Authors:Artur V. Dmitrenko Pages: 1 - 9 Abstract: Abstract The stochastic equations of continuum are used for determining the hydraulic drag coefficients. As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence intensity and scale instead of only on the Reynolds number are proposed for the classic flows of an incompressible fluid along a smooth flat plate and a round smooth tube. It is shown that the new expressions for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for the hydraulic drag coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds numbers. On the basis of these new dependencies, it is possible to explain that the differences between the experimental results for the fixed Reynolds number are caused by the difference in the values of flow fluctuations for each experiment instead of only due to the systematic error in the processing of experiments. Accordingly, the obtained general dependencies for the smooth flat plate and the smooth round tube can serve as the basis for clarifying the results of experiments and the experimental formulas, which used for continuum flows in different devices. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0514-1 Issue No:Vol. 29, No. 1 (2017)

Authors:Lidiia Nazarenko; Swantje Bargmann; Henryk Stolarski Pages: 77 - 96 Abstract: Abstract The objective of this work is to present an approach allowing for inclusion of the complete Gurtin–Murdoch material surface equations in methods leading to closed-form formulas defining effective properties of particle-reinforced nanocomposites. Considering that all previous developments of the closed-form formulas for effective properties employ only some parts of the Gurtin–Murdoch model, its complete inclusion constitutes the main focus of this work. To this end, the recently introduced new notion of the energy-equivalent inhomogeneity is generalized to precisely include all terms of the model. The crucial aspect of that generalization is the identification of the energy associated with the last term of the Gurtin–Murdoch equation, i.e., with the surface gradient of displacements. With the help of that definition, the real nanoparticle and its surface possessing its own distinct elastic properties and residual stresses are replaced by an energy-equivalent inhomogeneity with properties incorporating all surface effects. Such equivalent inhomogeneity can then be used in combination with any existing homogenization method. In this work, the method of conditional moments is used to analyze composites with randomly dispersed spherical nanoparticles. Closed-form expressions for effective moduli are derived for both bulk and shear moduli. As numerical examples, nanoporous aluminum is investigated. The normalized bulk and shear moduli of nanoporous aluminum as a function of residual stresses are analyzed and evaluated in the context of other theoretical predictions. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0521-2 Issue No:Vol. 29, No. 1 (2017)

Authors:C. Jiang; K. Davey; R. Prosser Pages: 145 - 186 Abstract: Abstract Tessellated continuum mechanics is an approach for the representation of thermo-mechanical behaviour of porous media on tessellated continua. It involves the application of iteration function schemes using affine contraction and expansion maps, respectively, for the creation of porous fractal materials and associated tessellated continua. Highly complex geometries can be produced using a modest number of contraction mappings. The associated tessellations form the mesh in a numerical procedure. This paper tests the hypothesis that thermal analysis of porous structures can be achieved using a discontinuous Galerkin finite element method on a tessellation. Discontinuous behaviour is identified at a discontinuity network in a tessellation; its use is shown to provide a good representation of the physics relating to cellular heat exchanger designs. Results for different cellular designs (with corresponding tessellations) are contrasted against those obtained from direct analysis and very high accuracy is observed. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0523-0 Issue No:Vol. 29, No. 1 (2017)

Authors:Raimondo Penta; Alf Gerisch Pages: 187 - 206 Abstract: Abstract The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0526-x Issue No:Vol. 29, No. 1 (2017)

Authors:Long-Qiao Zhou; Sergey V. Meleshko Pages: 207 - 224 Abstract: Abstract A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0524-z Issue No:Vol. 29, No. 1 (2017)

Authors:Daria Andreeva; Wiktoria Miszuris Pages: 345 - 358 Abstract: Abstract In this paper, we consider the heat transfer problem in a cylindrical composite material with an adhesive interphase of closed curvilinear shape. The interphase exhibits nonlinear behaviour and at the same time has physical characteristics (size, thermal conductivity) that significantly vary from the properties of the surrounding components. As the latter complicates the direct use of FEM, we use asymptotic method to replace the interphase with an imperfect interface of zero thickness, preserving the essential features of the thermal behaviour of the interphase through the evaluated transmission conditions. Carefully designed numerical simulations verify their validity. We place special emphasis on the impact of geometric properties of the interphase, in particular, the curvature of its boundaries, on the accuracy of the conditions. PubDate: 2017-01-01 DOI: 10.1007/s00161-016-0532-z Issue No:Vol. 29, No. 1 (2017)

