for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> PHYSICS (Total: 745 journals)
    - ELECTRICITY AND MAGNETISM (7 journals)
    - MECHANICS (20 journals)
    - NUCLEAR PHYSICS (44 journals)
    - OPTICS (86 journals)
    - PHYSICS (542 journals)
    - SOUND (17 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (542 journals)            First | 1 2 3 4 5 6 | Last

Doklady Physics     Hybrid Journal   (Followers: 1)
Dynamical Properties of Solids     Full-text available via subscription  
ECS Journal of Solid State Science and Technology     Full-text available via subscription  
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 5)
EJNMMI Physics     Open Access  
Embedded Systems Letters, IEEE     Hybrid Journal   (Followers: 18)
Energy Procedia     Open Access   (Followers: 2)
Engineering Failure Analysis     Hybrid Journal   (Followers: 26)
Engineering Fracture Mechanics     Hybrid Journal   (Followers: 17)
Environmental Fluid Mechanics     Hybrid Journal   (Followers: 2)
EPJ Nonlinear Biomedical Physics     Open Access  
EPJ Quantum Technology     Open Access  
EPJ Techniques and Instrumentation     Full-text available via subscription  
EPJ Web of Conferences     Open Access  
European Journal of Physics     Full-text available via subscription   (Followers: 4)
European Journal of Physics Education     Open Access   (Followers: 5)
European Physical Journal - Applied Physics     Full-text available via subscription   (Followers: 4)
European Physical Journal C     Hybrid Journal  
Europhysics News     Open Access   (Followers: 1)
Experimental Mechanics     Hybrid Journal   (Followers: 15)
Experimental Methods in the Physical Sciences     Full-text available via subscription  
Experimental Techniques     Hybrid Journal   (Followers: 30)
Exploration Geophysics     Hybrid Journal   (Followers: 3)
Few-Body Systems     Hybrid Journal  
Fire and Materials     Hybrid Journal   (Followers: 4)
Flexible Services and Manufacturing Journal     Hybrid Journal   (Followers: 2)
Fluctuation and Noise Letters     Hybrid Journal   (Followers: 1)
Fluid Dynamics     Hybrid Journal   (Followers: 5)
Fortschritte der Physik/Progress of Physics     Hybrid Journal  
Frontiers in Physics     Open Access   (Followers: 2)
Frontiers of Materials Science     Hybrid Journal   (Followers: 4)
Frontiers of Physics     Hybrid Journal   (Followers: 1)
Fusion Engineering and Design     Hybrid Journal   (Followers: 2)
Geochemistry, Geophysics, Geosystems     Full-text available via subscription   (Followers: 21)
Geografiska Annaler, Series A: Physical Geography     Hybrid Journal   (Followers: 3)
Geophysical Research Letters     Full-text available via subscription   (Followers: 46)
Geoscience and Remote Sensing, IEEE Transactions on     Hybrid Journal   (Followers: 20)
Glass Physics and Chemistry     Hybrid Journal   (Followers: 2)
Granular Matter     Hybrid Journal   (Followers: 2)
Graphs and Combinatorics     Hybrid Journal   (Followers: 5)
Handbook of Geophysical Exploration: Seismic Exploration     Full-text available via subscription  
Handbook of Metal Physics     Full-text available via subscription  
Handbook of Surface Science     Full-text available via subscription   (Followers: 3)
Handbook of Thermal Analysis and Calorimetry     Full-text available via subscription  
Haptics, IEEE Transactions on     Hybrid Journal   (Followers: 4)
Heat Transfer - Asian Research     Hybrid Journal   (Followers: 6)
High Energy Density Physics     Hybrid Journal   (Followers: 1)
High Pressure Research: An International Journal     Hybrid Journal   (Followers: 1)
IEEE Journal of Quantum Electronics     Hybrid Journal   (Followers: 15)
IEEE Signal Processing Magazine     Full-text available via subscription   (Followers: 28)
IET Optoelectronics     Hybrid Journal   (Followers: 2)
Il Colle di Galileo     Open Access  
Indian Journal of Biochemistry and Biophysics (IJBB)     Open Access   (Followers: 4)
