh, Hole, Anh, Thanh, Dinh
      First page: 77
      Abstract: This study verified the seasonal six-month forecasts for winter temperatures for northern Vietnam in 1998–2018 using a regional climate model (RegCM4) with the boundary conditions of the climate forecast system Version 2 (CFSv2) from the National Centers for Environmental Prediction (NCEP). First, different physical schemes (land-surface process, cumulus, and radiation parameterizations) in RegCM4 were applied to generate 12 single forecasts. Second, the simple ensemble forecasts were generated through the combinations of those different physical formulations. Three subclimate regions (R1, R2, R3) of northern Vietnam were separately tested with surface observations and a reanalysis dataset (Japanese 55-year reanalysis (JRA55)). The highest sensitivity to the mean monthly temperature forecasts was shown by the land-surface parameterizations (the biosphere−atmosphere transfer scheme (BATS) and community land model version 4.5 (CLM)). The BATS forecast groups tended to provide forecasts with lower temperatures than the actual observations, while the CLM forecast groups tended to overestimate the temperatures. The forecast errors from single forecasts could be clearly reduced with ensemble mean forecasts, but ensemble spreads were less than those root-mean-square errors (RMSEs). This indicated that the ensemble forecast was underdispersed and that the direct forecast from RegCM4 needed more postprocessing.
      Citation: Climate
      PubDate: 2020-06-14
      DOI: 10.3390/cli8060077
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 78: A Comparative Study on the Performances of Flat
           Plate and Evacuated Tube Collectors Deployable in Domestic Solar Water
           Heating Systems in Different Climate Areas

    • Authors: Adriana Greco, Edison Gundabattini, Darius S. Gnanaraj, Claudia Masselli
      First page: 78
      Abstract: Using TRNSYS software, a comparison of the energy performances of flat-plate collectors (FPCs) and evacuated-tube collectors (ETCs) in domestic solar water heating systems located in different climate areas was carried out in order to ascertain solar energy utilization. Investigations were carried out on single FPCs and ETCs and also for strings of four panels connected in series. Tests were conducted using simulations for water as heat transfer fluid with a fixed fluid flow rate and varying the temperature of the collector’s returning fluid. The maximum power peak decreases with the increase in the inlet temperature of the fluid to the collector in the FPC. The maximum outlet temperature of the FPC is higher than the ETC, most of the time. The evacuated-tube collector performs better only in cold climate areas. Simulations suggest that the use of the FPC is strongly discouraged in cold climatic areas due to thermal losses, whereas the ETC works well with reduced dispersion of heat. In warm seasons, on the contrary, the FPC takes advantage of the high environmental temperature which heats the fluid. The maximum yearly outlet temperature and useful power peak predicted in different climatic areas were investigated by varying the temperature of the fluid inlet fed to the two strings of four FPCs and ETCs. In all cases, the outlet temperature is higher in the ETC technology.
      Citation: Climate
      PubDate: 2020-06-15
      DOI: 10.3390/cli8060078
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 79: Urban Heat Island in Mediterranean Coastal
           Cities: The Case of Bari (Italy)

    • Authors: Alessandra Martinelli, Dionysia-Denia Kolokotsa, Francesco Fiorito
      First page: 79
      Abstract: In being aware that some factors (i.e. increasing pollution levels, Urban Heat Island (UHI), extreme climate events) threaten the quality of life in cities, this paper intends to study the Atmospheric UHI phenomenon in Bari, a Mediterranean coastal city in Southern Italy. An experimental investigation at the micro-scale was conducted to study and quantify the UHI effect by considering several spots in the city to understand how the urban and physical characteristics of these areas modify air temperatures and lead to different UHI configurations. Air temperature data provided by fixed weather stations were first compared to assess the UHI distribution and its daily, monthly, seasonal and annual intensity in five years (from 2014 to 2018) to draw local climate information, and then compared with the relevant national standard. The study has shown that urban characteristics are crucial to the way the UHI phenomenon manifests itself. UHI reaches its maximum intensity in summer and during night-time. The areas with higher density (station 2—Local Climate Zone (LCZ) 2) record high values of UHI intensity both during daytime (4.0 °C) and night-time (4.2 °C). Areas with lower density (station 3—LCZ 5) show high values of UHI during daytime (up to 4.8 °C) and lower values of UHI intensity during night-time (up to 2.8 °C). It has also been confirmed that sea breezes—particularly noticeable in the coastal area—can mitigate temperatures and change the configuration of the UHI. Finally, by analysing the frequency distribution of current and future weather scenarios, up to additional 4 °C of increase of urban air temperature is expected, further increasing the current treats to urban liveability.
      Citation: Climate
      PubDate: 2020-06-19
      DOI: 10.3390/cli8060079
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 80: Discontinuities in Wintertime Warming in
           Northern Europe during 1951–2016

    • Authors: Mikhail M. Latonin, Vladimir A. Lobanov, Igor L. Bashmachnikov
      First page: 80
      Abstract: Although there is a general consensus about the trends of current climate change, the North Atlantic region deserves special attention, as it is the key region for many climate processes. The aim of this study is to assess the climatic changes in this region for the period 1951–2016, based on the analysis of surface air temperature (SAT) observations from weather stations, and the North Atlantic Oscillation (NAO). Statistical modeling of time series for January, February and March shows a stepwise increase of SAT in Northern Europe in 1987–1989, with the stationarity increasing towards spring. The divided trends of the NAO and SAT indicate a good coherence at the level of climate tendencies. This research reveals the discontinuity of the present-day wintertime warming in Northern Europe, with a warming of about 2 °C after the stepwise jump of the SAT.
      Citation: Climate
      PubDate: 2020-06-21
      DOI: 10.3390/cli8060080
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 81: Canopy Urban Heat Island and Its Association
           with Climate Conditions in Dubai, UAE

    • Authors: Afifa Mohammed, Gloria Pignatta, Evangelia Topriska, Mattheos Santamouris
      First page: 81
      Abstract: The impact that climate change and urbanization are having on the thermal-energy balance of the built environment is a major environmental concern today. Urban heat island (UHI) is another phenomenon that can raise the temperature in cities. This study aims to examine the UHI magnitude and its association with the main meteorological parameters (i.e., temperature, wind speed, and wind direction) in Dubai, United Arab Emirates. Five years of hourly weather data (2014–2018) obtained from weather stations located in an urban, suburban, and rural area, were post-processed by means of a clustering technique. Six clusters characterized by different ranges of wind directions were analyzed. The analysis reveals that UHI is affected by the synoptic weather conditions (i.e., sea breeze and hot air coming from the desert) and is larger at night. In the urban area, air temperature and night-time UHI intensity, averaged on the five year period, are 1.3 °C and 3.3 °C higher with respect to the rural area, respectively, and the UHI and air temperature are independent of each other only when the wind comes from the desert. A negative and inverse correlation was found between the UHI and wind speed for all the wind directions, except for the northern wind where no correlation was observed. In the suburban area, the UHI and both temperatures and wind speed ranged between the strong and a weak negative correlation considering all the wind directions, while a strong negative correlation was observed in the rural area. This paper concludes that UHI intensity is strongly associated with local climatic parameters and to the changes in wind direction.
      Citation: Climate
      PubDate: 2020-06-26
      DOI: 10.3390/cli8060081
      Issue No: Vol. 8, No. 6 (2020)
  • Climate, Vol. 8, Pages 138: The Effect of Statistical Downscaling on the
           Weighting of Multi-Model Ensembles of Precipitation

    • Authors: Adrienne M. Wootten, Elias C. Massoud, Agniv Sengupta, Duane E. Waliser, Huikyo Lee
      First page: 138
      Abstract: Recently, assessments of global climate model (GCM) ensembles have transitioned from using unweighted means to weighted means designed to account for skill and interdependence among models. Although ensemble-weighting schemes are typically derived using a GCM ensemble, statistically downscaled projections are used in climate change assessments. This study applies four ensemble-weighting schemes for model averaging to precipitation projections in the south-central United States. The weighting schemes are applied to (1) a 26-member GCM ensemble and (2) those 26 members downscaled using Localized Canonical Analogs (LOCA). This study is distinct from prior research because it compares the interactions of ensemble-weighting schemes with GCMs and statistical downscaling to produce summarized climate projection products. The analysis indicates that statistical downscaling improves the ensemble accuracy (LOCA average root mean square error is 100 mm less than the CMIP5 average root mean square error) and reduces the uncertainty of the projected ensemble-mean change. Furthermore, averaging the LOCA ensemble using Bayesian Model Averaging reduces the uncertainty beyond any other combination of weighting schemes and ensemble (standard deviation of the mean projected change in the domain is reduced by 40–50 mm). The results also indicate that it is inappropriate to assume that a weighting scheme derived from a GCM ensemble matches the same weights derived using a downscaled ensemble.
      Citation: Climate
      PubDate: 2020-11-25
      DOI: 10.3390/cli8120138
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 139: Modeling the Impacts of Climate Change on Crop
           Yield and Irrigation in the Monocacy River Watershed, USA

    • Authors: Manashi Paul, Sijal Dangol, Vitaly Kholodovsky, Amy R. Sapkota, Masoud Negahban-Azar, Stephanie Lansing
      First page: 139
      Abstract: Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.
      Citation: Climate
      PubDate: 2020-11-25
      DOI: 10.3390/cli8120139
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 140: Climate Change Risk Assessment for Kurunegala,
           Sri Lanka: Water and Heat Waves

    • Authors: Hanna Cho
      First page: 140
      Abstract: Sri Lanka is experiencing various social and environmental challenges, including drought, storms, floods, and landslides, due to climate change. One of Sri Lanka’s biggest cities, Kurunegala, is a densely populated city that is gradually turning into an economic revitalization area. This fast-growing city needs to establish an integrated urban plan that takes into account the risks of climate change. Thus, a climate change risk assessment was conducted for both the water and heat wave risks via discussions with key stakeholders. The risk assessment was conducted as a survey based on expert assessment of local conditions, with awareness surveys taken by residents, especially women. The assessment determined that the lack of drinking water was the biggest issue, a problem that has become more serious due to recent droughts caused by climate change and insufficient water management. In addition, the outbreak of diseases caused by heat waves was identified as a serious concern. Risk assessment is integral to developing an action plan for minimizing the damage from climate change. It is necessary to support education and awareness in developing countries so that they can perform risk assessment well and develop both problem-solving and policy-making abilities to adapt to a changing climate.
      Citation: Climate
      PubDate: 2020-11-27
      DOI: 10.3390/cli8120140
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 141: Gains or Losses in Forest Productivity under
           Climate Change' The Uncertainty of CO2 Fertilization and Climate

