for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> PHYSICS (Total: 784 journals)
    - MECHANICS (19 journals)
    - NUCLEAR PHYSICS (48 journals)
    - OPTICS (90 journals)
    - PHYSICS (569 journals)
    - SOUND (20 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (569 journals)            First | 1 2 3 4 5 6 | Last

Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)
COSPAR Colloquia Series     Full-text available via subscription   (Followers: 1)
Cryogenics     Hybrid Journal   (Followers: 19)
Current Applied Physics     Full-text available via subscription   (Followers: 4)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Differential Equations and Nonlinear Mechanics     Open Access   (Followers: 4)
Doklady Physics     Hybrid Journal   (Followers: 1)
Dynamical Properties of Solids     Full-text available via subscription  
ECS Journal of Solid State Science and Technology     Full-text available via subscription   (Followers: 1)
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 5)
EJNMMI Physics     Open Access  
Embedded Systems Letters, IEEE     Hybrid Journal   (Followers: 23)
Energy Procedia     Open Access   (Followers: 4)
Engineering Failure Analysis     Hybrid Journal   (Followers: 41)
Engineering Fracture Mechanics     Hybrid Journal   (Followers: 19)
Environmental Fluid Mechanics     Hybrid Journal   (Followers: 2)
EPJ Nonlinear Biomedical Physics     Open Access  
EPJ Quantum Technology     Open Access  
EPJ Techniques and Instrumentation     Full-text available via subscription  
EPJ Web of Conferences     Open Access  
European Journal of Physics     Full-text available via subscription   (Followers: 5)
European Journal of Physics Education     Open Access   (Followers: 4)
European Physical Journal - Applied Physics     Full-text available via subscription   (Followers: 5)
European Physical Journal C     Hybrid Journal  
Europhysics News     Open Access   (Followers: 1)
Experimental Mechanics     Hybrid Journal   (Followers: 16)
Experimental Methods in the Physical Sciences     Full-text available via subscription  
Experimental Techniques     Hybrid Journal   (Followers: 45)
Exploration Geophysics     Hybrid Journal   (Followers: 4)
Few-Body Systems     Hybrid Journal  
Fire and Materials     Hybrid Journal   (Followers: 5)
Flexible Services and Manufacturing Journal     Hybrid Journal   (Followers: 1)
Fluctuation and Noise Letters     Hybrid Journal   (Followers: 1)
Fluid Dynamics     Hybrid Journal   (Followers: 5)
Fortschritte der Physik/Progress of Physics     Hybrid Journal  
Frontiers in Physics     Open Access   (Followers: 2)
Frontiers of Materials Science     Hybrid Journal   (Followers: 4)
Frontiers of Physics     Hybrid Journal   (Followers: 1)
Fusion Engineering and Design     Hybrid Journal   (Followers: 10)
Geochemistry, Geophysics, Geosystems     Full-text available via subscription   (Followers: 25)
Geografiska Annaler, Series A: Physical Geography     Hybrid Journal   (Followers: 4)
Geophysical Research Letters     Full-text available via subscription   (Followers: 53)
Geoscience and Remote Sensing, IEEE Transactions on     Hybrid Journal   (Followers: 20)
Glass Physics and Chemistry     Hybrid Journal   (Followers: 2)
Granular Matter     Hybrid Journal   (Followers: 2)
Graphs and Combinatorics     Hybrid Journal   (Followers: 7)
Gravitation and Cosmology     Hybrid Journal  
Handbook of Geophysical Exploration: Seismic Exploration     Full-text available via subscription  
Handbook of Metal Physics     Full-text available via subscription  
Handbook of Surface Science     Full-text available via subscription   (Followers: 3)
Handbook of Thermal Analysis and Calorimetry     Full-text available via subscription  
Haptics, IEEE Transactions on     Hybrid Journal   (Followers: 4)
Heat Transfer - Asian Research     Hybrid Journal   (Followers: 8)
High Energy Density Physics     Hybrid Journal   (Followers: 2)
High Pressure Research: An International Journal     Hybrid Journal   (Followers: 1)
IEEE Journal of Quantum Electronics     Hybrid Journal   (Followers: 16)
IEEE Signal Processing Magazine     Full-text available via subscription   (Followers: 36)
IET Optoelectronics     Hybrid Journal   (Followers: 3)
Il Colle di Galileo     Open Access  
Imaging Science Journal     Hybrid Journal   (Followers: 2)
Indian Journal of Biochemistry and Biophysics (IJBB)     Open Access   (Followers: 4)
Indian Journal of Physics     Hybrid Journal   (Followers: 4)
