Subjects -> FOOD AND FOOD INDUSTRIES (Total: 394 journals)
    - BEVERAGES (15 journals)
    - FISH AND FISHERIES (99 journals)
    - FOOD AND FOOD INDUSTRIES (280 journals)

FOOD AND FOOD INDUSTRIES (280 journals)                  1 2     

Showing 1 - 62 of 62 Journals sorted alphabetically
Acta Alimentaria     Full-text available via subscription   (Followers: 7)
Acta Universitatis Cibiniensis. Series E: Food Technology     Open Access   (Followers: 2)
Acta Universitatis Sapientiae, Alimentaria     Open Access   (Followers: 1)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 9)
Advances in Food and Nutrition Research     Full-text available via subscription   (Followers: 69)
Advances in Nutrition     Hybrid Journal   (Followers: 57)
African Journal of Drug and Alcohol Studies     Full-text available via subscription   (Followers: 6)
African Journal of Food Science     Open Access   (Followers: 9)
African Journal of Food, Agriculture, Nutrition and Development     Open Access   (Followers: 23)
Agricultural and Food Science     Open Access   (Followers: 22)
Agriculture & Food Security     Open Access   (Followers: 16)
Agriculture and Food Sciences Research     Open Access   (Followers: 11)
Agro-Science     Full-text available via subscription   (Followers: 2)
Agroecology and Sustainable Food Systems     Hybrid Journal   (Followers: 18)
Agrosearch     Open Access   (Followers: 2)
Alimentos e Nutrição     Open Access   (Followers: 1)
Alimentos Hoy     Open Access   (Followers: 1)
American Journal of Food and Nutrition     Open Access   (Followers: 56)
American Journal of Food Science and Technology     Open Access   (Followers: 11)
American Journal of Food Technology     Open Access   (Followers: 9)
Amerta Nutrition     Open Access  
Amino Acids     Hybrid Journal   (Followers: 7)
Animal Production     Open Access   (Followers: 5)
Animal Production Science     Hybrid Journal   (Followers: 2)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Anthropology of food     Open Access   (Followers: 14)
Applied Food Biotechnology     Open Access   (Followers: 4)
Arquivos Brasileiros de Alimentação     Open Access  
Asian Food Science Journal     Open Access   (Followers: 2)
Asian Journal of Animal and Veterinary Advances     Open Access   (Followers: 8)
Asian Journal of Cell Biology     Open Access   (Followers: 6)
Asian Journal of Clinical Nutrition     Open Access   (Followers: 14)
Asian Journal of Crop Science     Open Access   (Followers: 3)
Asian Plant Research Journal     Open Access   (Followers: 1)
Bangladesh Rice Journal     Open Access   (Followers: 2)
Biotechnology and Genetic Engineering Reviews     Hybrid Journal   (Followers: 12)
Boletim de Indústria Animal     Open Access  
Brazilian Journal of Food Technology     Open Access   (Followers: 3)
Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca : Food Science and Technology     Open Access  
Canadian Food Studies / La Revue canadienne des études sur l'alimentation     Open Access  
Cerâmica     Open Access   (Followers: 5)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Ciência e Agrotecnologia     Open Access  
COCOS : The Journal of the Coconut Research Institute of Sri Lanka     Open Access   (Followers: 1)
Cogent Food & Agriculture     Open Access   (Followers: 3)
Comprehensive Reviews in Food Science and Food Safety     Hybrid Journal   (Followers: 7)
Critical Reviews in Food Science and Nutrition     Hybrid Journal   (Followers: 31)
Cuizine: The Journal of Canadian Food Cultures / Cuizine : revue des cultures culinaires au Canada     Open Access   (Followers: 3)
Culture, Agriculture, Food and Environment     Hybrid Journal   (Followers: 16)
Culture, Agriculture, Food and Environment     Hybrid Journal   (Followers: 8)
Current Botany     Open Access   (Followers: 1)
Current Opinion in Food Science     Hybrid Journal   (Followers: 6)
Current Research in Dairy Sciences     Open Access   (Followers: 6)
Current Research in Food Science     Open Access   (Followers: 2)
Current Research in Microbiology     Open Access   (Followers: 25)
Current Research in Nutrition and Food Science     Open Access   (Followers: 5)
CyTA - Journal of Food     Open Access   (Followers: 1)
Detection     Open Access   (Followers: 4)
Developments in Food Science     Full-text available via subscription   (Followers: 2)
EFSA Journal     Open Access   (Followers: 6)
Emirates Journal of Food and Agriculture     Open Access   (Followers: 2)
Engineering in Agriculture, Environment and Food     Hybrid Journal  
Enzyme Research     Open Access   (Followers: 5)
Estudios sociales : Revista de alimentación contemporánea y desarrollo regional     Open Access   (Followers: 1)
EUREKA : Life Sciences     Open Access   (Followers: 2)
European Food Research and Technology     Hybrid Journal   (Followers: 9)
European Journal of Nutrition & Food Safety     Open Access   (Followers: 1)
Flavour     Open Access   (Followers: 3)
Flavour and Fragrance Journal     Hybrid Journal   (Followers: 4)
Focusing on Modern Food Industry     Open Access   (Followers: 2)
Food & Function     Full-text available via subscription   (Followers: 9)
Food & Nutrition Research     Open Access   (Followers: 33)
Food Additives & Contaminants Part A     Hybrid Journal   (Followers: 10)
Food Additives and Contaminants: Part B: Surveillance     Hybrid Journal   (Followers: 3)
Food Analytical Methods     Hybrid Journal   (Followers: 3)
Food and Applied Bioscience Journal     Open Access   (Followers: 2)
Food and Bioprocess Technology     Hybrid Journal   (Followers: 4)
Food and Bioproducts Processing     Hybrid Journal   (Followers: 5)
Food and Chemical Toxicology     Hybrid Journal   (Followers: 23)
Food and Energy Security     Open Access   (Followers: 6)
Food and Environment Safety     Open Access   (Followers: 1)
Food and Nutrition Bulletin     Hybrid Journal   (Followers: 6)
Food and Nutrition Sciences     Open Access   (Followers: 17)
Food and Public Health     Open Access   (Followers: 17)
Food and Waterborne Parasitology     Open Access  
Food Biology     Open Access   (Followers: 1)
Food Biophysics     Hybrid Journal   (Followers: 4)
Food Bioscience     Hybrid Journal   (Followers: 2)
Food Biotechnology     Hybrid Journal   (Followers: 8)
Food Chain     Full-text available via subscription   (Followers: 1)
Food Chemistry     Hybrid Journal   (Followers: 22)
Food Chemistry : X     Open Access  
Food Control     Hybrid Journal   (Followers: 10)
Food Digestion     Hybrid Journal   (Followers: 5)
Food Economics     Hybrid Journal   (Followers: 2)
Food Ethics     Hybrid Journal   (Followers: 1)
Food Hydrocolloids     Hybrid Journal   (Followers: 5)
Food In     Open Access  
Food Manufacturing Africa     Full-text available via subscription  
Food Microbiology     Hybrid Journal   (Followers: 21)
Food New Zealand     Full-text available via subscription   (Followers: 4)