Authors:Hans-Dieter Alber Abstract: Abstract We study how the propagation speed of interfaces in the Allen–Cahn phase field model for phase transformations in solids consisting of the elasticity equations and the Allen–Cahn equation depends on two parameters of the model. The two parameters control the interface energy and the interface width, but change also the interface speed. To this end, we derive an asymptotic expansion of second order for the interface speed, called the kinetic relation, and prove that it is uniformly valid in both parameters. As a consequence, we show that the model error is proportional to the interface width divided by the interface energy. We conclude that simulations of interfaces with low interface energy based on this model require a very small interface width, implying a large numerical effort. Effective simulations thus need adaptive mesh refinement or other advanced techniques. PubDate: 2017-02-18 DOI: 10.1007/s00161-017-0558-x

Authors:Q. Yang; Q. C. Lv; Y. R. Liu Abstract: Abstract This paper is concerned with Hamilton’s principle for inelastic bodies with conservative external forces. Inelasticity is described by internal variable theory by Rice (J Mech Phys Solids 19:433–455, 1971), and the influence of strain change on the temperature field is ignored. Unlike Hamilton’s principle for elastic bodies which has an explicit Lagrangian, Hamilton’s principle for inelastic bodies generally has no an explicit Lagrangian. Based on the entropy inequality, a quasi Hamilton’s principle for inelastic bodies is established in the form of inequality and with an explicit Lagrangian, which is just the Lagrangian for elastic bodies by replacing the strain energy with free energy. The quasi Hamilton’s principle for inelastic bodies states that the actual motion is distinguished by making the action an maximum. The evolution equations of internal variables can not be recovered from the quasi Hamilton’s principle. PubDate: 2017-02-11 DOI: 10.1007/s00161-017-0557-y

Authors:Wenjun Liu; Miaomiao Chen Abstract: Abstract In this paper, we study the well-posedness and exponential decay for the porous thermoelastic system with the heat conduction given by Cattaneo’s law and a time-varying delay term, the coefficient of which is not necessarily positive. Using the semigroup arguments and variable norm technique of Kato, we first prove that the system is well-posed under a certain condition on the weight of the delay term, the weight of the elastic damping term and the speed of the delay function. By introducing a suitable energy and an appropriate Lyapunov functional, we then establish an exponential decay rate result. PubDate: 2017-02-07 DOI: 10.1007/s00161-017-0556-z

Authors:Valeriy A. Ryabov Abstract: Abstract Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables “coordinate-momentum–force” instead of the standard treatment in terms of tensor-valued variables “strain–stress.” This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving–Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio. PubDate: 2017-02-07 DOI: 10.1007/s00161-017-0555-0

Authors:K. S. Surana; A. D. Joy; J. N. Reddy Abstract: Abstract This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements \(( \pmb {\varvec{u }})\) and (ii) three internal rotations \(({}_i \pmb {\varvec{{\varTheta } }})\) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations \(({}_e \pmb {\varvec{{\varTheta } }})\) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to \( \pmb {\varvec{u }}\) and \({}_e \pmb {\varvec{{\varTheta } }}\) as six degrees of freedom at a material point. The internal rotations \(({}_i \pmb {\varvec{{\varTheta } }})\) , often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations \({}_i \pmb {\varvec{{\varTheta } }}\) are resisted by the deforming matter, conjugate moment tensor arises that together with \({}_i \pmb {\varvec{{\varTheta } }}\) may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations \({}_e \pmb {\varvec{{\varTheta } }}\) also result in conjugate moment tensor which, together with \({}_e \pmb {\varvec{{\varTheta } }}\) , may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the entropy inequality. Material coefficients introduced in the constitutive theories are clearly defined and discussed. PubDate: 2017-01-25 DOI: 10.1007/s00161-017-0554-1

Authors:C. S. K. Raju; K. R. Sekhar; S. M. Ibrahim; G. Lorenzini; G. Viswanatha Reddy; E. Lorenzini Abstract: Abstract In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge–Kutta-based Newton’s technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys. PubDate: 2017-01-25 DOI: 10.1007/s00161-016-0552-8