Indian Journal of Physics     Hybrid Journal   (Followers: 4)
Indian Journal of Pure & Applied Physics (IJPAP)     Open Access   (Followers: 8)
Indian Journal of Radio & Space Physics (IJRSP)     Open Access   (Followers: 5)
Industrial Electronics, IEEE Transactions on     Hybrid Journal   (Followers: 11)
Industry Applications, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Infinite Dimensional Analysis, Quantum Probability and Related Topics     Hybrid Journal  
InfraMatics     Open Access  
Infrared Physics & Technology     Hybrid Journal  
Intelligent Transportation Systems Magazine, IEEE     Full-text available via subscription   (Followers: 1)
Intermetallics     Hybrid Journal   (Followers: 4)
International Applied Mechanics     Hybrid Journal   (Followers: 2)
International Geophysics     Full-text available via subscription   (Followers: 3)
International Journal for Computational Methods in Engineering Science and Mechanics     Hybrid Journal   (Followers: 8)
International Journal for Ion Mobility Spectrometry     Hybrid Journal   (Followers: 1)
International Journal for Simulation and Multidisciplinary Design Optimization     Full-text available via subscription   (Followers: 1)
International Journal of Abrasive Technology     Hybrid Journal   (Followers: 2)
International Journal of Aeroacoustics     Full-text available via subscription   (Followers: 6)
International Journal of Applied Electronics in Physics & Robotics     Open Access   (Followers: 1)
International Journal of Astronomy and Astrophysics     Open Access   (Followers: 3)
International Journal of Computational Materials Science and Surface Engineering     Hybrid Journal   (Followers: 7)
International Journal of Damage Mechanics     Hybrid Journal   (Followers: 5)
International Journal of Fatigue     Hybrid Journal   (Followers: 6)
International Journal of Fracture     Hybrid Journal   (Followers: 7)
International Journal of Geometric Methods in Modern Physics     Hybrid Journal   (Followers: 1)
International Journal of Geophysics     Open Access   (Followers: 3)
International Journal of Heat and Fluid Flow     Hybrid Journal   (Followers: 9)
International Journal of Low Radiation     Hybrid Journal  
International Journal of Low-Carbon Technologies     Open Access   (Followers: 1)
International Journal of Mass Spectrometry     Hybrid Journal   (Followers: 12)
International Journal of Material Forming     Hybrid Journal   (Followers: 2)
International Journal of Materials and Product Technology     Hybrid Journal   (Followers: 4)
International Journal of Mechanical Sciences     Hybrid Journal   (Followers: 5)
International Journal of Mechanics and Materials in Design     Hybrid Journal   (Followers: 5)
International Journal of Medical Physics, Clinical Engineering and Radiation Oncology     Open Access   (Followers: 4)
International Journal of Micro-Nano Scale Transport     Full-text available via subscription   (Followers: 2)
International Journal of Microstructure and Materials Properties     Hybrid Journal   (Followers: 7)
International Journal of Microwave Science and Technology     Open Access   (Followers: 2)
International Journal of Modeling, Simulation, and Scientific Computing     Hybrid Journal   (Followers: 1)
International Journal of Modern Physics A     Hybrid Journal   (Followers: 1)
International Journal of Modern Physics B     Hybrid Journal  
International Journal of Modern Physics C     Hybrid Journal  
International Journal of Modern Physics D     Hybrid Journal  
International Journal of Modern Physics E     Hybrid Journal   (Followers: 1)
International Journal of Nanomanufacturing     Hybrid Journal   (Followers: 1)
International Journal of Nanoscience     Hybrid Journal   (Followers: 1)
International Journal of Nanotechnology     Hybrid Journal   (Followers: 5)
International Journal of Non-Linear Mechanics     Hybrid Journal   (Followers: 4)