Food Packaging and Shelf Life     Hybrid Journal   (Followers: 4)
Food Processing     Full-text available via subscription   (Followers: 7)
Food Quality and Preference     Hybrid Journal   (Followers: 7)
Food Quality and Safety     Open Access   (Followers: 1)
Food Research International     Hybrid Journal   (Followers: 10)
Food Reviews International     Hybrid Journal   (Followers: 4)
Food Science & Nutrition     Open Access   (Followers: 58)
Food Science and Biotechnology     Hybrid Journal   (Followers: 10)
Food Science and Human Wellness     Open Access   (Followers: 5)
Food Science and Quality Management     Open Access   (Followers: 9)
Food Science and Technology     Open Access   (Followers: 3)
Food Science and Technology (Campinas)     Open Access   (Followers: 1)
Food Science and Technology International     Hybrid Journal   (Followers: 6)
Food Security     Open Access   (Followers: 11)
Food Structure     Hybrid Journal   (Followers: 3)
Food Technology     Full-text available via subscription   (Followers: 9)
Food Technology and Biotechnology     Open Access   (Followers: 1)
Foodborne Pathogens and Disease     Hybrid Journal   (Followers: 13)
Foodnews     Partially Free   (Followers: 2)
Foods     Open Access  
Frontiers in Sustainable Food Systems     Open Access  
Future of Food : Journal on Food, Agriculture and Society     Open Access   (Followers: 16)
Gastroia : Journal of Gastronomy And Travel Research     Open Access   (Followers: 1)
Gastronomica     Full-text available via subscription   (Followers: 11)
Gıda Dergisi     Open Access  
Global Food History     Hybrid Journal  
Global Food Security     Hybrid Journal   (Followers: 1)
GM Crops and Food: Biotechnology in Agriculture and the Food Chain     Full-text available via subscription   (Followers: 3)
Grain & Oil Science and Technology     Open Access   (Followers: 1)
Grasas y Aceites     Open Access  
Habitat     Open Access  
Harran Tarım ve Gıda Bilimleri Dergisi     Open Access   (Followers: 1)
Himalayan Journal of Science and Technology     Open Access   (Followers: 1)
Indonesian Food and Nutrition Progress     Open Access  
Indonesian Food Science & Technology Journal     Open Access   (Followers: 1)
INNOTEC : Revista del Laboratorio Tecnológico del Uruguay     Open Access  
Innovative Food Science & Emerging Technologies     Hybrid Journal   (Followers: 5)
International Journal of Agriculture, Environment and Food Sciences     Open Access   (Followers: 2)
International Journal of Dairy Science     Open Access   (Followers: 6)
International Journal of Food Contamination     Open Access  
International Journal of Food Design     Hybrid Journal   (Followers: 1)
International Journal of Food Engineering     Hybrid Journal   (Followers: 3)
International Journal of Food Engineering Research     Open Access  
International Journal of Food Microbiology     Hybrid Journal   (Followers: 20)
International Journal of Food Properties     Open Access   (Followers: 2)
International Journal of Food Safety, Nutrition and Public Health     Hybrid Journal   (Followers: 22)
International Journal of Food Science     Open Access   (Followers: 5)
International Journal of Food Science & Technology     Hybrid Journal   (Followers: 7)
International Journal of Food Science and Nutrition Engineering     Open Access   (Followers: 8)
International Journal of Gastronomy and Food Science     Open Access   (Followers: 6)
International Journal of Latest Trends in Agriculture and Food Sciences     Open Access   (Followers: 6)
International Journal of Meat Science     Open Access  
International Journal of Poultry Science     Open Access   (Followers: 6)
International Journal on Food System Dynamics     Open Access  
ISABB Journal of Food and Agricultural Sciences     Open Access   (Followers: 1)
Italian Journal of Food Safety     Open Access   (Followers: 1)
Italian Journal of Food Science     Open Access   (Followers: 3)
itepa : Jurnal Ilmu dan Teknologi Pangan     Open Access  
JOT Journal für Oberflächentechnik     Hybrid Journal   (Followers: 1)
Journal für Verbraucherschutz und Lebensmittelsicherheit     Hybrid Journal  
Journal of Acupuncture and Herbs     Open Access   (Followers: 3)
Journal of Agricultural & Food Industrial Organization     Hybrid Journal  
Journal of Agriculture and Food Sciences     Full-text available via subscription   (Followers: 2)
Journal of Agriculture and Natural Resources     Open Access   (Followers: 1)
Journal of Agriculture, Food Systems, and Community Development     Open Access  
Journal of AOAC International     Full-text available via subscription   (Followers: 8)
Journal of Applied Botany and Food Quality     Open Access   (Followers: 5)
Journal of Aquatic Food Product Technology     Hybrid Journal   (Followers: 4)
Journal of Berry Research     Hybrid Journal   (Followers: 1)
Journal of Culinary Science & Technology     Hybrid Journal   (Followers: 1)
Journal of Environmental Health Science & Engineering     Open Access   (Followers: 1)
Journal of Ethnic Foods     Open Access   (Followers: 1)
Journal of Excipients and Food Chemicals     Open Access   (Followers: 1)
Journal of Fisheries and Aquatic Science     Open Access   (Followers: 6)
Journal of Food and Dairy Technology     Open Access  
Journal of Food and Drug Analysis     Open Access  
Journal of Food and Pharmaceutical Sciences     Open Access   (Followers: 2)
Journal of Food Biochemistry     Hybrid Journal   (Followers: 6)
Journal of Food Chemistry and Nutrition     Open Access   (Followers: 5)
Journal of Food Composition and Analysis     Hybrid Journal   (Followers: 3)
Journal of Food Engineering     Hybrid Journal   (Followers: 6)
Journal of Food Health and Bioenvironmental Science     Open Access  
Journal of Food Lipids     Hybrid Journal  
Journal of Food Measurement and Characterization     Hybrid Journal  
Journal of Food Microbiology     Open Access   (Followers: 9)
Journal of Food Process Engineering     Hybrid Journal   (Followers: 4)
Journal of Food Processing & Technology     Open Access   (Followers: 2)
Journal of Food Processing and Preservation     Hybrid Journal   (Followers: 3)
Journal of Food Products Marketing     Hybrid Journal   (Followers: 2)
Journal of Food Protection(R)     Full-text available via subscription   (Followers: 7)
Journal of Food Quality     Hybrid Journal   (Followers: 8)
Journal of Food Research     Open Access   (Followers: 3)
Journal of Food Safety     Hybrid Journal   (Followers: 14)
Journal of Food Science     Hybrid Journal   (Followers: 12)
Journal of Food Science and Technology     Hybrid Journal   (Followers: 6)
Journal of Food Science and Technology Nepal     Open Access  
Journal of Food Science Education     Hybrid Journal   (Followers: 4)
Journal of Food Security     Open Access   (Followers: 6)
Journal of Food Security and Agriculture     Open Access  