Indian Journal of Pure & Applied Physics (IJPAP)     Open Access   (Followers: 9)
Indian Journal of Radio & Space Physics (IJRSP)     Open Access   (Followers: 6)
Industrial Electronics, IEEE Transactions on     Hybrid Journal   (Followers: 13)
Industry Applications, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Infinite Dimensional Analysis, Quantum Probability and Related Topics     Hybrid Journal  
InfraMatics     Open Access  
Infrared Physics & Technology     Hybrid Journal  
Intelligent Transportation Systems Magazine, IEEE     Full-text available via subscription   (Followers: 2)
Intermetallics     Hybrid Journal   (Followers: 8)
International Applied Mechanics     Hybrid Journal   (Followers: 2)
International Geophysics     Full-text available via subscription   (Followers: 4)
International Heat Treatment and Surface Engineering     Hybrid Journal   (Followers: 2)
International Journal for Computational Methods in Engineering Science and Mechanics     Hybrid Journal   (Followers: 8)
International Journal for Ion Mobility Spectrometry     Hybrid Journal   (Followers: 1)
International Journal for Simulation and Multidisciplinary Design Optimization     Full-text available via subscription   (Followers: 1)
International Journal of Abrasive Technology     Hybrid Journal   (Followers: 2)
International Journal of Aeroacoustics     Full-text available via subscription   (Followers: 7)
International Journal of Applied Electronics in Physics & Robotics     Open Access   (Followers: 1)
International Journal of Astronomy and Astrophysics     Open Access   (Followers: 3)
International Journal of Computational Materials Science and Surface Engineering     Hybrid Journal   (Followers: 8)
International Journal of Damage Mechanics     Hybrid Journal   (Followers: 5)
International Journal of Fatigue     Hybrid Journal   (Followers: 11)
International Journal of Fracture     Hybrid Journal   (Followers: 9)
International Journal of Geometric Methods in Modern Physics     Hybrid Journal   (Followers: 1)
International Journal of Geophysics     Open Access   (Followers: 4)
International Journal of Heat and Fluid Flow     Hybrid Journal   (Followers: 15)
International Journal of Low Radiation     Hybrid Journal  
International Journal of Low-Carbon Technologies     Open Access   (Followers: 1)
International Journal of Mass Spectrometry     Hybrid Journal   (Followers: 12)
International Journal of Material Forming     Hybrid Journal   (Followers: 2)
International Journal of Materials and Product Technology     Hybrid Journal   (Followers: 4)
International Journal of Mechanical Sciences     Hybrid Journal   (Followers: 6)
International Journal of Mechanics and Materials in Design     Hybrid Journal   (Followers: 5)
International Journal of Medical Physics, Clinical Engineering and Radiation Oncology     Open Access   (Followers: 4)
International Journal of Micro-Nano Scale Transport     Full-text available via subscription   (Followers: 2)
International Journal of Microstructure and Materials Properties     Hybrid Journal   (Followers: 7)
International Journal of Microwave Science and Technology     Open Access   (Followers: 2)
International Journal of Modeling, Simulation, and Scientific Computing     Hybrid Journal   (Followers: 1)

  First | 1 2 3 4 5 6 | Last

Journal Cover   Continuum Mechanics and Thermodynamics
  [SJR: 0.681]   [H-I: 29]   [3 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1432-0959 - ISSN (Online) 0935-1175
   Published by Springer-Verlag Homepage  [2302 journals]
  • The phase-field approach as a tool for experimental validations in
           fracture mechanics
    • Abstract: Abstract In a phase-field approach to fracture crack propagation is modeled by means of an additional continuous field. In this paper, two problems of linear elastic fracture mechanics are studied experimentally and numerically in order to evaluate the practicability of the phase-field approach and to validate the measured parameters. At first, a three-point bending experiment of silicon dies is simulated assuming static plate bending. Then, wave propagation and spallation in a Hopkinson bar test are analyzed in a dynamic regime. The simulations show that phase-field fracture reproduces the experimental results with high accuracy. The results are comparable to other fracture simulations, e.g., the cohesive element technique. In total, the phase-field approach to fracture is capable of tracking crack evolution in a very convenient and quantitatively correct way.