  First | 1 2 3 4 5 6 | Last

Journal Cover Continuum Mechanics and Thermodynamics
   Journal TOC RSS feeds Export to Zotero [5 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1432-0959 - ISSN (Online) 0935-1175
     Published by Springer-Verlag Homepage  [2209 journals]   [SJR: 0.749]   [H-I: 26]
  • Nonaxisymmetric electroelastic vibrations of a hollow sphere made of
           functionally gradient piezoelectric material
    • Abstract: Abstract The nonaxisymmetric problem of natural vibrations of a hollow sphere made of functionally gradient piezoelectric material is solved based on 3D electroelasticity. The properties of the material change continuously along a radial coordinate according to an exponential law. The external surface of the sphere is free of tractions and either insulated or short-circuited by electrodes. After separation of variables and representation of the components of the displacements and of the stress tensor in terms of spherical functions, the initially three-dimensional problem is reduced to a boundary-value problem for the eigenvalues expressed by ordinary differential equations. This problem is solved by a stable discrete-orthogonalization technique in combination with a step-by-step search method with respect to the radial coordinate. Moreover, a numerical investigation is performed based on the algorithm used for solving the problem. In particular, we investigate the influence of the geometric and electric parameters on the frequency spectrum at the nonaxisymmetry of natural vibrations of an inhomogeneous piezoceramic thick-walled sphere.
      PubDate: 2014-11-01
       
  • A viscoelastic damage model for polycrystalline ice, inspired by
           Weibull-distributed fiber bundle models. Part II: Thermodynamics of a
           rank-4 damage model
    • Abstract: Abstract We consider a viscoelastic–viscoplastic continuum damage model for polycrystalline ice. The focus lies on the thermodynamics particularities of such a constitutive model and restrictions on the constitutive theory which are implied by the entropy principle. We use Müller’s formulation of the entropy principle, together with Liu’s method of exploiting it with the aid of Lagrange multipliers.
      PubDate: 2014-11-01
       
  • A viscoelastic damage model for polycrystalline ice, inspired by
           Weibull-distributed fiber bundle models. Part I: Constitutive models
    • Abstract: Abstract We consider a constitutive model for polycrystalline ice, which contains delayed-elastic and viscous deformations, and a damage variable. The damage variable is coupled to the delayed-elastic deformation by a fiber bundle ansatz. We construct an isotropic theory, which can be calibrated with experimental data. Furthermore, we generalize the theory to a damage model in terms of rank-four tensors. This general model allows the evolution of anisotropic damage.
      PubDate: 2014-11-01
       
  • Toward the thermodynamic modeling of reacting ionic mixtures
    • Abstract: Abstract Based on the Müller–Liu entropy principle and the axioms of constitutive theory, a continuum model for reacting ionic mixtures is presented. The influence of microscopic structure on the mixture dynamics is taken into account through the thermodynamics of polar materials. Moreover, mechanical balance laws for classical mixtures under influence of electromagnetic fields and quasi-electrostatic Maxwell’s equations are briefly shown. With an appropriate constitutive model for a diluted and isotropic mixture of non-volatile solutes and by considering the same temperature field for all constituents, constraints on constitutive quantities are imposed, and the conditions for the thermodynamic equilibrium are established from the entropy principle. Furthermore, the nonlinear nature of chemical reactions as well as the reciprocal nature of some irreversible processes is highlighted. Unlike the classical approach for electrolyte solutions, the current constitutive model incorporates thermoelectric and electro-kinetic phenomena into the phenomenological equations, providing a more comprehensive approach of electrolyte solutions dynamics.
      PubDate: 2014-11-01
       
  • A thermo-mechanically coupled field model for shape memory alloys
    • Abstract: Abstract The impressive properties of shape memory alloys are produced by means of solid-to-solid phase transformations where thermal effects play an important role. In this paper, we present a model for polycrystalline shape memory alloys which takes full thermo-mechanical coupling into account. Starting from the equations of the first and the second law of thermodynamics, we derive evolution equations for the volume fractions of the different martensitic variants and a related equation for heat conduction. A thermodynamic analysis allows to formulate a complete expression for the dissipation caused by phase transformation and heat flux. This allows to model the experimentally well-documented transformation fronts in tension tests by a finite element scheme without further assumptions. Additionally, the number of required model parameters is very small in comparison with phenomenological approaches. Numerical examples are presented which show a good agreement with experimental observations.
      PubDate: 2014-11-01
       