        1 2     

Similar Journals
Journal Cover
Food Biophysics
Journal Prestige (SJR): 0.74
Citation Impact (citeScore): 2
Number of Followers: 4  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1557-1866 - ISSN (Online) 1557-1858
Published by Springer-Verlag Homepage  [2570 journals]
  • Encapsulation of Iron within W 1 /O/W 2 Emulsions Formulated Using a
           Natural Hydrophilic Surfactant (Saponin): Impact of Surfactant Level and
           Oil Phase Crystallization
    • Abstract: Abstract The influence of quillaja saponin on the formation and stability of water-in-oil-in-water (W1/O/W2) emulsions was investigated. In particular, the ability of these emulsions to encapsulate iron (ferrous sulfate) in a form that would not promote lipid oxidation was examined. The emulsions were formed using a two-step process. First, iron sulfate was dissolved in the aqueous phase used to form 20 wt% water-in-oil (W1/O) emulsions stabilized by polyglycerol polyricinoleate (PGPR). Second, W1/O/W2 emulsions were fabricated by homogenizing the W1/O emulsions (20 wt%) with another aqueous phase (80 wt%) containing quillaja saponin (0.5, 1, 2, 3, and 4 wt%). The diameter of the oil droplets in the W1/O/W2 emulsions decreased with increasing saponin concentration. Confocal microscopy confirmed that the W1/O/W2 emulsions consisted of tiny water droplets entrapped inside oil droplets that were dispersed in an external water phase. Rheological analysis showed the W1/O/W2 emulsions were shear-thinning fluids. The iron encapsulation efficiency of the emulsions remained high (> 82%) throughout storage for 28 days at ambient temperature. Lipid oxidation of the iron-loaded W1/O/W2 emulsions could be retarded by incorporation of rice bran stearin in the oil phase. The double emulsions developed in this work have potential for encapsulation and delivery of iron in functional foods containing oxidizable lipids.
      PubDate: 2020-02-12
       