      PubDate: 2015-05-27
  • Saint-Venant problem for solids with helical anisotropy
    • Abstract: Abstract We discuss the solution of Saint-Venant’s problem for solids with helical anisotropy. Here the governing relations of the theory of elasticity in terms of displacements were presented using the helical coordinate system. We proposed an approach to construct elementary Saint-Venant solutions using integration of ordinary differential equations with variable coefficients in the case of a circular cylinder with helical anisotropy. Elementary solutions correspond to problems of extension, of torsion, of pure bending and of bending of shear force. The solution of the problem is obtained using small parameter method for small values of twist angle and numerically for arbitrary values. Numeric results correspond to problems of extension–torsion. Dependencies of the stiffness matrix (in dimensionless form) on angle between the tangent to the helical coil and the axis of the cylinder corresponding to stiffness on stretching and torsion are illustrated graphically for different values of material and geometrical parameters.
      PubDate: 2015-05-26
  • A thermo-mechanically coupled finite strain model considering inelastic
           heat generation
    • Abstract: Abstract The procedure for reuse of finite element method (FEM) programs for heat transfer and structure analysis to solve advanced thermo-mechanical problems is presented as powerful algorithm applicable for coupling of other physical fields (magnetic, fluid flow, etc.). In this case, nonlinear Block-Gauss–Seidel partitioned algorithm strongly couples the heat transfer and structural FEM programs by a component-based software engineering. Component template library provides possibility to exchange the data between the components which solve the corresponding subproblems. The structural component evaluates the dissipative energy induced by inelastic strain. The heat transfer component computes the temperature change due to the dissipation. The convergence is guaranteed by posing the global convergence criterion on the previously locally converged coupled variables. This enables reuse of software and allows the numerical simulation of thermo-sensitive problems.
      PubDate: 2015-05-23
  • A circular inclusion with circumferentially inhomogeneous imperfect
           interface in harmonic materials
    • Abstract: In the following analysis, we present a rigorous solution for the problem of a circular elastic inclusion surrounded by an infinite elastic matrix in finite plane elastostatics. The inclusion and matrix are separated by a circumferentially inhomogeneous imperfect interface characterized by the linear spring-type imperfect interface model where the interface is such that the same degree of imperfection is realized in both the normal and tangential directions. Through the use of analytic continuation, a set of first-order coupled ordinary differential equations with variable coefficients are developed for two analytic potential functions. The unknown coefficients of the potential functions are determined from their analyticity requirements and some additional problem-specific constraints. An example is then presented for a specific class of interface where the inclusion mean stress is contrasted between the homogeneous interface and inhomogeneous interface models. It is shown that, for circumstances where a homogeneously imperfect interface may not be warranted, the inhomogeneous model has a pronounced effect on the mean stress within the inclusion.
      PubDate: 2015-05-20
  • Identification of multiple open and fatigue cracks in beam-like structures
           using wavelets on deflection signals
    • Abstract: A novel method for damage detection of multi-cracked beam-like structures by analyzing the static deflection is presented. The damage incurred produces a change in the stiffness of the beam. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. The existence and location of the cracks can be revealed by positions of the peaks in the continuous wavelet transform (CWT). To achieve this, the static profile of beams is analyzed with Gauss2 wavelet to identify the cracks. Beams under some ideal boundary and prescribed load conditions are considered. The deflected shape of the beam with open and fatigue cracks has been simulated under static loading using lumped crack models adopted from fracture mechanics and involving various degrees of complexity. The deflection of cracked beam in closed form for several cases of loads, crack sizes, and crack locations is calculated, and an explicit expression for the damage index (DI), based on CWT, is developed; it is demonstrated that the proposed damage index does not depend on mechanical properties of a homogeneous beam, and that the DI of one crack does not depend on the size and location of other cracks in a multiple cracked beam. Hence, the obtained expression for the DI can be used to find the size of each crack independently. Numerical results show that the method can detect cracks of small depth and is also applicable under the presence of measurement noise.