  • An energetic formulation of a one-dimensional model of superelastic SMA
    • Abstract: Abstract This paper presents an energetic framework for the study of the macroscopic evolution of shape memory alloys (SMA) with softening behavior. It is written for a class of standard rate-independent materials with an internal variable derived from the Drucker–Ilyushin work property. This one-dimensional model is defined by three material functions of the internal variable and one material parameter. The quasi-static evolution is formulated for a one-dimensional bar under traction and is based on two physical principles: a stability criterion which consists in selecting the local minima of the total energy and an energy balance condition which requires the absolute continuity of the total energy. The stability criterion aims to overcome the non-uniqueness issue associated with the intrinsic softening character of SMA while the energy balance condition accounts for evolutions even with possible time discontinuities. While being consistent with the classical Kuhn–Tucker formulation of the phase transformations, such energetic formulation proved to be more suitable than this latter for the study of stress-softening SMA. Both homogeneous and non-homogenous solutions are investigated with respect to this variational evolution problem. Specifically, we show the instability of the homogeneous states for softening materials and construct, in this latter case, a non-homogeneous stable evolution that follows a transformation stress line which corresponds to the Maxwell line of the softening intrinsic behavior.
      PubDate: 2014-11-01
       
  • A LBM–DEM solver for fast discrete particle simulation of
           particle–fluid flows
    • Abstract: Abstract The lattice Boltzmann method (LBM) for simulating fluid phases was coupled with the discrete element method (DEM) for studying solid phases to formulate a novel solver for fast discrete particle simulation (DPS) of particle–fluid flows. The fluid hydrodynamics was obtained by solving LBM equations instead of solving the Navier–Stokes equation by the finite volume method (FVM). Interparticle and particle–wall collisions were determined by DEM. The new DPS solver was validated by simulating a three-dimensional gas–solid bubbling fluidized bed. The new solver was found to yield results faster than its FVM–DEM counterpart, with the increase in the domain-averaged gas volume fraction. Additionally, the scalability of the LBM–DEM DPS solver was superior to that of the FVM–DEM DPS solver in parallel computing. Thus, the LBM–DEM DPS solver is highly suitable for use in simulating dilute and large-scale particle–fluid flows.
      PubDate: 2014-11-01
       
  • On phase transformations in shape memory alloy materials and large
           deformation generalized plasticity
    • Abstract: Abstract A new version of rate-independent generalized plasticity, suitable for the derivation of general thermomechanical constitutive laws for materials undergoing phase transformations, is proposed within a finite deformation framework. More specifically, by assuming an additive decomposition of the finite strain tensor into elastic and inelastic (transformation induced) parts and by considering the fractions of the various material phases as internal variables, a multi-phase formulation of the theory is developed. The concepts presented are applied for the derivation of a three-dimensional thermomechanical model for shape memory alloy materials. The ability of the model in simulating several patterns of the extremely complex behavior of these materials, under both monotonic and cyclic loadings, is assessed by representative numerical examples.
      PubDate: 2014-11-01
       
  • Magnetic shape-memory alloys: thermomechanical modelling and analysis
    • Abstract: Abstract A phenomenological model for the coupled thermo-electro-magneto-mechanical and phase-transformation behaviour of magnetic shape-memory alloys is advanced in small strains and eddy current approximation. The corresponding system of strongly nonlinear relations is tackled via a suitable enthalpy-like transformation. A fully implicit regularized time-discretization scheme is devised and proved to be stable and convergent. In particular, the convergence proof for discrete solutions entails that a suitably weak, energy-conserving solution to the continuous nonlinear system exists. Moreover, several particular models as e.g. ferro/paramagnetic transformation in ferromagnetic materials, martensitic transformation in shape memory allows, or just a simple thermistor problem are covered just as special cases.
      PubDate: 2014-11-01
       
  • Effects of uncertainties on pulse attenuation in dimer granular chains
           with and without pre-compression
    • Abstract: Abstract In this work, the effects of inherent variability of the geometric properties of dimer granular chains on their capacity to passively attenuate propagating pulses are investigated. Numerical studies are performed for both the nominal model and the system with uncertainty. The deterministic system is governed by a single parameter (the ratio of the radii of “heavy” and “light” beads of the dimer) and is fully rescalable with energy. The effects of uncertainty, i.e., of the spatial variability of the radii of the light (odd) beads of the granular chain, on the transmitted force at its boundary are investigated. Reliability analysis through Monte Carlo simulations and sensitivity analysis of the dimer with uncertain properties are carried out, and a deeper insight for improved bead configurations is provided. It is shown that the optimal level of force attenuation achieved with a deterministically predicted optimal parameter can be further increased when certain spatial variations in the parameter, based on specific wave number content, are introduced.
      PubDate: 2014-10-30
       