  • Protein/Polysaccharide Complexes to Stabilize Decane-in-Water
           Nanoemulsions
    • Abstract: Abstract Protein/polysaccharide complexes can be formed by electrostatic interactions and may be useful for enhancing the stability of nanoemulsions containing short-chain alkanes, which are highly prone to destabilization by Ostwald ripening. The study aimed to assess the capacity of biopolymer complexes composed of whey protein isolate (WPI) and sugar beet pectin (SBP) to form and stabilize interfacially structured nanoemulsions. Nanoemulsions were stored for 21 days at room temperature to assess their stability against Ostwald ripening over time. Complexes showed higher emulsifying capacity than biopolymers alone since particle size of complex-stabilized nanoemulsions remained stable (d4;3~0.26 μm) for at least 48 h after preparation, whereas WPI- or SBP-stabilized nanoemulsions were prone to destabilization during the first 24 h reaching values around 1 μm. Moreover, while the final particle size observed for the latter during the 21 days of storage was around 8 μm, complex-stabilized nanoemulsions exhibited particle sizes up to 2.34 μm, which had a direct impact in delaying creaming. Moreover, complex-stabilized nanoemulsions exhibited negative ζ-potential with similar values to those stabilized by SBP (−20.4 and − 22.1 mV, respectively) while the interfacial rheology behavior of complex-stabilized systems was more similar to those stabilized by WPI. This evidences that the protein fraction may be adsorbed at the oil interface thus dominating the interface rheology, whereas pectin chains located on the periphery of the complex and oriented towards the water phase may confer negative interfacial charge to oil droplets. These results indicated that WPI/SBP complexes were more effective than the biopolymers alone in preventing Ostwald ripening in decane-in-water nanoemulsions.
      PubDate: 2020-01-30
       
  • Application of Cellulose Nanofibrils Isolated from an Agroindustrial
           Residue of Peach Palm in Cassava Starch Films
    • Abstract: Abstract Cellulose nanofibrils (CNF) isolated from the external sheaths of palm peach (Bactris gasipaes) were evaluated as improvers of several characteristics of cassava starch films. The cellulosic material of 10 to 30 nm diameter was produced by mechanic defibrillation. All films were characterized by scanning electron microscopy, thermal analysis, water vapor permeability (WVP), Fourier transform infrared spectroscopy, physical characterizations (solubility, humidity, water activity, thickness, tensile strength and elongation) and optical analysis. The incorporation of CNF as reinforcement caused changes in all properties analyzed, thus differing from the control film (without cellulosic reinforcement). Physical reinforcement was the main effect observed in films containing CNF, according to the mechanical resistance and permeability analyses. Furthermore, such analyses confirmed the increase in tensile strength in 306% and reduction in 26% of WVP for films containing 5.37% nanofibrils, when compared to the control. Higher opacity was verified as more CNF was added to the filmogenic matrix, as a result of the dispersion of light by nano-sized fibrils. No variations in the thermal profiles occurred in films containing CNF or not. Spectroscopic data revealed a possible crosslinking formation between starch and CNF, which can influence positively the tensile strength of such films.
      PubDate: 2020-01-22
       
  • Effects of Blackcurrant Fibre on Dough Physical Properties and Bread
           Quality Characteristics
    • Abstract: Abstract Wheat flour was partially replaced with blackcurrant pomace, soluble, and insoluble dietary fibre in dough and bread formulations. The impact of blackcurrant fibre on physical properties of doughs and breads was probed using a set of complementary physicochemical techniques. The effect of fibre on aromatic profile of substituted breads was performed using analysis of volatile compounds. Analysis of fibre-substituted doughs and breads revealed that supplementation with pomace or insoluble fibre at concentrations >5% w/w or with pectin at concentrations >0.5% w/w alters their overall physicochemical responses. Pomace and pectin primarily acted as water-binders and decreased the extent of gluten hydration but insoluble fibre did not bind water to the same extent suggesting higher interaction capacity between its cellulosic components and gluten proteins resulting in formation of stiffer doughs. More than one hundred volatiles were determined with alcohols, furan derivatives and aldehydes being the major aromatic compounds.
      PubDate: 2020-01-20
       
  • Electrostatic Interaction between Soy Proteins and Pectin in O/W Emulsions
           Stabilization by Ultrasound Application
    • Abstract: Abstract Proteins and polysaccharides can play the part of emulsifiers and stabilizers, yet emulsions stabilization may be improved through a protein:polysaccharide complexation based on electrostatic interactions. The chosen homogenization method and the protein:polysaccharide ratio at an adequate pH may affect complexation and its ability as an emulsion stabilizer. We evaluate the effects of ultrasound homogenization and soy protein isolate (SPI) and high methoxyl pectin (PEC) ratio to generate protein:polysaccharide complexes by electrostatic interactions. Moreover, emulsions stabilized by SPI:PEC complexes with 5, 10, 15 % soybean oil contents were evaluated after sonication to assess emulsions stability improvements. SPI and PEC showed strong interaction at pH 3.5, with higher complexation at higher protein ratio (4:1). Sonication reduced complex particle size, creating homogeneous and shear-thinning systems. SPI:PEC 1:1 emulsions had Newtonian behavior, smaller droplets, and remained stable for seven days. At SPI:PEC ratio of 4:1 emulsions had shear-thinning behavior, yet larger droplets and high creaming indexes, thus indicating destabilization by gravitational separation with cream phase and showing droplets with bimodal distribution (1.3-200 μm). Through heating-cooling ramps, temperature effect on rheological behavior of emulsions and pure biopolymers was assessed. 4:1 emulsions showed rheological behavior with a predominant effect of SPI, whereas 1:1 emulsions predominantly showed pectin characteristics. Emulsion stability was greatly affected by SPI:PEC ratio, since the pectin proportion had a strong influence on the emulsions behavior. Moreover, sonication was a fundamental parameter to increase SPI:PEC complexes effectiveness as emulsion stabilizers and use these systems to formulate foods with low oil contents.
      PubDate: 2020-01-18
       