    • Authors: Dominik Sperlich, Daniel Nadal-Sala, Carlos Gracia, Jürgen Kreuzwieser, Marc Hanewinkel, Rasoul Yousefpour
      First page: 141
      Abstract: Global warming poses great challenges for forest managers regarding adaptation strategies and species choices. More frequent drought events and heat spells are expected to reduce growth and increase mortality. Extended growing seasons, warming and elevated CO2 (eCO2) can also positively affect forest productivity. We studied the growth, productivity and mortality of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) in the Black Forest (Germany) under three climate change scenarios (representative concentration pathways (RCP): RCP2.6, RCP4.5, RCP8.5) using the detailed biogeochemical forest growth model GOTILWA+. Averaged over the entire simulation period, both species showed productivity losses in RCP2.6 (16–20%) and in RCP4.5 (6%), but productivity gains in RCP8.5 (11–17%). However, all three scenarios had a tipping point (between 2035–2060) when initial gains in net primary productivity (NPP) (6–29%) eventually turned into losses (1–26%). With eCO2 switched off, the losses in NPP were 26–51% in RCP2.6, 36–45% in RCP4.5 and 33–71% in RCP8.5. Improved water-use efficiency dampened drought effects on NPP between 4 and 5%. Tree mortality increased, but without notably affecting forest productivity. Concluding, cultivation of beech and fir may still be possible in the study region, although severe productivity losses can be expected in the coming decades, which will strongly depend on the dampening CO2 fertilization effect.
      Citation: Climate
      PubDate: 2020-11-30
      DOI: 10.3390/cli8120141
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 142: Long-Term Trend Analysis in Annual and
           Seasonal Precipitation, Maximum and Minimum Temperatures in the Southwest
           United States

    • Authors: Koffi Djaman, Komlan Koudahe, Ansoumana Bodian, Lamine Diop, Papa Malick Ndiaye
      First page: 142
      Abstract: The objective of this study is to perform trend analysis in the historic data sets of annual and crop season [May–September] precipitation and daily maximum and minimum temperatures across the southwest United States. Eighteen ground-based weather stations were considered across the southwest United States for a total period from 1902 to 2017. The non-parametric Mann–Kendall test method was used for the significance of the trend analysis and the Sen’s slope estimator was used to derive the long-term average rates of change in the parameters. The results showed a decreasing trend in annual precipitation at 44.4% of the stations with the Sen’s slopes varying from −1.35 to −0.02 mm/year while the other stations showed an increasing trend. Crop season total precipitation showed non-significant variation at most of the stations except two stations in Arizona. Seventy-five percent of the stations showed increasing trend in annual maximum temperature at the rates that varied from 0.6 to 3.1 °C per century. Air cooling varied from 0.2 to 1.0 °C per century with dominant warming phenomenon at the regional scale of the southwest United States. Average annual minimum temperature had increased at 69% of the stations at the rates that varied from 0.1 to 8 °C over the last century, while the annual temperature amplitude showed a decreasing trend at 63% of stations. Crop season maximum temperature had significant increasing trend at 68.8% of the stations at the rates varying from 0.7 to 3.5 °C per century, while the season minimum temperature had increased at 75% of the stations.
      Citation: Climate
      PubDate: 2020-12-02
      DOI: 10.3390/cli8120142
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 143: Intraseasonal Precipitation Variability over
           West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results
           from CORDEX RCMs

    • Authors: Obed M. Ogega, Benjamin A. Gyampoh, Malcolm N. Mistry
      First page: 143
      Abstract: This study assessed the performance of 24 simulations, from five regional climate models (RCMs) participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX), in representing spatiotemporal characteristics of precipitation over West Africa, compared to observations. The top five performing RCM simulations were used to assess future precipitation changes over West Africa, under 1.5 °C and 2.0 °C global warming levels (GWLs), following the representative concentration pathway (RCP) 8.5. The performance evaluation and future change assessment were done using a set of seven ‘descriptors’ of West African precipitation namely the simple precipitation intensity index (SDII), the consecutive wet days (CWD), the number of wet days index (R1MM), the number of wet days with moderate and heavy intensity precipitation (R10MM and R30MM, respectively), and annual and June to September daily mean precipitation (ANN and JJAS, respectively). The performance assessment and future change outlook were done for the CORDEX–Africa subdomains of north West Africa (WA-N), south West Africa (WA-S), and a combination of the two subdomains. While the performance of RCM runs was descriptor- and subregion- specific, five model runs emerged as top performers in representing precipitation characteristics over both WA-N and WA-S. The five model runs are CCLM4 forced by ICHEC-EC-EARTH (r12i1p1), RCA4 forced by CCCma-CanESM2 (r1i1p1), RACMO22T forced by MOHC-HadGEM2-ES (r1i1p1), and the ensemble means of simulations made by CCLM4 and RACMO22T. All precipitation descriptors recorded a reduction under the two warming levels, except the SDII which recorded an increase. Unlike the WA-N that showed less frequency and more intense precipitation, the WA-S showed increased frequency and intensity. Given the potential impact that these projected changes may have on West Africa’s socioeconomic activities, adjustments in investment may be required to take advantage of (and enhance system resilience against damage that may result from) the potential changes in precipitation.
      Citation: Climate
      PubDate: 2020-12-06
      DOI: 10.3390/cli8120143
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 144: Vulnerability and Risk Factors due to Tropical
           Cyclones in Coastal Cities of Baja California Sur, Mexico

    • Authors: Elvia Aida Marín-Monroy, Víctor Hernández-Trejo, Eleonora Romero-Vadillo, Antonina Ivanova-Boncheva
      First page: 144
      Abstract: Coastal cities have seen an unprecedented growth with regional settlements due to development activities; that is why measures are needed to mitigate risk of adverse events such as tropical cyclones. Baja California Sur, a state known as a relevant ecological and tourist region, includes destinations such as Cabo San Lucas and La Paz, impacted yearly by tropical cyclones, so it is important to design contingency plans and provide available information to the residents. Los Cabos municipality has the highest population growth rate and its inhabitants are more susceptible to adverse events; despite this, there were no indicators of social and ecological vulnerability to risk effects of tropical cyclones. The objective of this research is to calculate the socio-environmental vulnerability of households through an index to identify risk factors. We have obtained a classification according to levels of vulnerability, and the results have shown that 74% of the households are high on the vulnerability scale, 21% of households are moderately vulnerable and only the remaining 5% of households are less vulnerable. In conclusion, the devastating effects of hydrometeorological events were mainly due to a lack of knowledge regarding such events among inhabitants.
      Citation: Climate
      PubDate: 2020-12-10
      DOI: 10.3390/cli8120144
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 145: The Spatiotemporal Patterns of Climate
           Asymmetric Warming and Vegetation Activities in an Arid and Semiarid

    • Authors: Tong Heng, Gary Feng, Ouyang Ying, Xinlin He
      First page: 145
      Abstract: Asymmetric warming was bound to have a major impact on terrestrial ecosystems in arid regions during global warming. Further study was necessary to reveal the spatiotemporal patterns of asymmetric warming in Xinjiang; this study analyzed the climate and normalized difference vegetation index (NDVI) data (2000–2020). The change trends of the day and nighttime warming (DNW), seasonal warming, and the diurnal temperature range in northern Xinjiang (S1) and southern Xinjiang (S2) were determined. The findings indicated that the DNW rate showed a significant (p < 0.05) upward trend, especially in winter. The nighttime warming rate (0.65 °C (decade)−1) was faster than the daytime warming rate (0.4 °C (decade)−1), and the diurnal temperature range between daytime and nighttime exhibited a decreasing trend. The diurnal temperature range was the highest in spring and the lowest in winter. Extreme values of the diurnal temperature range appeared in autumn (48.6 °C) and winter (12.3 °C) and both in S1. The Tmin in S1 had an abruption trend in 2006–2017, the Tmax in S2 had an abruption trend in 2005–2011, and the probability of spatial abruption in S1 was higher than that in S2. The partial correlation between the NDVI and Tmin was significantly higher than that between the NDVI and Tmax in the area where the significance test passed; therefore, asymmetric nighttime warming had a greater impact on the NDVI than the asymmetric daytime warming.
      Citation: Climate
      PubDate: 2020-12-10
      DOI: 10.3390/cli8120145
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 146: Long-Term Rainfall Trends and Their
           Variability in Mainland Portugal in the Last 106 Years

    • Authors: Maria Manuela Portela, Luis Angel Espinosa, Martina Zelenakova
      First page: 146
      Abstract: This study addresses the long-term rainfall trends, their temporal variability and uncertainty over mainland Portugal, a small country on the most western European coast. The study was based on monthly, seasonal and annual rainfall series spanning for a period of 106 years, between October 1913 and September 2019 (herein after referred to as global period), at 532 rain gauges evenly distributed over the country (c.a. 6 rain gauges per 1000 km2). To understand the rainfall behavior over time, an initial sub-period with 55 years and a final sub-period with 51 years were also analyzed along with the global period. The trends identification and the assessment of their magnitude were derived using the nonparametric Mann-Kendall (MK) test coupled with the Sen’s slope estimator method. The results showed that after the initial sub-period with prevailing increasing rainfall, the trends were almost exclusively decreasing. They were also so pronounced that they counterbalanced the initial rainfall increase and resulted in equally decreasing trends for the global period. The study also shows that approximately from the late 1960s on, the rainy season pattern has changed, with the last months prior to the dry season showing a sustained decrease of their relative contributions to the annual rainfalls. Overall, the results support the hypothesis of less uncertainty on the pronounced decrease of rainfall over mainland Portugal in recent years, which is expected to continue. They also show that the asymmetry between a less wet North, yet still wet, and an arid South is becoming much more marked.
      Citation: Climate
      PubDate: 2020-12-10
      DOI: 10.3390/cli8120146
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 147: Impacts of Agroclimatic Variability on Maize
           Production in the Setsoto municipality in the Free State Province, South