  • Irreversible mechanics and thermodynamics of two-phase continua
           experiencing stress-induced solid–fluid transitions
    • Abstract: Abstract On the example of two-phase continua experiencing stress-induced solid–fluid phase transitions, we explore the use of the Euler structure in the formulation of the governing equations. The Euler structure guarantees that solutions of the time evolution equations possessing it are compatible with mechanics and with thermodynamics. The former compatibility means that the equations are local conservation laws of the Godunov type, and the latter compatibility means that the entropy does not decrease during the time evolution. In numerical illustrations, in which the one-dimensional Riemann problem is explored, we require that the Euler structure is also preserved in the discretization.
      PubDate: 2014-10-12
       
  • Preface
    • PubDate: 2014-10-07
       
  • Analogies between Kirchhoff plates and functionally graded Saint-Venant
           beams under torsion
    • Abstract: Abstract Exact solutions of elastic Kirchhoff plates are available only for special geometries, loadings and kinematic boundary constraints. An effective solution procedure, based on an analogy between functionally graded orthotropic Saint-Venant beams under torsion and inhomogeneous isotropic Kirchhoff plates, with no kinematic boundary constraints, is proposed. The result extends the one contributed in Barretta (Acta Mech 224(12):2955–2964, 2013) for the special case of homogeneous Saint-Venant beams under torsion. Closed-form solutions for displacement, bending–twisting moment and curvature fields of an elliptic plate, corresponding to a functionally graded orthotropic beam, are evaluated. A new benchmark for computational mechanics is thus provided.
      PubDate: 2014-10-04
       
  • Galloping of internally resonant towers subjected to turbulent wind
    • Abstract: Abstract Bifurcation analysis of a structure constituted by two towers, linked by a viscous device at the tip and subjected to turbulent wind, is carried out. The towers have geometrical and mechanical parameters so that the steady part of the wind, whose contribution is evaluated in the framework of the steady theory, induces a 1:1 resonant double-Hopf bifurcation. The turbulent part of the wind, assumed as composed by two frequencies that are equal and double to the main frequency of the unlinked towers, respectively, induces parametric and external harmonic forces. These forces interact with the self-excitation due to the steady part of the wind, bringing imperfection in the bifurcation scenario. Transitions from resonant to non-resonant cases are analyzed in terms of behavior charts, and post-critical dynamics is studied in the space of bifurcation parameters.
      PubDate: 2014-09-26
       
  • Resonant phase dynamics in 0-       class="a-plus-plus">π Sine–Gordon
           facets
    • Abstract: Abstract A locally phase-shifted Sine–Gordon model well accounts for the phenomenology of unconventional Josephson junctions. The phase dynamics shows resonant modes similar to Fiske modes that appear both in the presence and in the absence of the external magnetic field in standard junctions. In the latter case, they are also in competition with zero field propagation of Sine–Gordon solitons, i.e., fluxons, which give rise to the so-called zero field steps in the current–voltage (I–V) of the junction. We numerically study the I–V characteristics and the resonances magnetic field patterns for some different faceting configurations, in various dissipative regimes, as a function of temperature. The simulated dynamics of the phase is analyzed for lower-order resonances. We give evidence of a nontrivial dynamics due to the interaction of propagating fluxons with localized semifluxons. Numerical results are compared with experimental outcomes obtained on high-quality high-Tc grain boundary YBCO junctions.
      PubDate: 2014-09-07
       
  • Instability and advanced models for coupled phenomena in geomechanics and
           applied sciences: a tribute to Félix Darve
    • PubDate: 2014-09-02
       