  • Investigations into the Structure-Function Relationship of the
           Naturally-Derived Surfactant Glycyrrhizin: Emulsion Stability
    • Abstract: Abstract This study describes the emulsion stabilizing properties of the licorice root (Glycyrrhiza glabra L.) derived saponin glycyrrhizin and its corresponding aglycone 18β-glycyrrhetinic acid to further increase the understanding between structure and functional behavior. For this, we prepared 10% oil-in-water emulsions and investigated the emulsion stabilizing properties regarding environmental stresses including extreme pH, ionic strength, and temperature. Glycyrrhizin and its aglycone formed nano-sized emulsion droplets at neutral pH that were stable across a broad range of pH-values (pH 5–9), ionic strength (0–200 mM NaCl), and temperature (up to 60 °C). In contrast, emulsions were unstable at low pH (pH <5), as well as high ionic strength (>200 mM NaCl, >5 mM CaCl2) and temperature as well as after a freeze-thaw cycle. Thereby, the observed instability was mainly attributed to the reduction of electrostatic forces caused by the protonation of free carboxylic acid groups at low pH, screening of electrostatic forces at high ionic strengths, and thin interfaces causing coalescence during a freeze-thaw cycle. Overall, both molecules yielded remarkably stable emulsions at very low molecule-to-oil ratios, and therefore our results are relevant for ‘all-natural’ emulsion-based foods and beverages, as well as pharmaceutical and cosmetic products.
      PubDate: 2020-01-18
       
  • Biopolymer Coated Nanoliposome as Enhanced Carrier System of Perilla Oil
    • Abstract: Abstract Perilla oil is one of the best sources of plant-based omega-3 fatty acids while its low oxidative stability triggers deteriorative changes of flavour and thereby it’s reduced domestic usage. The present study was aimed at the formation of one-layered and double-layered nanoliposomes for encapsulating perilla seed oil using chitosan, poly-L-lysine, sodium alginate and genipin. Moreover, physical and oxidative stability of developed nanoliposomes and their in vitro release behaviour were investigated. Formation of coated nanoliposomes was confirmed by FT-IR and TEM analysis, where they showed a satisfactory range of size (200–502 nm) and encapsulation efficiency (82–91%). Indeed, chitosan as primary coating and genipin as a GRAS cross-linker could improve physical and oxidative stability of the developed nanoliposomes and all coated nanoliposomes could benefit stability under gastric and intestinal conditions.
      PubDate: 2020-01-14
       
  • Acid and Moisture Uptake into Red Beets during in Vitro Gastric Digestion
           as Influenced by Gastric pH
    • Abstract: Abstract Acid and moisture diffusion into foods during digestion influence food breakdown and nutrient release. As these mass transport processes can be affected by gastric pH and initial food structure, this study investigated acid and moisture uptake into foods with varying initial structure (raw and canned red beets) during in vitro gastric digestion as influenced by gastric pH. Acid uptake was characterized as the ratio between acid concentration during digestion divided by initial acid concentration and observed to be 4.14 ± 0.06 (canned) and 2.68 ± 0.08 (raw) during digestion at pH 1.8 compared to 1.61 ± 0.10 (canned) and 1.02 ± 0.08 (raw) at pH 4.8. Acid effective diffusivities, estimated following Fick’s second law, ranged from 1.7 × 10−10 m2/s to 1.2 × 10−9 m2/s and moisture effective diffusivities ranged from 6.7 × 10−11 m2/s to 2.1 × 10−10 m2/s. Higher solid loss after 240 min of digestion of red beets was observed at pH 1.8 (6.3% of initial solid content (raw) and 4.3% (canned)), whereas no significant solid loss was observed at pH 3.0 and 4.8. Results indicated swelling of cells and decrease in hardness of raw red beets during digestion at pH 1.8. The results of this study may help to design food products with a tailored particle breakdown and nutrient release during the dynamic pH conditions of the gastric environment.
      PubDate: 2020-01-02
       
  • Effect of Novel Ultrasonic- Microwave Combined Pretreatment on the Quality
           of 3D Printed Wheat Starch-Papaya System
    • Abstract: Abstract This study was aimed at investigating the effect of novel ultrasonic-microwave combined pretreatment on the three-dimensional (3D) printing quality of wheat starch-papaya system. In this study, microwave heating (MH) and ultrasonic- microwave combined heating (UMCH) were used as pretreatment in order to gelatinize the system so that it can be printed. During the heating process, the effects of different pretreatments (MH and UMCH) and different low microwave power (60 W, 70 W and 80 W) were compared in terms of the gelatinization degree, rheological properties, dielectric properties, water status distribution, texture, microstructure and printing accuracy. The results showed that when the microwave power was 80 W, the printing effect of samples pretreated by UMCH was the best. Its support stability, line uniformity, and height retention were relatively at an optimum level.
      PubDate: 2019-12-16
       