    • Authors: Abubakar Hadisu Bello, Mary Scholes, Solomon W. Newete
      First page: 147
      Abstract: The majority of people in South Africa eat maize, which is grown as a rain-fed crop in the summer rainfall areas of the country, as their staple food. The country is usually food secure except in drought years, which are expected to increase in severity and frequency. This study investigated the impacts of rainfall and minimum and maximum temperatures on maize yield in the Setsoto municipality of the Free State province of South Africa from 1985 to 2016. The variation of the agroclimatic variables, including the Palmer stress diversity index (PSDI), was investigated over the growing period (Oct–Apr) which varied across the four target stations (Clocolan, Senekal, Marquard and Ficksburg). The highest coefficients of variance (CV) recorded for the minimum and maximum temperatures and rainfall were 16.2%, 6.2% and 29% during the growing period. Non-parametric Mann Kendal and Sen’s slope estimator were used for the trend analysis. The result showed significant positive trends in minimum temperature across the stations except for Clocolan where a negative trend of 0.2 to 0.12 °C year−1 was observed. The maximum temperature increased significantly across all the stations by 0.04–0.05 °C year−1 during the growing period. The temperature effects were most noticeable in the months of November and February when leaf initiation and kernel filling occur, respectively. The changes in rainfall were significant only in Ficksburg in the month of January with a value of 2.34 mm year−1. Nevertheless, the rainfall showed a strong positive correlation with yield (r 0.46, p = < 0.05). The overall variation in maize production is explained by the contribution of the agroclimatic parameters; the minimum temperature (R2 0.13–0.152), maximum temperature (R2 0.214–0.432) and rainfall (R2 0.17–0.473) for the growing period across the stations during the study period. The PSDI showed dry years and wet years but with most of the years recording close to normal rainfall. An increase in both the minimum and maximum temperatures over time will have a negative impact on crop yield.
      Citation: Climate
      PubDate: 2020-12-14
      DOI: 10.3390/cli8120147
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 148: Evaluation of Daily Precipitation from the
           ERA5 Global Reanalysis against GHCN Observations in the Northeastern
           United States

    • Authors: Caitlin C. Crossett, Alan K. Betts, Lesley-Ann L. Dupigny-Giroux, Arne Bomblies
      First page: 148
      Abstract: Precipitation is a primary input for hydrologic, agricultural, and engineering models, so making accurate estimates of it across the landscape is critically important. While the distribution of in-situ measurements of precipitation can lead to challenges in spatial interpolation, gridded precipitation information is designed to produce a full coverage product. In this study, we compare daily precipitation accumulations from the ERA5 Global Reanalysis (hereafter ERA5) and the US Global Historical Climate Network (hereafter GHCN) across the northeastern United States. We find that both the distance from the Atlantic Coast and elevation difference between ERA5 estimates and GHCN observations affect precipitation relationships between the two datasets. ERA5 has less precipitation along the coast than GHCN observations but more precipitation inland. Elevation differences between ERA5 and GHCN observations are positively correlated with precipitation differences. Isolated GHCN stations on mountain peaks, with elevations well above the ERA5 model grid elevation, have much higher precipitation. Summer months (June, July, and August) have slightly less precipitation in ERA5 than GHCN observations, perhaps due to the ERA5 convective parameterization scheme. The heavy precipitation accumulation above the 90th, 95th, and 99th percentile thresholds are very similar for ERA5 and the GHCN. We find that daily precipitation in the ERA5 dataset is comparable to GHCN observations in the northeastern United States and its gridded spatial continuity has advantages over in-situ point precipitation measurements for regional modeling applications.
      Citation: Climate
      PubDate: 2020-12-15
      DOI: 10.3390/cli8120148
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 149: Local Institutions and Climate Change
           Adaptation: Appraising Dysfunctional and Functional Roles of Local
           Institutions from the Bilate Basin Agropastoral Livelihood Zone of Sidama,
           Southern Ethiopia

    • Authors: Firew Bekele, Degefa Tolossa, Teshale Woldeamanuel
      First page: 149
      Abstract: This study aimed to appraise the role of local institutions in adaptation to changing climate at the local level in the Bilate Basin Agropastoral Livelihood Zone of Ethiopia. Thirty-one years of climate data were analyzed by employing the Mann–Kendall trend and Sen’s slope test techniques. The survey was conducted on 400 households that were systematically randomized from 7066 households, while community-level data were collected through the participatory rural appraisal (PRA) technique. The entire analysis was framed by a tetragonal model. The results of the analysis indicated that temperature exhibited a significantly increasing trend, while rainfall, which is statistically related to temperature, showed a decreasing trend, resulting in lingering droughts and human and animal diseases. Major livestock declined by 69%. As a response, while Sidama indigenous institutions were well-functioning and nurtured through local knowledge, and the governmental and civic ones were entrenched with various limitations. Contextual fitness and compatibility, interplay, inclusiveness, and sustainability of their operations in temporal and spatial scales were some of their limitations. Therefore, federal and local governments should focus on monitoring, evaluating, and learning aspects of their grand strategies, review general education, farmers’ credit, and civic institutions’ governance policies and strengthen the synergy of civic, government, and indigenous institutions.
      Citation: Climate
      PubDate: 2020-12-15
      DOI: 10.3390/cli8120149
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 150: Modeling the Soil Response to Rainstorms after
           Wildfire and Prescribed Fire in Mediterranean Forests

    • Authors: Manuel Esteban Lucas-Borja, Giuseppe Bombino, Bruno Gianmarco Carrà, Daniela D’Agostino, Pietro Denisi, Antonino Labate, Pedro Antonio Plaza-Alvarez, Demetrio Antonio Zema
      First page: 150
      Abstract: The use of the Soil Conservation Service-curve number (SCS-CN) model for runoff predictions after rainstorms in fire-affected forests in the Mediterranean climate is quite scarce and limited to the watershed scale. To validate the applicability of this model in this environment, this study has evaluated the runoff prediction capacity of the SCS-CN model after storms at the plot scale in two pine forests of Central-Eastern Spain, affected by wildfire (with or without straw mulching) or prescribed fire and in unburned soils. The model performance has been compared to the predictions of linear regression equations between rainfall depth and runoff volume. The runoff volume was simulated with reliability by the linear regression only for the unburned soil (coefficient of Nash and Sutcliffe E = 0.73–0.89). Conversely, the SCS-CN model was more accurate for burned soils (E = 0.81–0.97), also when mulching was applied (E = 0.96). The performance of this model was very satisfactory in predicting the maximum runoff. Very low values of CNs and initial abstraction were required to predict the particular hydrology of the experimental areas. Moreover, the post-fire hydrological “window-of-disturbance” could be reproduced only by increasing the CN for the storms immediately after the wildfire. This study indicates that, in Mediterranean forests subject to the fire risk, the simple linear equations are feasible to predict runoff after low-intensity storms, while the SCS-CN model is advisable when runoff predictions are needed to control the flooding risk.
      Citation: Climate
      PubDate: 2020-12-17
      DOI: 10.3390/cli8120150
      Issue No: Vol. 8, No. 12 (2020)
  • Climate, Vol. 8, Pages 121: Trends of Climate Change and Variability in
           Three Agro-Ecological Settings in Central Ethiopia: Contrasts of
           Meteorological Data and Farmers’ Perceptions

    • Authors: Dula Etana, Denyse J. R. M. Snelder, Cornelia F. A. van Wesenbeeck, Tjard de Cock Buning
      First page: 121
      Abstract: Using gridded daily temperature and rainfall data covering 30 years (1988–2017), this study investigates trends in rainfall, temperature, and extreme events in three agro-ecological settings in central Ethiopia. The Mann Kendall test and Sen’s slope estimator were used to examine the trends and slope of changes in climate indices. The profile of farmers whose perception converges with or diverges from meteorological data was characterized using polling. The average annual temperature has increased by 0.4 and 0.3 °C per decade in the lowland and midland areas, respectively. Average annual rainfall has increased only in the midland areas by 178 mm per decade. Farmers’ perception of increasing temperature fairly aligns with meteorological data. However, there is a noticeable difference between farmers’ perception of rainfall and meteorological data. The perception of farmers with poor economic status, access to media, and higher social capital aligns with measured trends. Conversely, the perception of economically better-off and uneducated farmers diverges from meteorological data. Accurate perception is constrained by the failure of the traditional forecast methods to describe complex weather variabilities and lack of access to down-scaled weather information. The findings highlight the importance of availing specific and agro-ecologically relevant weather forecasts to overcome perceptual problems and to support effective adaptation.
      Citation: Climate
      PubDate: 2020-10-22
      DOI: 10.3390/cli8110121
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 122: SI: Survivability under Overheating: The
           Impact of Regional and Global Climate Change on the Vulnerable and
           Low-Income Population

    • Authors: Synnefa, Haddad, Rajagopalan, Santamouris
      First page: 122
      Abstract: The present special issue discusses three significant challenges of the built environment, namely regional and global climate change, vulnerability, and survivability under the changing climate. Synergies between local climate change, energy consumption of buildings and energy poverty, and health risks highlight the necessity to develop mitigation strategies to counterbalance overheating impacts. The studies presented here assess the underlying issues related to urban overheating. Further, the impacts of temperature extremes on the low-income population and increased morbidity and mortality have been discussed. The increasing intensity, duration, and frequency of heatwaves due to human-caused climate change is shown to affect underserved populations. Thus, housing policies on resident exposure to intra-urban heat have been assessed. Finally, opportunities to mitigate urban overheating have been proposed and discussed.
      Citation: Climate
      PubDate: 2020-10-24
      DOI: 10.3390/cli8110122
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 123: How Do Floods and Drought Impact Economic
           Growth and Human Development at the Sub-National Level in India'