Authors:Mykhailo Semkiv; Patrick D. Anderson; Markus Hütter Abstract: Abstract The effect of physical aging on the mechanics of amorphous solids as well as mechanical rejuvenation is modeled with nonequilibrium thermodynamics, using the concept of two thermal subsystems, namely a kinetic one and a configurational one. Earlier work (Semkiv and Hütter in J Non-Equilib Thermodyn 41(2):79–88, 2016) is extended to account for a fully general coupling of the two thermal subsystems. This coupling gives rise to hypoelastic-type contributions in the expression for the Cauchy stress tensor, that reduces to the more common hyperelastic case for sufficiently long aging. The general model, particularly the reversible and irreversible couplings between the thermal subsystems, is compared in detail with models in the literature (Boyce et al. in Mech Mater 7:15–33, 1988; Buckley et al. in J Mech Phys Solids 52:2355–2377, 2004; Klompen et al. in Macromolecules 38:6997–7008, 2005; Kamrin and Bouchbinder in J Mech Phys Solids 73:269–288 2014; Xiao and Nguyen in J Mech Phys Solids 82:62–81, 2015). It is found that only for the case of Kamrin and Bouchbinder (J Mech Phys Solids 73:269–288, 2014) there is a nontrivial coupling between the thermal subsystems in the reversible dynamics, for which the Jacobi identity is automatically satisfied. Moreover, in their work as well as in Boyce et al. (Mech Mater 7:15–33, 1988), viscoplastic deformation is driven by the deviatoric part of the Cauchy stress tensor, while for Buckley et al. (J Mech Phys Solids 52:2355–2377, 2004) and Xiao and Nguyen (J Mech Phys Solids 82:62–81, 2015) this is not the case. PubDate: 2017-01-20 DOI: 10.1007/s00161-016-0550-x

Authors:Q. Roirand; D. Missoum-Benziane; A. Thionnet; L. Laiarinandrasana Abstract: Abstract Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn. PubDate: 2017-01-20 DOI: 10.1007/s00161-017-0553-2

Authors:Alexander Lion; Christoph Mittermeier; Michael Johlitz Abstract: Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference \(c_\mathrm{p} -c_\mathrm{v} \) is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. PubDate: 2017-01-19 DOI: 10.1007/s00161-016-0551-9

Authors:Tomáš Roubíček Abstract: Abstract A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth’s crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius–Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations. PubDate: 2017-01-13 DOI: 10.1007/s00161-016-0547-5

Authors:A. Paglietti Abstract: Abstract In laminar flow, viscous fluids must exert appropriate elastic shear stresses normal to the flow direction. This is a direct consequence of the balance of angular momentum. There is a limit, however, to the maximum elastic shear stress that a fluid can exert. This is the ultimate shear stress, \(\tau _\mathrm{y}\) , of the fluid. If this limit is exceeded, laminar flow becomes dynamically incompatible. The ultimate shear stress of a fluid can be determined from experiments on plane Couette flow. For water at \(20\,^{\circ }\hbox {C}\) , the data available in the literature indicate a value of \(\tau _\mathrm{y}\) of about \(14.4\times 10^{-3}\, \hbox {Pa}\) . This study applies this value to determine the Reynolds numbers at which flowing water reaches its ultimate shear stress in the case of Taylor–Couette flow and circular pipe flow. The Reynolds numbers thus obtained turn out to be reasonably close to those corresponding to the onset of turbulence in the considered flows. This suggests a connection between the limit to laminar flow, on the one hand, and the occurrence of turbulence, on the other. PubDate: 2017-01-10 DOI: 10.1007/s00161-016-0549-3

Authors:P. Ván Abstract: Abstract Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass–momentum–energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier–Navier–Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule. PubDate: 2017-01-09 DOI: 10.1007/s00161-016-0545-7

Authors:Teodor M. Atanacković; Marko Janev; Sanja Konjik; Stevan Pilipović Abstract: Abstract We study waves in a viscoelastic rod whose constitutive equation is of generalized Zener type that contains fractional derivatives of complex order. The restrictions following from the Second Law of Thermodynamics are derived. The initial boundary value problem for such materials is formulated and solution is presented in the form of convolution. Two specific examples are analyzed. PubDate: 2017-01-06 DOI: 10.1007/s00161-016-0548-4