  • Controlling the Three-Dimensional Printing Mechanical Properties of Nostoc
           Sphaeroides System
    • Abstract: Abstract The main purpose of this paper is to explore the opportunities for fresh Nostoc sphaeroides (N. sphaeroides) to be applied to 3D food printing. N. sphaeroides is rich in nutrients and its paste possesses shear thinning properties. It was found the product obtained by 3D food printing with fresh N. sphaeroides had poor printability and was easy to collapse. In this study, we compared the addition of different potato starch (2%, 4%, 6% and 8%) to the characteristics of 3D printing of the N. sphaeroides gel system. The results obtained from the rheological analysis showed that the 6% potato starch added to of N. sphaeroides gel can be utilized for 3D food printing. The addition of potato starch increased the viscosity of the mixture so the printed lines were not easily broken, and the “self-supporting ability” of the material itself was enhanced to maintain a good shape without collapse. Texture profile analysis also showed that the 6% starch added printed product had the best gumminess parameter. In order to get a better printed product, the effects of printing parameters (nozzle diameter (Dn), extrusion rate (Vd) and nozzle moving speed (Vn)) on material printing performance and product formability was tested. When Dn, Vd, Vn were = 1.2 mm, 20 mm3/s, 25 mm/s, respectively, the printed product was having similar to the target product, with less breakage and less the changing of shape. Overall results show that 3D printing technology is a rising method for producing N. sphaeroides-based new products.
      PubDate: 2019-12-14
       
  • Preparation of Pickering Flaxseed Oil-in-Water Emulsion Stabilized by
           Chitosan-Myristic Acid Nanogels and Investigation of Its Oxidative
           Stability in Presence of Clove Essential Oil as Antioxidant
    • Abstract: Abstract The aim of this study was to obtain a stable flaxseed oil (FSO)-in-water Pickering emulsion (PE) stabilized by chitosan (CS)-myristic acid (MA) nanogels and to investigate the oxidative stability of the CS-MA nanogels-encapsulated FSO in the presence of clove essential oil (CEO) in shell or core modes. First, MA was successfully conjugated to CS by amide linkages in different MA-to-CS ratios to improve the emulsifier property of CS. Subsequently, the effects of pH, MA-to-CS ratio, and oil-to-nanogel ratio on the stability and droplet size of PE were examined. The most stable PE was obtained at pH 8, MA-to-CS ratio of 0.75:1, and oil-to-nanogel ratio of 10:1. Finally, the oxidative stability of the emulsions was analyzed. The results indicated that the formation of the CEO shell around dispersed droplet surfaces of FSO was more efficient in reduction of lipid oxidation and droplet size than admixing CEO in the oil core. The best oxidative stability was observed in the PE with 0.1% CEO shell. Overall, this work showed that by engineering the interfacial architecture via the combination of steric hindrance of CS-MA nanogel-based membrane and the interfacial load of CEO, appropriate physical and oxidative stabilities of the emulsions were obtainable.
      PubDate: 2019-12-13
       
  • Composition and Oil-Water Interfacial Tension Studies in Different
           Vegetable Oils
    • Abstract: Abstract The interfacial tension is one of the most important fundamental properties and presents crucial impacts throughout vegetable oil production, application and digestion. In this study, composition of vegetable oil including tocopherols, phytosterols, phenolic compounds, phospholipids, fatty acid composition and other constituents were determined. Furthermore, interfacial tension and its relationship with vegetable oil compositions were analyzed. Distribution and profile of composition of vegetable oil were remarkably different. The interfacial tension results showed physical refined vegetable oil exhibited an obviously lower interfacial tension than chemical refined oil attributed to abundant minor compositions. Moreover, the correlation analysis results indicated that phenolic compounds demonstrated the greatest influence on interfacial tension of vegetable oil against water with r = − 0.671, p = 0.009, followed by free fatty acid value, linoleic acid of triglyceride and phospholipids with r = − 0.639, 0.626, − 0.576 and p = 0.014, 0.017 and 0.031, respectively. No significant correlation was found between interfacial tension and other minor compositions. These results contribute to regulating lipid metabolism and evaluating oil quality more scientifically.
      PubDate: 2019-12-13
       
  • Effect of Maltodextrin Dextrose Equivalent on Electrospinnability and
           Glycation Reaction of Blends with Pea Protein Isolate
    • Abstract: Abstract Compared to commonly applied wet and dry heating procedures, a combination of electrospinning and heat treatment can facilitate glycation of proteins with reducing polysaccharides. This study investigates how the amount of reducing carbonyl groups (i.e. dextrose equivalent, DE) of different maltodextrins influences electrospinnability and subsequent glycation in blends with pea protein isolate (PPI). In the first step of the study, maltodextrin-PPI dispersions were electrospun. The concentrations of PPI and maltodextrin DE 2 were kept constant in the aqueous spinning dispersion. The addition of 0.05 or 0.1 g/mL maltodextrin DE 12 or 21 slightly affected the electrical conductivity and dynamic viscosity of the spinning dispersions, however, fiber production rate and morphology were dominated by the presence of maltodextrin DE 2 (0.8 g/mL). In the second step of the study, fibers were heated (60 °C, 75% rel. Humidity, 0–24 h). SDS-PAGE analysis and the measurement of free amino groups confirmed the covalent attachment of maltodextrin carbonyl groups to free amino groups of PPI. The fastest glycation and the lowest relative amount of free amino groups (49.70 ± 6.54%) after 24 h heating was measured for the fibers with the highest amount of reducing carbonyl groups. The fibers with the lowest amount of reducing carbonyl groups showed no significant (p < 0.05) decrease of free amino groups after heat treatment. The results suggest that within the boundaries of electrospinnability, the degree of glycation can be adjusted by varying the amount of reducing carbonyl groups in the fibers.
      PubDate: 2019-12-11
       