    • Authors: Upali Amarasinghe, Giriraj Amarnath, Niranga Alahacoon, Surajit Ghosh
      First page: 123
      Abstract: This paper tries to shift the focus of research on the impact of natural disasters on economic growth from global and national levels to sub-national levels. Inadequate sub-national level information is a significant lacuna for planning spatially targeted climate change adaptation investments. A fixed-effect panel regression analyses of 19 states from 2001 to 2015 assess the impacts of exposure to floods and droughts on the growth of gross state domestic product (GSDP) and human development index (HDI) in India. The flood and drought exposure are estimated using satellite data. The 19 states comprise 95% of the population and contribute 93% to the national GDP. The results show that floods indeed expose a large area, but droughts have the most significant impacts at the sub-national level. The most affected GSDPs are in the non-agriculture sectors, positively by the floods and negatively by droughts. No significant influence on human development may be due to substantial investment on mitigation of flood and drought impacts and their influence on better income, health, and education conditions. Because some Indian states still have a large geographical area, profiling disasters impacts at even smaller sub-national units such as districts can lead to effective targeted mitigation and adaptation activities, reduce shocks, and accelerate income growth and human development.
      Citation: Climate
      PubDate: 2020-10-25
      DOI: 10.3390/cli8110123
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 124: Soil Carbon Sequestration Potential of
           Climate-Smart Villages in East African Countries

    • Authors: Gebermedihin Ambaw, John W. Recha, Abebe Nigussie, Dawit Solomon, Maren Radeny
      First page: 124
      Abstract: Climate-Smart Villages (CSVs) were established by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) in the East African countries of Kenya, Tanzania and Uganda to test and promote a portfolio of climate-smart agriculture (CSA) practices that have climate change mitigation potential. This study evaluated the soil carbon sequestration potential of these CSVs compared to the control land use that did not have CSA practices. At the one-meter depth, soil carbon stocks increased by 20–70%, 70–86%, and 51–110% in Kenya, Tanzania and Uganda CSVs, respectively, compared to control. Consequently, CSVs contributed to the reduction of emissions by 87–420 Mg CO2 eq ha−1. In the topsoil (0–15 cm), CSVs sequestered almost twice more soil carbon than the control and subsequently emissions were reduced by 42–158 Mg CO2 eq ha−1 under CSVs. The annual increase in carbon sequestration under CSVs ranged between 1.6 and 6.2 Mg C ha−1 yr−1 and substantially varied between the CSA land use types. The forests sequestered the highest soil carbon (5–6 Mg C ha−1 yr−1), followed by grasslands and croplands. The forest topsoil also had lower bulk density compared to the control. The findings suggest that CSA practices implemented through the CSVs approach contribute to climate change mitigation through soil carbon sequestration.
      Citation: Climate
      PubDate: 2020-10-30
      DOI: 10.3390/cli8110124
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 125: Impact of Climate Change on the Energy and
           Comfort Performance of nZEB: A Case Study in Italy

    • Authors: Serena Summa, Luca Tarabelli, Giulia Ulpiani, Costanzo Di Perna
      First page: 125
      Abstract: Climate change is posing a variety of challenges in the built realm. Among them is the change in future energy consumption and the potential decay of current energy efficient paradigms. Indeed, today’s near-zero Energy buildings (nZEBs) may lose their virtuosity in the near future. The objective of this study is to propose a methodology to evaluate the change in yearly performance between the present situation and future scenarios. Hourly dynamic simulations are performed on a residential nZEB located in Rome, built in compliance with the Italian legislation. We compare the current energy consumption with that expected in 2050, according to the two future projections described in the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). Implications for thermal comfort are further investigated by assuming no heating and cooling system, and by tracking the free-floating operative temperature. Compared to the current weather conditions, the results reveal an average temperature increase of 3.4 °C and 3.9 °C under RCP4.5 and RCP8.5 scenarios, estimated through ERA-Interim/UrbClim. This comes at the expense of a 47.8% and 50.3% increase in terms of cooling energy needs, and a 129.5% and 185.8% decrease in terms of heating needs. The annual power consumption experiences an 18% increase under both scenarios due to (i) protracted activation of the air conditioning system and (ii) enhanced peak power requirements. A 6.2% and 5.1% decrease in the hours of adaptive comfort is determined under the RCP4.5 and RCP8.5′s 2050 scenarios out of the concerted action of temperature and solar gains. The results for a newly proposed combined index for long-term comfort assessments reveal a milder future penalty, owing to less pronounced excursions and milder daily temperature swings.
      Citation: Climate
      PubDate: 2020-11-02
      DOI: 10.3390/cli8110125
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 126: Urban Overheating and Cooling Potential in
           Australia: An Evidence-Based Review

    • Authors: Komali Yenneti, Lan Ding, Deo Prasad, Giulia Ulpiani, Riccardo Paolini, Shamila Haddad, Mattheos Santamouris
      First page: 126
      Abstract: Cities in Australia are experiencing unprecedented levels of urban overheating, which has caused a significant impact on the country’s socioeconomic environment. This article provides a comprehensive review on urban overheating, its impact on health, energy, economy, and the heat mitigation potential of a series of strategies in Australia. Existing studies show that the average urban heat island (UHI) intensity ranges from 1.0 °C to 13.0 °C. The magnitude of urban overheating phenomenon in Australia is determined by a combination of UHI effects and dualistic atmospheric circulation systems (cool sea breeze and hot desert winds). The strong relation between multiple characteristics contribute to dramatic fluctuations and high spatiotemporal variabilities in urban overheating. In addition, urban overheating contributes to serious impacts on human health, energy costs, thermal comfort, labour productivity, and social behaviour. Evidence suggest that cool materials, green roofs, vertical gardens, urban greenery, and water-based technologies can significantly alleviate the UHI effect, cool the ambient air, and create thermally balanced cities. Urban greenery, especially trees, has a high potential for mitigation. Trees and hedges can reduce the average maximum UHI by 1.0 °C. The average maximum mitigation performance values of green roofs and green walls are 0.2 °C and 0.1 °C, respectively. Reflective roofs and pavements can reduce the average maximum UHI by 0.3 °C. In dry areas, water has a high cooling potential. The average maximum cooling potential using only one technology is 0.4 °C. When two or more technologies are used at the same time, the average maximum UHI drop is 1.5 °C. The mitigation strategies identified in this article can help the governments and other stakeholders manage urban heating in the natural and built environment, and save health, energy, and economic costs.
      Citation: Climate
      PubDate: 2020-11-04
      DOI: 10.3390/cli8110126
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 127: Modelling Maize Yield and Water Requirements
           under Different Climate Change Scenarios

    • Authors: Oludare Sunday Durodola, Khaldoon A. Mourad
      First page: 127
      Abstract: African countries such as Nigeria are anticipated to be more susceptible to the impacts of climate change due to large dependence on rainfed agriculture and to several uncertainties in the responses of crop production to climate change. The impacts of climate change on crop water requirements (CWR), irrigation water requirements (IWR), yields and crop water productivity (CWP) of rainfed maize in Ogun-Osun River Basin, Nigeria were evaluated for a baseline period (1986–2015) and future projection period (2021–2099) under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. For the baseline period, there is no significant trend within the variables studied. However, IWR is projected to increase significantly by up to 140% in the future period, while yield might likely decline under both scenarios up to −12%. This study shows that in the future periods, supplemental irrigation has little impact in improving yields, but an increase in soil fertility can improve yields and CWP by up to 80% in 2099. This paper offers useful information on suitable adaptation measures which could be implemented by stakeholders and policymakers to counterbalance the effects of climate change on crop production.
      Citation: Climate
      PubDate: 2020-11-04
      DOI: 10.3390/cli8110127
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 128: Global-Scale Synchronization in the
           Meteorological Data: A Vectorial Analysis That Includes Higher-Order

    • Authors: Hayata
      First page: 128
      Abstract: To examine the evidence of global warming, in recent years, there has been a growing interest in the statistical analysis of time-dependent meteorological data. In this paper, for 116 observational stations in the world, sequential variations of the monthly distributions of meteorological data are analyzed vectorially. For specific monthly data, temperatures and precipitations are chosen, both of which are averaged over three decades. Climate change can be revealed through the intersecting angle between two 33-dimensional vectors being composed with monthly mean values. Subsequently, the angle data for the entire stations are analyzed statistically and compared between the former (1931–1980) and the latter (1951–2010) periods. Irrespective of the period and the hemisphere, the variation of the angles is found to show the exponential growth as a function of their latitudes. Furthermore, consistent with other studies, this trend is shown to become stronger in the latter period, indicating that the so-called snow/ice-albedo feedback occurs. In contrast to the temperatures, for the precipitations, no significant correlation is found between the angle and the latitude. To examine the albedo effect in more detail, a regional analysis for 75 stations in Japan is carried out as well. Numerical results show that the effect is significant even for the relatively narrow latitudinal range (19%) of the hemisphere. Finally, a synchronization of the monthly patterns of temperatures is given between the northern district of Japan and both North America and Eastern Europe.
      Citation: Climate
      PubDate: 2020-11-04
      DOI: 10.3390/cli8110128
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 129: Forecasting Intense Cut-Off Lows in South
           Africa Using the 4.4 km Unified Model

    • Authors: Tshimbiluni Percy Muofhe, Hector Chikoore, Mary-Jane Morongwa Bopape, Nthaduleni Samuel Nethengwe, Thando Ndarana, Gift Tshifhiwa Rambuwani
      First page: 129
      Abstract: Mid-tropospheric cut-off low (COL) pressure systems are linked to severe weather, heavy rainfall and extreme cold conditions over South Africa. They occur during all the above and often result in floods and snowfalls during the winter months, disrupting economic activities and causing extensive damage to infrastructure. This paper examines the evolution and circulation patterns associated with cases of severe COLs over South Africa. We evaluate the performance of the 4.4 km Unified Model (UM) which is currently used operationally by the South African Weather Service (SAWS) to simulate daily rainfall. Circulation variables and precipitation simulated by the UM were compared against European Centre for Medium-Range Weather Forecast’s (ECMWF’s) ERA Interim re-analyses and GPM precipitation at 24-hour timesteps. We present five recent severe COLs, which occurred between 2016 and 2019, that had high impact and found a higher model skill when simulating heavy precipitation during the initial stages than the dissipating stages of the systems. A key finding was that the UM simulated the precipitation differently during the different stages of development and location of the systems. This is mainly due to inaccurate placing of COL centers. Understanding the performance and limitations of the UM model in simulating COL characteristics can benefit severe weather forecasting and contribute to disaster risk reduction in South Africa.
      Citation: Climate
      PubDate: 2020-11-07
      DOI: 10.3390/cli8110129
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 130: Antarctic Winds: Pacemaker of Global Warming,
           Global Cooling, and the Collapse of Civilizations