      PubDate: 2015-05-19
  • A high-order finite deformation phase-field approach to fracture
    • Abstract: Phase-field approaches to fracture allow for convenient and efficient simulation of complex fracture pattern. In this paper, two variational formulations of phase-field fracture, a common second-order model and a new fourth-order model, are combined with a finite deformation ansatz for general nonlinear materials. The material model is based on a multiplicative decomposition of the principal stretches in a tensile and a compressive part. The excellent performance of the new approach is illustrated in classical numerical examples.
      PubDate: 2015-05-19
  • Plasticity in multi-phase solids with incoherent interfaces and junctions
    • Abstract: Boundaries and junctions (both internal and external) can contribute significantly to the plastic deformation of metallic solids, especially when the average size of the grains (phases) is less than hundred nanometres or when the size of the solid itself is of the order of microns. The overall permanent deformation of the solid is a result of a coupling between bulk plasticity with moving interfaces/junctions/edges and intrinsic plasticity of internal and external surfaces. We use a novel continuum thermodynamic theory of plastic evolution, with incoherent interfaces and non-splitting junctions, to derive flow rules for bulk and surface plasticity in addition to kinetic relations for interface, edge, and junction motion, all coupled to each other. We assume rate-independent associative isotropic plastic response with bulk flow stress dependent on accumulated plastic strain and an appropriate measure of inhomogeneity. The resulting theory has two internal length scales: one given by the average grain size and another associated with the material inhomogeneity.
      PubDate: 2015-05-19
  • Hadamard instability analysis of “negative creep” in coupled
           chemo-thermo-mechanical systems
    • Abstract: The coupled system of nonlinear partial differential equations for momentum, diffusion and energy is examined in terms of Hadamard instability, which in a unified way provides the conditions of both “negative creep” and “spinodal decomposition” (loss of convexity of thermodynamic functions) (Markenscoff in Quart Appl Math 59:147–151, 2001; Quart Appl Math 59:471–477, 2001) by balancing terms of different orders in the eigenvalue equation. It is shown here that instabilities of “negative creep” occur in both infinite and finite domains.
      PubDate: 2015-05-17
  • Mathematical study of boundary-value problems within the framework of
           Steigmann–Ogden model of surface elasticity
    • Abstract: Mathematical questions pertaining to linear problems of equilibrium dynamics and vibrations of elastic bodies with surface stresses are studied. We extend our earlier results on existence of weak solutions within the Gurtin–Murdoch model to the Steigmann–Ogden model of surface elasticity using techniques from the theory of Sobolev’s spaces and methods of functional analysis. The Steigmann–Ogden model accounts for the bending stiffness of the surface film; it is a generalization of the Gurtin–Murdoch model. Weak setups of the problems, based on variational principles formulated, are employed. Some uniqueness-existence theorems for weak solutions of static and dynamic problems are proved in energy spaces via functional analytic methods. On the boundary surface, solutions to the problems under consideration are smoother than those for the corresponding problems of classical linear elasticity and those described by the Gurtin–Murdoch model. The weak setups of eigenvalue problems for elastic bodies with surface stresses are based on the Rayleigh and Courant variational principles. For the problems based on the Steigmann–Ogden model, certain spectral properties are established. In particular, bounds are placed on the eigenfrequencies of an elastic body with surface stresses; these demonstrate the increase in the body rigidity and the eigenfrequencies compared with the situation where the surface stresses are neglected.
      PubDate: 2015-05-17
  • A numerical method for determining the strain rate intensity factor under
           plane strain conditions
    • Abstract: Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.