  • Digestibility and Bioaccessibility of Pickering Emulsions of Roasted
           Coffee Oil Stabilized by Chitosan and Chitosan-Sodium Tripolyphosphate
           Nanoparticles
    • Abstract: Abstract Due to the valuable lipid fraction composition present in roasted coffee oil, it has become important to develop methods that modify its structure, such as emulsion-based encapsulation systems, favoring its use in food industry. Pickering emulsions have appeared as a potential alternative to protect oil droplets stabilized by solid particles rather than the use of surfactants. This work investigated the ability of chitosan (CS) nanoparticles produced by deprotonation and by ionic gelation to stabilize emulsions with different lipid phase content as an alternative to encapsulate roasted coffee oil. An in vitro digestion model consisting of mouth, gastric and intestinal phases was used to characterize the rate and extent of lipid phase digestion, emulsion microstructure, and bioaccessibility of total phenolic compounds. All emulsions presented some structural changes attributed to flocculation and coalescence throughout simulated gastrointestinal digestion. Better droplet stabilization using the deprotonation method was achieved when lower oil content was used, leading to higher bioaccessibility of total phenolic compounds.
      PubDate: 2019-12-10
       
  • Enhancing Water Solubility and Stability of Natamycin by Molecular
           Encapsulation in Methyl- β -Cyclodextrin and its Mechanisms by Molecular
           Dynamics Simulations
    • Abstract: Abstract In this study, the antifungal compound natamycin was encapsulated in methyl-β-cyclodextrin (heptakis(2,6-di-O-methyl)-β-cyclodextrin, Me-β-CD) to improve its aqueous solubility and stability. The aqueous solubilities of natamycin in the presence of β-CD, 2-hydroxypropyl-β-CD, 6-O-α-maltosyl-β-CD, and Me-β-CD were compared. The Me-β-CD showed the best result to increase the solubility of natamycin in aqueous. The pH stability of natamycin was improved by the formation of inclusion complex with Me-β-CD, especially at acidic conditions. The degradation of natamycin under UV-light exposure followed first-order kinetics with half-life times (t1/2) of 59.2 and 157.5 min in pure form and Me-β-CD inclusion complex, respectively. The in vitro antifungal activities of natamycin/Me-β-CD complex against Aspergillus niger food pathogen were evaluated. The results demonstrated that the natamycin/Me-β-CD complex could effectively improve the aqueous solubility and photostability of natamycin without compromising in antifungal activities. Finally, the molecular inclusion mechanisms and geometrical configurations of the natamycin/Me-β-CD complex were studied using molecular dynamics simulations. This research may lead to the development of more effective inclusion-based delivery systems to encapsulate and protect lipophilic antimicrobial agents for food applications.
      PubDate: 2019-12-06
       
  • Soybean Hull Insoluble Polysaccharides: Improvements of Its
           Physicochemical Properties Through High Pressure Homogenization
    • Abstract: Abstract Soybean hull is an agroindustrial waste which has not been fully studied as a food ingredient. The aims of this work were to obtain insoluble fibers from soybean hull and to evaluate the effect of high pressure homogenization (HPH) on its physicochemical properties. Hull insoluble polysaccharides (HIPS) were obtained in a single step, as the insoluble residue after pectin removal. FTIR showed bands corresponding to cellulose and hemicellulose in HIPS, and thermogravimetric analysis showed two degradation events at 236.3 °C and 325.6 °C, corresponding to cellulose and hemicellulose, respectively. HIPS dispersions (pH 3.00) were subjected to HPH by three cycles at increasing pressures (up to 1000 bar), obtaining soybean hull nanofibers. SEM images show that HPH at 1000 bar reduced the dimensions of the fiber bundle from 30 to 90 μm in length and 9–15 μm in diameter to nanofibers of 10–30 μm in length and 100–400 nm in diameter. AFM further confirms a heterogeneous distribution of sizes in HIPS800 and HIPS1000, evidencing the presence of individual nanofibers with diameters around 50 ± 10 nm and 40 ± 10 nm, respectively, with several μm in length. Furthermore, an increase in water holding capacity from 2.1 to 61 gwater/gdry matter and viscosity from 0.39 to 34,945 Pa.s were achieved as HPH at 1000 bar treatment was applied. HPH increased the interfacial area and promoted the interconnection of fibers in a hydrated gel-like structure. This explains flow behavior, which was extensively studied in this work: three-region viscosity profile (shear-thinning, plateau or shear-thickening and shear-thinning) and a pronounced hysteresis loop. Oscillatory rheology was used to study the viscoelastic behavior of HIPS dispersions. HIPS are a source of nanofibers, easy to obtain through a single step of chemical treatment followed by the application of high pressures. It is remarkable that the use of few chemical solvents is favorable from an environmental point of view. This work also suggests a potential application of HIPS to improve physicochemical and structural properties in acidic foods. Graphical Abstract
      PubDate: 2019-12-05
       