    • Authors: W. Jackson Davis, W. Barton Davis
      First page: 130
      Abstract: We report a natural wind cycle, the Antarctic Centennial Wind Oscillation (ACWO), whose properties explain milestones of climate and human civilization, including contemporary global warming. We explored the wind/temperature relationship in Antarctica over the past 226 millennia using dust flux in ice cores from the European Project for Ice Coring in Antarctica (EPICA) Dome C (EDC) drill site as a wind proxy and stable isotopes of hydrogen and oxygen in ice cores from EDC and ten additional Antarctic drill sites as temperature proxies. The ACWO wind cycle is coupled 1:1 with the temperature cycle of the Antarctic Centennial Oscillation (ACO), the paleoclimate precursor of the contemporary Antarctic Oscillation (AAO), at all eleven drill sites over all time periods evaluated. Such tight coupling suggests that ACWO wind cycles force ACO/AAO temperature cycles. The ACWO is modulated in phase with the millennial-scale Antarctic Isotope Maximum (AIM) temperature cycle. Each AIM cycle encompasses several ACWOs that increase in frequency and amplitude to a Wind Terminus, the last and largest ACWO of every AIM cycle. This historic wind pattern, and the heat and gas exchange it forces with the Southern Ocean (SO), explains climate milestones including the Medieval Warm Period and the Little Ice Age. Contemporary global warming is explained by venting of heat and carbon dioxide from the SO forced by the maximal winds of the current positive phase of the ACO/AAO cycle. The largest 20 human civilizations of the past four millennia collapsed during or near the Little Ice Age or its earlier recurrent homologs. The Eddy Cycle of sunspot activity oscillates in phase with the AIM temperature cycle and therefore may force the internal climate cycles documented here. Climate forecasts based on the historic ACWO wind pattern project imminent global cooling and in ~4 centuries a recurrent homolog of the Little Ice Age. Our study provides a theoretically-unified explanation of contemporary global warming and other climate milestones based on natural climate cycles driven by the Sun, confirms a dominant role for climate in shaping human history, invites reconsideration of climate policy, and offers a method to project future climate.
      Citation: Climate
      PubDate: 2020-11-10
      DOI: 10.3390/cli8110130
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 131: Urban Morphological Controls on Surface
           Thermal Dynamics: A Comparative Assessment of Major European Cities with a
           Focus on Athens, Greece

    • Authors: Ilias Agathangelidis, Constantinos Cartalis, Mat Santamouris
      First page: 131
      Abstract: Variations in urban form lead to the development of distinctive intra-urban surface thermal patterns. Previous assessment of the relation between urban structure and satellite-based Land Surface Temperature (LST) has generally been limited to single-city cases. Here, examining 25 European cities (June–August 2017), we estimated the statistical association between surface parameters—the impervious fraction (λimp), the building fraction (λb), and the building height (H)—and the neighborhood scale (1000 × 1000 m) LST variations, as captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Correlation analysis, multiple linear regression, and spatial regression were used. As expected, λimp had a consistent positive influence on LSTs. In contrast, the relation of LST with λb and H was generally weaker or negative in the daytime, whereas at night it shifted to a robust positive effect. In particular, daytime LSTs of densely built, high-rise European districts tended to have lower values. This was especially the case for the city of Athens, Greece, where a more focused analysis was conducted, using further surface parameters and the Local Climate Zone (LCZ) scheme. For the urban core of the city, the canyon aspect ratio H/W had a statistically significant (p <0.01) negative relationship with LST by day (Spearman’s rho = −0.68) and positive during nighttime (rho = 0.45). The prevailing intra-urban surface thermal variability in Athens was well reproduced by a 5-day numerical experiment using the meteorological Weather Research and Forecasting Model (WRF) model and a modified urban parameterization scheme. Although the simulation resulted in some systematic errors, the overall accuracy of the model was adequate, regarding the surface temperature (RMSE = 2.4 K) and the near-surface air temperature (RMSE = 1.7 K) estimations.
      Citation: Climate
      PubDate: 2020-11-11
      DOI: 10.3390/cli8110131
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 132: The Role of Mitigation Options for Achieving a
           Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics
           Modelling Approach

    • Authors: Linderhof, Dekkers, Polman
      First page: 132
      Abstract: To reach a low-carbon economy in the Netherlands, the level of greenhouse gases (GHG) emissions has to be reduced by 80–95% CO2 emissions compared to 1990 (223.1 MtCO2-equivalents). This study aims to address how investment subsidies combined with carbon levies could be deployed to support technological mitigation options to achieve a low-carbon economy in the Netherlands in 2050. A system dynamic model has been built including demographic-economic, energy and environmental sub-systems of the Netherlands. The model has been validated with earlier projections of the EU for the energy and climate policy in 2050. Next to the business-as-usual scenario, there are four policy scenarios simulated from 2010 to 2050. In all policy scenarios a carbon levy was imposed on non-renewable energy to finance subsidies on mitigation options. Results show that imposing subsidies on the mitigation option renewable energy is most effective in combination with the carbon levy.
      Citation: Climate
      PubDate: 2020-11-11
      DOI: 10.3390/cli8110132
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 133: Using AnnAGNPS to Simulate Runoff, Nutrient,
           and Sediment Loads in an Agricultural Catchment with an On-Farm Water
           Storage System

    • Authors: Juan D. Pérez-Gutiérrez, Joel O. Paz, Mary Love M. Tagert, Lindsey M. W. Yasarer, Ronald L. Bingner
      First page: 133
      Abstract: On-farm water storage (OFWS) systems are best management practices that consist of a tailwater recovery (TWR) ditch used with a storage pond to provide irrigation water and improve downstream water quality. These systems have been increasingly implemented in the southeastern US, but the individual and cumulative effects of these systems on a watershed scale are unknown. In this study, the runoff, nutrient, and sediment loads entering a TWR ditch in an agricultural catchment were quantified, and contributing sources were identified using the annualized agricultural non-point source (AnnAGNPS) model. Fields with larger areas and soils with a high runoff potential produced more runoff. The volume of runoff exceeded the TWR ditch storage volume approximately 110 times, mostly during the winter and spring seasons. During years when corn and winter wheat were planted, NO3–N loads increased because these crops need nitrogen fertilization to grow. Planting winter wheat in priority subwatersheds reduced the total phosphorous (TP) and sediment loads by about 19% and 13%, respectively, at the TWR ditch inlet. Planting winter wheat can reduce runoff, TP, and sediment loads but also result in higher NO3–N loads. AnnAGNPS simulations quantified the benefits of an OFWS system to advance the understanding of their impact on water availability and quality at a watershed scale.
      Citation: Climate
      PubDate: 2020-11-12
      DOI: 10.3390/cli8110133
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 134: Adaptation to Climate Change Effects on Water
           Resources: Understanding Institutional Barriers in Nigeria

    • Authors: Ojo Sola, Henry Mensah, Eike Albrecht, Bachar Ibrahim
      First page: 134
      Abstract: Climate Change (CC) and variability are global issues that the world has been facing for a long time. Given the recent catastrophic events, such as flooding, erosion, and drought in Nigeria, many have questioned institutions’ capacity in managing CC impacts in Nigeria. This study explores emerging institutional barriers of adaptation to CC effects on water resources in Nigeria. The study data were obtained from in-depth interviews with institutional heads from water resources management and emergency management and a review of secondary literature from databases such as Google Scholar, Scopus, and Web of Science. The results show that inadequate hydrological data management, low awareness on how to adapt among the public and decision-makers, financial constraints, no political will to pass important bills into law, and inadequate institutional and legal framework are the main institutional barriers of adaptation to climate change in Nigeria. The study concludes that it is essential to strengthen the institutional and legal system, information management mechanism, public awareness, and participatory water resources management. The implications for further research are presented in the study.
      Citation: Climate
      PubDate: 2020-11-18
      DOI: 10.3390/cli8110134
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 135: Exploring Associations between Attitudes
           Towards Climate Change and Motivational Human Values

    • Authors: Narcisa Maria Oliveira Carvalho Dias, Diogo Guedes Vidal, Hélder Fernando Pedrosa e Sousa, Maria Alzira Pimenta Dinis, Ângela Leite
      First page: 135
      Abstract: Climate change (CC) represents a global challenge for humanity. It is known that the impacts of anthropogenic actions are an unequivocal contribution to environmental issues aggravation. Human values are recognized as psychological constructs that guide people in their attitudes and actions in different areas of life, and the promotion of pro-environmental behaviors in the context of CC must be considered a priority. The present work aimed to understand the contribution of attitudes towards CC and selected sociodemographic variables to explain Schwartz’s motivational human values. The sample consists of 1270 Portuguese answering the European social survey (ESS) Round 8. Benevolence and self-transcendence are the most prevalent human values among respondents. The majority believe in CC and less than half in its entirely anthropogenic nature. It was found that the concern with CC and education contributes to explain 11.8% of the conservation variance; gender and concern about CC explain 10.1% of the variance of self-transcendence; and age, gender and concern about CC contribute to explain 13% of the variance of openness to change. This study underlines the main human values’ drivers of attitudes towards CC, central components in designing an effective societal response to CC impacts, which must be oriented towards what matters to individuals and communities, at the risk of being ineffective.
      Citation: Climate
      PubDate: 2020-11-19
      DOI: 10.3390/cli8110135
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 136: Climatic Trends in Different Bioclimatic Zones
           in the Chitwan Annapurna Landscape, Nepal