  • A mesoscopic thermomechanically coupled model for thin-film shape-memory
           alloys by dimension reduction and scale transition
    • Abstract: Abstract We design a new mesoscopic thin-film model for shape-memory materials which takes into account thermomechanical effects. Starting from a microscopic thermodynamical bulk model, we guide the reader through a suitable dimension reduction procedure followed by a scale transition valid for specimen large in area up to a limiting model which describes microstructure by means of parametrized measures. All our models obey the second law of thermodynamics and possess suitable weak solutions. This is shown for the resulting thin-film models by making the procedure described above mathematically rigorous. The main emphasis is, thus, put on modeling and mathematical treatment of joint interactions of mechanical and thermal effects accompanying phase transitions and on reduction in specimen dimensions and transition of material scales.
      PubDate: 2014-09-01
       
  • Moment model and boundary conditions for energy transport in the phonon
           gas
    • Abstract: Abstract Heat transfer in solids is modeled in the framework of kinetic theory of the phonon gas. The microscopic description of the phonon gas relies on the phonon Boltzmann equation and the Callaway model for phonon–phonon interaction. A simple model for phonon interaction with crystal boundaries, similar to the Maxwell boundary conditions in classical kinetic theory, is proposed. Macroscopic transport equation for an arbitrary set of moments is developed and closed by means of Grad’s moment method. Boundary conditions for the macroscopic equations are derived from the microscopic model and the Grad closure. As example, sets with 4, 9, 16, and 25 moments are considered and solved analytically for one-dimensional heat transfer and Poiseuille flow of phonons. The results show the influence of Knudsen number on phonon drag at solid boundaries. The appearance of Knudsen layers reduces the net heat conductivity of solids in rarefied phonon regimes.
      PubDate: 2014-09-01
       
  • A unifying perspective: the relaxed linear micromorphic continuum
    • Abstract: Abstract We formulate a relaxed linear elastic micromorphic continuum model with symmetric Cauchy force stresses and curvature contribution depending only on the micro-dislocation tensor. Our relaxed model is still able to fully describe rotation of the microstructure and to predict nonpolar size effects. It is intended for the homogenized description of highly heterogeneous, but nonpolar materials with microstructure liable to slip and fracture. In contrast to classical linear micromorphic models, our free energy is not uniformly pointwise positive definite in the control of the independent constitutive variables. The new relaxed micromorphic model supports well-posedness results for the dynamic and static case. There, decisive use is made of new coercive inequalities recently proved by Neff, Pauly and Witsch and by Bauer, Neff, Pauly and Starke. The new relaxed micromorphic formulation can be related to dislocation dynamics, gradient plasticity and seismic processes of earthquakes. It unifies and simplifies the understanding of the linear micromorphic models.
      PubDate: 2014-09-01
       
  • On the lower-order theories of continua with application to incremental
           motions, stability and vibrations of rods
    • Abstract: Abstract The relative merit of lower-order theories, which have been deduced from the three-dimensional theories of continua, is evaluated with respect to the quantified and un-quantified errors in mathematically modeling the physical response of structural elements. Then, the one-dimensional theories are derived with high accuracy, internal consistency and flexibility from the three-dimensional theory of elasticity in order to govern the nonlinear and incremental motions and stability of a functionally graded rod. First, a kinematic-based method of separation of variables is introduced as a method of reduction, which may lead to the lower-order theories with the same order of errors of the three-dimensional theories, and the nonlinear theories of the rod are derived under Leibnitz’s postulate of structural elements by use of Hamilton’s principle. A theorem of uniqueness is proved in solutions of the linear equations of the rod by means of the logarithmic convexity argument. Next, the kinematic basis is expressed by the power series expansion in the cross-sectional coordinates using Weierstrass’s theorem. Mindlin’s method is used so as to derive the equations in an invariant and fully variational form for the small motions superposed on a static finite deformation, the stability analysis and the high-frequency vibrations of the rod. Moreover, the free vibrations of the rod are considered, the basic properties of eigenvalues are examined, and Rayleigh’s quotient is obtained. The invariant equations of the rod, which are expressible in any system of orthogonal coordinates, may provide simultaneous approximations on all the field variables in a direct method of solutions. The equations are indicated to contain some of earlier equations of rods, as special cases, and also, the numerical elasticity solution of a sample application is presented.
      PubDate: 2014-09-01
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014