  • Fabrication and Characterization of Curcumin-Loaded Complex Coacervates
           Made of Gum Arabic and Whey Protein Nanofibrils
    • Abstract: Abstract In this research, gum Arabic (GA) and whey protein nanofibrils (WPN) were employed for the encapsulation of curcumin as a bioactive compound with low water solubility through the complex coacervation method. The optimum conditions for the formation of complex coacervates were found at WPN/GA weight ratio of 1:1 and pH value of 3.0. The resulting complexes showed a high ability for loading of curcumin as a bioactive cargo. Fluorescence spectroscopy showed that the curcumin was loaded in the hydrophobic core of WPN/GA coacervates. The characteristics of curcumin-loaded coacervates were also evaluated by XRD and FT-IR analysis. The curcumin-loaded complex coacervates dispersions showed a shear thinning behavior. They also showed a good surface activity which makes them excellent candidates to fabricate new functional food emulsions and beverages. The results indicated that the antioxidant activity and photo-stability of curcumin were significantly improved by encapsulation into WPN/GA complexes. A sustained-release profile also was investigated for curcumin from WPN/GA complexes in the simulated gastrointestinal conditions. This study suggested that the WPN/GA electrostatic-driven complexes can be used as efficient carriers for curcumin delivery.
      PubDate: 2019-12-01
       
  • Technological and Structural Properties of Oat Cookies Incorporated with
           Fructans ( Agave tequilana Weber)
    • Abstract: Abstract The beneficial effect of agave fructans on health has been demonstrated gaining popularity as a new prebiotic and functional food ingredient, however, their role as an ingredient and their technological properties is scarcely reported. This work studied the structural and quality features of doughs and cookies added with agave fructans “AF” and compared to systems added with chicory fructans “CF” or without fructans (“WF”) added, to analyse the effect of the chemical structure due to the fructan-type added. For doughs, it was found that AF lowered the water adsorption, causing a short development time and the highest stability during kneading. The texture profile analysis and rheological tests revealed that AF increased springiness and cohesiveness. For cookies, the crumb and lightness were evaluated using a computer vision system. Among the samples, AF promoted a darker and shiny crust and a more homogeneous and compact microstructure. X-ray diffraction analysis demonstrated that AF had the highest values of crystallinity. In order to provide more information about the distribution of carbohydrates (aldoses and ketoses) and gluten proteins in the cookies, a method was developed to specifically stain these molecules, and it successfully described the effect of the fructans incorporated into doughs and cookies. Results from confocal laser scanning microscopy illustrated differences in the distribution of the biopolymers stained. This research provided an improved understanding of the AF addition on the technological properties and the structure–functionally relationship of doughs and cookies, beyond the nutraceutical applications attributed to the AF.
      PubDate: 2019-12-01
       
  • Avocado Oil Incorporated in Ultrafine Zein Fibers by Electrospinning
    • Abstract: Abstract The objective of this study was to encapsulate avocado oil in ultrafine zein fibers by the electrospinning technique. Avocado oil, at concentrations of 15 and 30% (w/w), was incorporated into 20, 25 and 30% (w/v) zein polymer solutions. The polymer solutions were evaluated for viscosity and electrical conductivity. The zein fibers containing the avocado oil were evaluated for the efficiency of encapsulation, morphology and size distribution of diameter, FTIR-ATR and X-ray diffraction, as well as for the release of carotenoids in gastrointestinal conditions in vitro. At the concentration of 30% zein, continuous ultrafine fibers were obtained, without bead formation and with mean diameter distribution ranging from 618 to 971 nm, whose encapsulation efficiency was higher than 77%. The FTIR-ATR analysis showed the encapsulation of the oil, and X-ray diffraction showed the amorphous structure of the fibers. It was verified that the composite fiber of 30% of zein and 30% of oil had a release profile close to the ideal of carotenoid release under simulated gastrointestinal conditions.
      PubDate: 2019-12-01
       
  • Electrospun Ultrafine Fibers from Black Bean Protein Concentrates and
           Polyvinyl Alcohol
    • Abstract: Abstract In this study, ultrafine fibers were produced from black bean protein concentrates (BPCs) and polyvinyl alcohol (PVA) by electrospinning. The BPC was denatured under acidic (pH 2) or basic (pH 11) conditions. Polymer solutions containing different PVA concentrations (11% or 21%, w/v) and different BPC: PVA ratios (50:50 or 75:25, v/v) were used for fiber production. The electrical conductivity and rheological properties of the fiber-forming solutions were evaluated, as well as the morphology, size distribution, infrared spectrum, and thermal properties of the electrospun fibers. The fibers showed a homogeneous morphology and diameters ranging from 115 to 541 nm. Fibers from the solution containing BPC denatured at pH 11, 11% PVA, and 75:25 (v/v) BPC: PVA presented the lowest diameter, and those from BPC denatured at pH 2 had less beads than the fibers obtained from BPC denatured at pH 11. The solution formulation affected the thermal properties of the fibers, with weight loss increases ranging from 39.0% to 60.9%. The polymeric solutions containing PVA and BPC (whether denatured under basic or acidic conditions) resulted in ultrafine electrospun fibers with highly favorable characteristics that could potentially be used for the encapsulation of bioactive compounds and food applications.
      PubDate: 2019-12-01
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.214.224.224
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-