    • Authors: Dol Raj Luitel, Pramod K. Jha, Mohan Siwakoti, Madan Lall Shrestha, Rangaswamy Munniappan
      First page: 136
      Abstract: The Chitwan Annapurna Landscape (CHAL) is the central part of the Himalayas and covers all bioclimatic zones with major endemism of flora, unique agro-biodiversity, environmental, cultural and socio-economic importance. Not much is known about temperature and precipitation trends along the different bioclimatic zones nor how changes in these parameters might impact the whole natural process, including biodiversity and ecosystems, in the CHAL. Analysis of daily temperature and precipitation time series data (1970–2019) was carried out in seven bioclimatic zones extending from lowland Terai to the higher Himalayas. The non-parametric Mann-Kendall test was applied to determine the trends, which were quantified by Sen’s slope. Annual and decade interval average temperature, precipitation trends, and lapse rate were analyzed in each bioclimatic zone. In the seven bioclimatic zones, precipitation showed a mixed pattern of decreasing and increasing trends (four bioclimatic zones showed a decreasing and three bioclimatic zones an increasing trend). Precipitation did not show any particular trend at decade intervals but the pattern of rainfall decreases after 2000AD. The average annual temperature at different bioclimatic zones clearly indicates that temperature at higher elevations is increasing significantly more than at lower elevations. In lower tropical bioclimatic zone (LTBZ), upper tropical bioclimatic zone (UTBZ), lower subtropical bioclimatic zone (LSBZ), upper subtropical bioclimatic zone (USBZ), and temperate bioclimatic zone (TBZ), the average temperature increased by 0.022, 0.030, 0.036, 0.042 and 0.051 °C/year, respectively. The decade level temperature scenario revealed that the hottest decade was from 1999–2009 and average decade level increases of temperature at different bioclimatic zones ranges from 0.2 to 0.27 °C /decade. The average temperature and precipitation was found clearly different from one bioclimatic zone to other. This is the first time that bioclimatic zone level precipitation and temperature trends have been analyzed for the CHAL. The rate of additional temperature rise at higher altitudes compared to lower elevations meets the requirements to mitigate climate change in different bioclimatic zones in a different ways. This information would be fundamental to safeguarding vulnerable communities, ecosystem and relevant climate-sensitive sectors from the impact of climate change through formulation of sector-wise climate change adaptation strategies and improving the livelihood of rural communities.
      Citation: Climate
      PubDate: 2020-11-20
      DOI: 10.3390/cli8110136
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 137: Climate Change and Its Possible Impact in
           Groundwater Resource of the Kankai River Basin, East Nepal Himalaya

    • Authors: Champak Babu Silwal, Dinesh Pathak, Drona Adhikari, Tirtha Raj Adhikari
      First page: 137
      Abstract: Increasing evidence of changing climate patterns is being observed, and the impact of this change on groundwater has a direct impact on the livelihood and economy of the region. The research focuses on the impacts of global temperature increase and changing precipitation on the groundwater resources of part of the Himalayan river system. The spatial and temporal variations of the hydro-meteorological data of the Kankai River Basin in East Nepal were analyzed using non-parametric Mann–Kendall tests and Sen’s Slope methods, whereas CanESM2 was used to predict the future precipitation scenarios, and an attempt has been made to evaluate the possible impacts on groundwater systems in the region. The temperature shows a significant warming trend (0.14–0.64 °C/decade); however, the precipitation trends suggest remarkable variation mostly at higher elevation. The average annual precipitation suggests a decrease of 1.82 mm/year and a similar decrement has been projected for the future. The groundwater in the region has been influenced by the changing climate and the condition may further be exaggerated by reduced recharge and increased evapotranspiration. This understanding of the impacts and climate scenarios will help the planners with better adaptation strategies, plans, and programs for a better society.
      Citation: Climate
      PubDate: 2020-11-23
      DOI: 10.3390/cli8110137
      Issue No: Vol. 8, No. 11 (2020)
  • Climate, Vol. 8, Pages 102: Impacts of Climate Change on the Water
           Resources of the Kunduz River Basin, Afghanistan

    • Authors: Noor Ahmad Akhundzadah, Salim Soltani, Valentin Aich
      First page: 102
      Abstract: The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann–Kendall and Theil–Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than −30% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB.
      Citation: Climate
      PubDate: 2020-09-23
      DOI: 10.3390/cli8100102
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 103: Performance Evaluation of Satellite-Based
           Rainfall Products over Nigeria

    • Authors: Kingsley N. Ogbu, Nina R. Hounguè, Imoleayo E. Gbode, Bernhard Tischbein
      First page: 103
      Abstract: Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products (SRPs), which offer a complete spatial and consistent temporal coverage, a better alternative. However, the accuracy of these products must be ascertained before use in water resource developments and planning. In this study, the performances of Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Precipitation estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and Tropical Applications of Meteorology using SATellite data and ground-based observations (TAMSAT), were evaluated to investigate their ability to reproduce long term (1983–2013) observed rainfall characteristics derived from twenty-four (24) gauges in Nigeria. Results show that all products performed well in terms of capturing the observed annual cycle and spatial trends in all selected stations. Statistical evaluation of the SRPs performance show that CHIRPS agree more with observations in all climatic zones by reproducing the local rainfall characteristics. The performance of PERSIANN and TAMSAT, however, varies with season and across the climatic zones. Findings from this study highlight the benefits of using SRPs to augment or fill gaps in the distribution of local rainfall data, which is critical for water resources planning, agricultural development, and policy making.
      Citation: Climate
      PubDate: 2020-09-24
      DOI: 10.3390/cli8100103
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 104: Modeling and Analysis of Barriers to Climate
           Change Adaptation in Tehran

    • Authors: Behnam Ghasemzadeh, Ayyoob Sharifi
      First page: 104
      Abstract: Since the impacts of climate change will last for many years, adaptation to this phenomenon should be prioritized in urban management plans. Although Tehran, the capital of Iran, has been subject to a variety of climate change impacts in recent years, appropriate adaptation measures to address them are yet to be taken. This study primarily aims to categorize the barriers to climate change adaptation in Tehran and analyze the way they interact with each other. The study was done in three steps: first, the focus group discussion (FGD) method was used to identify the barriers; next, the survey and the structural equation modeling (SEM) were used to validate the barriers, identify their importance, and examine their possible inter-relationships; and finally, the interpretive structural modeling (ISM) was applied to categorize and visualize the relationships between the barriers. Results show that barriers related to the ‘structure and culture of research’, ‘laws and regulations’, and ‘planning’ belong to the cluster of independent barriers and are of greater significance. The ‘social’ barrier and barriers related to ‘resources and resource management’ are identified as dependent barriers and are of lesser importance. Barriers related to ‘governance’, ‘awareness’, ‘education and knowledge’, ‘communication and interaction’, and ‘economy’ are identified at the intermediate cluster. The findings of this study can provide planners and decision makers with invaluable insights as to how to develop strategies for climate change adaptation in Tehran. Despite the scope of the study being confined to Tehran, its implications go far beyond this metropolis.
      Citation: Climate
      PubDate: 2020-09-24
      DOI: 10.3390/cli8100104
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 105: Expected Impacts of Mixing European Beech with
           Silver Fir on Regional Air Quality and Radiation Balance

    • Authors: Boris Bonn, Jürgen Kreuzwieser, Ruth-Kristina Magh, Heinz Rennenberg, Dirk Schindler, Dominik Sperlich, Raphael Trautmann, Rasoul Yousefpour, Rüdiger Grote
      First page: 105
      Abstract: The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate for admixture into current pure stands of European beech (Fagus sylvatica) especially in mountainous areas. Such a change in forest structure also has effects on the regional scale, which, however, have been seldomly quantified. Therefore, we measured and modeled radiative balance and air chemistry impacts of admixing Silver fir to European beech stands, including changes in biogenic volatile organic compound emissions. An increased fraction of Silver fir caused a smaller albedo and a (simulated) larger evapotranspiration, leading to a dryer and warmer forest. While isoprene emission was negligible for both species, sesquiterpene and monoterpene emissions were larger for fir than for beech. From these differences, we derived that ozone concentration as well as secondary organic aerosols and cloud condensation nuclei would increase regionally. Overall, we demonstrated that even a relatively mild scenario of tree species change will alter the energy balance and air quality in a way that could potentially influence the climate on a landscape scale.
      Citation: Climate
      PubDate: 2020-09-26
      DOI: 10.3390/cli8100105
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 106: Assessing the Adaptive Capacity of Households
           to Climate Change in the Central Rift Valley of Ethiopia

    • Authors: Demamu Mesfin, Belay Simane, Abrham Belay, John W. Recha, Ute Schmiedel
      First page: 106
      Abstract: This paper explores the different components of the adaptive capacity of households in the Central Rift Valley (CRV) of Ethiopia and quantifies their relative contributions. The data were derived from a survey of 413 households randomly selected from four Kebeles (the smallest government administrative units) in the CRV. The adaptive capacity of the households was assessed using the Local Adaptive Capacity (LAC) framework and measured in terms of both aggregate and composite indices, with sixty indicators distributed across five major components and subcomponents. The index score for major components shows that intangible variables such as institutions and entitlements, knowledge and information, and innovation contributed to adaptive capacity better than decision–making and governance and asset–base. The composite indices for sub–components showed that the contribution of woodlands to adaptive capacity was positive and superior to other natural assets. Grazing land was the next best contributor, while farmland and water resources made a much lower contribution. The findings of this study are useful to better understand the nature of adaptive capacity and its components at the household level. This study suggests the need for an integrated assessment and enhancement of adaptive capacity with all its components rather than focusing only on asset possession as an indicator of adaptive capacity.
      Citation: Climate
      PubDate: 2020-09-29
      DOI: 10.3390/cli8100106
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 107: Frequency Associations between East Asian Jet
           Streams and the Temperature over the Barents–Kara Sea Region/Arctic
           Oscillation in Winter

    • Authors: Yuefeng Li, Yuxiang Zhu, Wei Song
      First page: 107
      Abstract: The frequency associations between jet streams over East Asia and the Arctic key temperature at 2 m (AKT2m) in the Barents–Kara Sea region (40°–75° E, 66°–82° N) and the Arctic Oscillation in winter are investigated using continuous wavelet transform, cross-wavelet transform, and wavelet coherence. The cross-wavelet transforms between the AKT2m/Arctic Oscillation and the East Asian polar front jet stream (EAPJ) suggest that the EAPJ is closely related to the AKT2m and Arctic Oscillation on an interannual (3–5-year band) timescale, but the variation in the phase angle denotes a complex frequency connection between the EAPJ and Arctic Oscillation. The squared wavelet coherence suggests that weakening of the EAPJ is associated with the rise in AKT2m during the period of abrupt climate change in East Asia. The EAPJ contains more forced components from the Arctic than the East Asian subtropical jet stream. By comparison, the relationship between AKT2m and the EAPJ is closer than that between the Arctic Oscillation and EAPJ, especially during the period of abrupt climate change in East Asia. This suggests that the EAPJ serves as a bridge for Arctic warming to affect the weather and climate over East Asia in winter. By contrast, the Arctic Oscillation does not play an important part, although it also contains information about the Arctic.
      Citation: Climate
      PubDate: 2020-09-29
      DOI: 10.3390/cli8100107
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 108: Selection of Effective GCM Bias Correction
           Methods and Evaluation of Hydrological Response under Future Climate

    • Authors: Yaogeng Tan, Sandra M. Guzman, Zengchuan Dong, Liang Tan
      First page: 108
      Abstract: Global climate change is presenting a variety of challenges to hydrology and water resources because it strongly affects the hydrologic cycle, runoff, and water supply and demand. In this study, we assessed the effects of climate change scenarios on hydrological variables (i.e., evapotranspiration and runoff) by linking the outputs from the global climate model (GCM) with the Soil and Water Assessment Tool (SWAT) for a case study in the Lijiang River Basin, China. We selected a variety of bias correction methods and their combinations to correct the lower resolution GCM outputs of both precipitation and temperature. Then, the SWAT model was calibrated and validated using the observed flow data and corrected historical GCM with the optimal correction method selected. Hydrological variables were simulated using the SWAT model under emission scenarios RCP2.6, RCP4.5, and RCP8.5. The results demonstrated that correcting methods have a positive effect on both daily precipitation and temperature, and a hybrid method of bias correction contributes to increased performance in most cases and scenarios. Based on the bias corrected scenarios, precipitation annual average, temperature, and evapotranspiration will increase. In the case of precipitation and runoff, projection scenarios show an increase compared with the historical trends, and the monthly distribution of precipitation, evapotranspiration, and runoff shows an uneven distribution compared with baseline. This study provides an insight on how to choose a proper GCM and bias correction method and a helpful guide for local water resources management.
      Citation: Climate
      PubDate: 2020-09-30
      DOI: 10.3390/cli8100108
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 109: Potential Effects of Climate and Human
           Influence Changes on Range and Diversity of Nine Fabaceae Species and
           Implications for Nature’s Contribution to People in Kenya

    • Authors: Nyairo, Machimura
      First page: 109
      Abstract: Climate and land-use changes are the main drivers of species distribution. On the basis of current and future climate and socioeconomic scenarios, species range projections were made for nine species in the Fabaceae family. Modeled species have instrumental and relational values termed as nature’s contribution to people (NCP). For each species, five scenarios were analyzed resulting in 45 species range maps. Representative concentration pathway (RCP) 4.5 and three shared socioeconomic pathways (SSPs 1, 2, and 3) were used in the analysis. Species ranges under these scenarios were modeled using MaxEnt; a niche modeling software that relates species occurrence with environmental variables. Results were used to compute species richness and evenness based on Shannon’s diversity Index. Results revealed a mix of range expansion and contraction for the modeled species. The findings highlighted which species may remain competitive in an urbanized future and which ones are detrimentally affected by climate. Parts of the country where species abundances are likely to change due to climate and socioeconomic changes were identified. Management of species will be required in people-dominated landscapes to maintain interactions between nature and society, while avoiding natural resource degradation and loss of NCP.
      Citation: Climate
      PubDate: 2020-10-03
      DOI: 10.3390/cli8100109
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 110: New Data Center Performance Index: Perfect
           Design Data Center—PDD

    • Authors: Alexandre F. Santos, Pedro D. Gaspar, Heraldo J. L. de Souza
      First page: 110
      Abstract: Data Centers (DC) are specific buildings that require large infrastructures to store all the information needed by companies. All data transmitted over the network is stored on CDs. By the end of 2020, Data Centers will grow 53% worldwide. There are methodologies that measure the efficiency of energy consumption. The most used metric is the Power Usage Effectiveness (PUE) index, but it does not fully reflect efficiency. Three DC’s located at the cities of Curitiba, Londrina and Iguaçu Falls (Brazil) with close PUE values, are evaluated in this article using the Energy Usage Effectiveness Design (EUED) index as an alternative to the current method. EUED uses energy as a comparative element in the design phase. Infrastructure consumption is the sum of energy with Heating, Ventilating and Air conditioning (HVAC) equipment, equipment, lighting and others. The EUED values obtained were 1.245 (kWh/yr)/(kWh/yr), 1.313 (kWh/yr)/(kWh/yr) and 1.316 (kWh/yr)/(kWh/yr) to Curitiba, Londrina and Iguaçu Falls, respectively. The difference between the EUED and the PUE Constant External Air Temperature (COA) is 16.87% for Curitiba, 13.33% for Londrina and 13.30% for Iguaçu Falls. The new Perfect Design Data center (PDD) index prioritizes efficiency in increasing order is an easy index to interpret. It is a redefinition of EUED, given by a linear equation, which provides an approximate result and uses a classification table. It is a decision support index for the location of a Data Center in the project phase.
      Citation: Climate
      PubDate: 2020-10-04
      DOI: 10.3390/cli8100110
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 111: West African Summer Monsoon Precipitation
           Variability as Represented by Reanalysis Datasets

    • Authors: Kwesi Akumenyi Quagraine, Francis Nkrumah, Cornelia Klein, Nana Ama Browne Klutse, Kwesi Twentwewa Quagraine
      First page: 111
      Abstract: Focusing on West Africa, a region riddled with in situ data scarcity, we evaluate the summer monsoon monthly rainfall characteristics of five global reanalysis datasets: ERA5, ERA-Interim, JRA-55, MERRA2, and NCEP-R2. Their performance in reproducing the West African monsoon (WAM) climatology, interannual variability, and long-term trends for the main monsoon months are compared to gauge-only and satellite products. We further examine their ability to reproduce teleconnections between sea surface temperatures and monsoon rainfall. All reanalyses are able to represent the average rainfall patterns and seasonal cycle; however, regional biases can be marked. ERA5, ERA-Interim, and NCEP-R2 underestimate rainfall over areas of peak rainfall, with ERA5 showing the strongest underestimation, particularly over the Guinea Highlands. The meridional northward extent of the monsoon rainband is well captured by JRA-55 and MERRA2 but is too narrow in ERA-Interim, for which rainfall stays close to the Guinea Coast. Differences in rainband displacement become particularly evident when comparing strong El Niño Southern Oscillation (ENSO) years, where all reanalyses except ERA-Interim reproduce wetter Sahelian conditions for La Niña, while overestimating dry conditions at the coast except for NCEP-R2. Precipitation trends are not coherent across reanalyses and magnitudes are generally overestimated compared to observations, with only JRA-55 and NCEP-R2 displaying the expected positive trend in the Sahel. ERA5 generally outperforms ERA-Interim, highlighting clear improvements over its predecessor. Ultimately, we find the strengths of reanalyses to strongly vary across the region.
      Citation: Climate
      PubDate: 2020-10-06
      DOI: 10.3390/cli8100111
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 112: Convection Parametrization and Multi-Nesting
           Dependence of a Heavy Rainfall Event over Namibia with Weather Research
           and Forecasting (WRF) Model

    • Authors: Sieglinde Somses, Mary-Jane M. Bopape, Thando Ndarana, Ann Fridlind, Toshihisa Matsui, Elelwani Phaduli, Anton Limbo, Shaka Maikhudumu, Robert Maisha, Edward Rakate
      First page: 112
      Abstract: Namibia is considered to be one of the countries that are most vulnerable to climate change due to its generally dry climate and the percentage of its population that rely on subsistence agriculture for their livelihoods. Early-warning systems are an important aspect of adapting to climate change. Weather forecasting relies on the use of numerical weather prediction models and these need to be configured properly. In this study, we investigate the effects of using multi-nests and a convection scheme on the simulation of a heavy rainfall event over the north-western region of Kunene, Namibia. The event, which was associated with a cut-off low system, was short-lived and resulted in over 45 mm of rainfall in one hour. For the multi-nest, a 9 km grid-length parent domain is nested within the Global Forecast System (GFS) simulations, which in turn forces a 3 km grid spacing child domain. A different set of simulations are produced using a single nest of 3 km grid spacing, nested directly inside the GFS data. The simulations are produced with the convection scheme switched on and off. The impact of a single versus multi-nest is found to be small in general, with slight differences in the location of high rainfall intensity. Switching off the convection schemes results in high rainfall intensity and increased detail in the simulations, including when a grid spacing of 9 km is used. Using a grid spacing of 3 km with the convection scheme on, results in a loss of detail in the simulations as well as lower rainfall amounts. The study shows a need for different configurations to be tested before an optimum configuration can be selected for operational forecasting. We recommend further tests with different synoptic forcing and convection schemes to be conducted to identify a suitable configuration for Namibia.
      Citation: Climate
      PubDate: 2020-10-07
      DOI: 10.3390/cli8100112
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 113: Correction: Vo, T.B.T., et al. Methane
           Emission Factors from Vietnamese Rice Production: Pooling Data of 36 Field
           Sites for Meta-analysis. Climate 2020, 8, 74

    • Authors: Thi Bach Thuong Vo, Reiner Wassmann, Van Trinh Mai, Duong Quynh Vu, Thi Phuong Loan Bui, Thi Hang Vu, Quang Hieu Dinh, Bui Tan Yen, Folkard Asch, Bjoern Ole Sander
      First page: 113
      Abstract: The authors wish to make the following corrections to this paper [...]
      Citation: Climate
      PubDate: 2020-10-07
      DOI: 10.3390/cli8100113
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 114: Impact of Climate Change on Vegetation Cover
           at South Port Sudan Area

    • Authors: Pei Sun Loh, Hussien Ibrahim Mohammed Alnoor, Shuangyan He
      First page: 114
      Abstract: Arid regions worldwide, for example, Sudan, are affected by climate change and susceptible to environmental deterioration. In this study, temperature and rainfall data from 1985 to 2015 obtained from the Sudan Meteorological Authority were compared with satellite images of vegetation coverage in southern Port Sudan. The objective of this study was to determine the impact of climate change on the vegetation cover in this area. Results showed significant increases in the annual maximum, minimum and average temperatures with time, and precipitation showed a slight but not significant decrease from 1985 to 2015. The rates of increase for the annual maximum, minimum and average temperatures were 0.08 °C/year, 0.03 °C/year and 0.06 °C/year, respectively, and precipitation decreased at a rate of 0.12 mm/year. Higher shrub abundance and greater water area in 2013, 1995 and 1990 were probably due to high rainfall in the years preceding these years. Decreased shrub abundance in the year 2000 could be due to the significantly higher temperatures after 1998. There was no decreasing trend in shrub coverage from 1985 to 2015, but the overall increase in temperature and decrease in precipitation from 1985 to 2015 indicate a potential threat to vegetation in this area in the future.
      Citation: Climate
      PubDate: 2020-10-10
      DOI: 10.3390/cli8100114
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 115: Characteristics of Climate Change in the
           Lancang-Mekong Sub-Region

    • Authors: Han Li, Wei Song
      First page: 115
      Abstract: The Lancang-Mekong River is an important international river in Southeastern Asia. In recent years, due to climate change, natural disasters, such as drought and flooding, have frequently occurred in the region, which has a negative effect on the sustainable development of the social economy. Due to the lack of meteorological monitoring data in the six countries across the region, the study of the characteristics of climate change in this area is still scarce. In this paper, we analyze the characteristics of climate change in the Lancang-Mekong sub-region (LMSR) during 2020–2100 based on the climatic data of CMIP5, using the linear trend rate method, cumulative anomaly method, the Mann–Kendall test, and Morlet wavelet analysis. The results showed that the annual mean temperature and annual precipitation in the LMSR increased significantly. The annual average temperature in this area increased at a rate of 0.219 °C/10a (p < 0.05) and 0.578 °C/10a (p < 0.05) in the RCP4.5 and RCP8.5 scenarios, respectively; the annual precipitation in the area was 29.474 mm/10a (p < 0.05) and 50.733 mm/10a (p < 0.05), respectively. The annual average temperature in the region changed abruptly from low to high temperatures in 2059 for the RCP4.5 scenario and 2063 for RCP8.5. The annual precipitation in the area changed from less to more in 2051 for the RCP4.5 scenario and 2057 for RCP8.5. The results of wavelet analysis showed that the annual mean temperature in the LMSR had no significant change period at the 95% confidence level under the scenario of RCP4.5 and RCP8.5. Under the scenario of RCP4.5 and RCP8.5, the annual precipitation had a significant 3.5-year and 2.5-year periodicity, respectively. Extreme climate events tended to increase against the background of global warming, especially in high emission scenarios.
      Citation: Climate
      PubDate: 2020-10-10
      DOI: 10.3390/cli8100115
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 116: Assessing Property Level Economic Impacts of
           Climate in the US, New Insights and Evidence from a Comprehensive Flood
           Risk Assessment Tool

    • Authors: Saman Armal, Jeremy R. Porter, Brett Lingle, Ziyan Chu, Michael L. Marston, Oliver E. J. Wing
      First page: 116
      Abstract: Hurricanes and flood-related events cause more direct economic damage than any other type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages since 1980. On average, direct flood losses have risen from USD 4 billion annually in the 1980s to roughly USD 17 billion annually from 2010 to 2018. Despite flooding’s tremendous economic impact on US properties and communities, current estimates of expected damages are lacking due to the fact that flood risk in many parts of the US is unidentified, underestimated, or available models associated with high quality assessment tools are proprietary. This study introduces an economic-focused Environmental Impact Assessment (EIA) approach that builds upon an our existing understanding of prior assessment methods by taking advantage of a newly available, climate adjusted, parcel-level flood risk assessment model (First Street Foundation, 2020a and 2020b) in order to quantify property level economic impacts today, and into the climate adjusted future, using the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathways (RCPs) and NASA’s Global Climate Model ensemble (CMIP5). This approach represents a first of its kind—a publicly available high precision flood risk assessment tool at the property level developed completely with open data sources and open methods. The economic impact assessment presented here has been carried out using residential buildings in New Jersey as a testbed; however, the environmental assessment tool on which it is based is a national scale property level flood assessment model at a 3m resolution. As evidence of the reliability of the EIA tool, the 2020 estimated economic impact (USD 5481 annual expectation) was compared to actual average per claim-year NFIP payouts from flooding and found an average of USD 5540 over the life of the program (difference of less than USD 100). Additionally, the tool finds a 41.4% increase in average economic flood damage through the year 2050 when environmental change is included in the model.
      Citation: Climate
      PubDate: 2020-10-12
      DOI: 10.3390/cli8100116
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 117: Climate Drivers and Sources of Sediment and
           Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES)
           of a Subtropical Watershed, USA

    • Authors: Janet Dewey, Jeff Hatten, Byoungkoo Choi, Clay Mangum, Ying Ouyang
      First page: 117
      Abstract: Climate-driven hydrological models rarely incorporate intermittent rivers and ephemeral streams (IRES) due to monitoring difficulties and their perceived minor effect on river networks. Worldwide, IRES represent approximately 50% of river networks and up to 60% of annual flow and are recognized as conduits and processors of organic matter (OM). Climate induced changes in precipitation and discharge (Q) may impact OM fluxes from IRES. We assessed storm-driven source and flux of total suspended solids (TSS) and OM from small IRES in Mississippi, USA. We used linear Pearson correlations to evaluate relationships between water and storm characteristics (e.g., discharge). Stepwise regression was used to predict change in flux. Dissolved OM was derived from saturated flow through soil whereas particulate OM was derived from channel extension during storms. A power log relationship between Q and materials flux indicated that Q was the driver for flux. A 5% increase in Q within IRES may result in flux increase of 2% TSS and 1.7–2.8% OM. Climate change projections of increased storm intensity over a shorter water year will increase channel extension and soil water transfer resulting in higher material flux to downstream reaches. Climate-driven hydrological models of OM flux should incorporate IRES.
      Citation: Climate
      PubDate: 2020-10-16
      DOI: 10.3390/cli8100117
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 118: Implications of Development Cooperation and
           State Bureaucracy on Climate Change Adaptation Policy in Bangladesh

    • Authors: Md Saifur Rahman, Pradip Kumar Sarker, Ryokichi Hirono, Lukas Giessen
      First page: 118
      Abstract: Policy action is visible in national and international climate governance. However, policy-making and its implementation often fail to generate the desired outcomes that aim to adapt to the adverse impact of climate change in a developing nation, such as Bangladesh—a country highly vulnerable to the impact of climate change. Against this backdrop, the study aims to analyze the implication of development cooperation and bureaucratic politics on the policy-making and implementation of climate change adaptation policy in Bangladesh. In doing so, the research uses national and international climate adaptation funds and the existing state administrative framework of the climate adaptation regime. Methodologically, it follows a mixed qualitative–quantitative research approach. The study discusses the following key findings: (1) the general cross-sectoral nature and thrusts of domestic and external climate adaptation funding; (2) how Bangladesh technical departments, such as that for water management, have reacted successfully to ensure the utilization of the funds is for implementing adaptation policy; (3) simultaneously, how Bangladesh bureaucracy, made of the elite, together with politics, have maintained their traditional values, practices, and structures in responding to the administrative requirements of climate adaptation funders, especially bilateral and multilateral development agencies, and (4) what changes should be brought to the bureaucratic cadre and added to the administrative setup in Bangladesh to provide a better overall impact of the adaptation policy and funding.
      Citation: Climate
      PubDate: 2020-10-19
      DOI: 10.3390/cli8100118
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 119: Climate-Friendly Ethics Prescribed by Top
           World Airlines: Empirical Evidence

    • Authors: Dmitry A. Ruban, Natalia N. Yashalova
      First page: 119
      Abstract: The aviation industry contributes substantially to the global climate change, and, thus, airline companies need development of climate-friendly ethics. The content of the codes of conduct of 16 airline companies boasting either the greatest number of daily departures or the largest air fleet (or both) are analyzed. It is established that 25% of these companies prescribe climate-friendly behavior often focusing on emissions. Moreover, many other companies prescribe pro-environmental behavior. The situation seems to be promising, although improvements of the existing corporate ethical prescriptions are necessary. Despite its tentative character and certain limitations, this study permits putting the climate-friendly ethics of airlines on the international agenda. Practically, it is important to add climate-related notions to those codes of conduct where these do not exist and to use successful examples as ethical templates for the entire aviation industry.
      Citation: Climate
      PubDate: 2020-10-19
      DOI: 10.3390/cli8100119
      Issue No: Vol. 8, No. 10 (2020)
  • Climate, Vol. 8, Pages 120: Attribution and Prediction of Precipitation

    • Authors: Joshua Hartigan, Shev MacNamara, Lance M. Leslie, Milton Speer
      First page: 120
      Abstract: Droughts in southeastern Australia can profoundly affect the water supply to Sydney, Australia’s largest city. Increasing population, a warming climate, land surface changes and expanded agricultural use increase water demand and reduce catchment runoff. Studying Sydney’s water supply is necessary to manage water resources and lower the risk of severe water shortages. This study aims at understanding Sydney’s water supply by analysing precipitation and temperature trends across the catchment. A decreasing trend in annual precipitation was found across the Sydney catchment area. Annual precipitation also is significantly less variable, due to fewer years above the 80th percentile. These trends result from significant reductions in precipitation during spring and autumn, especially over the last 20 years. Wavelet analysis was applied to assess how the influence of climate drivers has changed over time. Attribute selection was carried out using linear regression and machine learning techniques, including random forests and support vector regression. Drivers of annual precipitation included Niño3.4, Southern Annular Mode (SAM) and DMI, and measures of global warming such as the Tasman Sea sea surface temperature anomalies. The support vector regression model with a polynomial kernel achieved correlations of 0.921 and a skill score compared to climatology of 0.721. The linear regression model also performed well with a correlation of 0.815 and skill score of 0.567, highlighting the importance of considering both linear and non-linear methods when developing statistical models. Models were also developed on autumn and winter precipitation but performed worse than annual precipitation on prediction. For example, the best performing model on autumn precipitation, which accounts for approximately one quarter of annual precipitation, achieved an RMSE of 418.036 mm2 on the testing data, while annual precipitation achieved an RMSE of 613.704 mm2. However, the seasonal models provided valuable insights into whether the season would be wet or dry compared to the climatology.
      Citation: Climate
      PubDate: 2020-10-20
      DOI: 10.3390/cli8100120
      Issue No: Vol. 8, No. 10 (2020)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-