      PubDate: 2015-05-16
  • Sharp limit of the viscous Cahn–Hilliard equation and thermodynamic
    • Abstract: Diffuse and sharp interface models represent two alternatives to describe phase transitions with an interface between two coexisting phases. The two model classes can be independently formulated. Thus there arises the problem whether the sharp limit of the diffuse model fits into the setting of a corresponding sharp interface model. We call a diffuse model admissible if its sharp limit produces interfacial jump conditions that are consistent with the balance equations and the second law of thermodynamics for sharp interfaces. We use special cases of the viscous Cahn–Hilliard equation to show that there are admissible as well as non-admissible diffuse interface models.
      PubDate: 2015-05-16
  • Determination of interaction forces between parallel dislocations by the
           evaluation of J integrals of plane elasticity
    • Abstract: The Peach–Koehler expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane and antiplane strain versions of J integrals around the center of the dislocation. After expressing the elastic fields as the sums of elastic fields of each dislocation, the energy momentum tensor is decomposed into three parts. It is shown that only one part, involving mixed products from the two dislocation fields, makes a nonvanishing contribution to J integrals and the corresponding dislocation forces. Three examples are considered, with dislocations on parallel or intersecting slip planes. For two edge dislocations on orthogonal slip planes, there are two equilibrium configurations in which the glide and climb components of the dislocation force simultaneously vanish. The interactions between two different types of screw dislocations and a nearby circular void, as well as between parallel line forces in an infinite or semi-infinite medium, are then evaluated.
      PubDate: 2015-05-13
  • Convergence of Lax–Friedrichs and Godunov schemes for a nonstrictly
           hyperbolic system of conservation laws arising in oil recovery
    • Abstract: This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a \({2 \times 2}\) system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperbolicity of the system requires a careful analysis of the entropy functions, whose regularity is necessary to obtain the result. For this purpose, it is necessary to combine the classical techniques referring to a singular Euler–Poisson–Darboux equation with the compensated compactness method.
      PubDate: 2015-05-08
  • A thermomechanical model accounting for the behavior of shape memory
           alloys in finite deformations
    • Abstract: Shape memory alloys (SMA) comport an interesting behavior. They can undertake large strains and then recover their undeformed shape by heating. In this context, one of the aspects that challenged many researchers was the development of a mathematical model to predict the behavior of a known SMA under real-life conditions, or finite strain. This paper is aimed at working out a finite strain mathematical model for a Ni–Ti SMA, under the superelastic experiment conditions and under uniaxial mechanical loading, based on the Zaki–Moumni 3D mathematical model developed under the small perturbations assumption. Within the current article, a comparison between experimental findings and calculated results is also investigated. The proposed finite strain mathematical model shows good agreement with experimental data.
      PubDate: 2015-05-05
  • Thermodynamical properties of triangular quantum wires: entropy, specific
           heat, and internal energy
    • Abstract: In the present work, thermodynamical properties of a GaAs quantum wire with equilateral triangle cross section are studied. First, the energy levels of the system are obtained by solving the Schrödinger equation. Second, the Tsallis formalism is applied to obtain entropy, internal energy, and specific heat of the system. We have found that the specific heat and entropy have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike classical thermodynamics in which they are considered as continuous quantities. Maximum of entropy increases with increasing the wire size. The specific heat is zero at special temperatures. Specific heat decreases with increasing temperature. There are several peaks in specific heat, and these are dependent on quantum wire size.
      PubDate: 2015-05-05
  • D. Y. Gao: Analytical solutions to general anti-plane shear problems in
           finite elasticity
    • PubDate: 2015-05-01
  • Group classification of one-dimensional nonisentropic equations of fluids
           with internal inertia II. General case
    • Abstract: The previous paper by the authors (Siriwat and Meleshko in Contin Mech Thermodyn 24:115–148, 2012) was devoted to group analysis of one-dimensional nonisentropic equations of fluids with internal inertia. A direct approach was employed for finding the admitted Lie group. This approach allowed to perform a partial group classification of the considered equations with respect to a potential function. The present paper completes this group classification by an efficient algebraic method.
      PubDate: 2015-05-01
  • Analogies between Kirchhoff plates and functionally graded Saint-Venant
           beams under torsion
    • Abstract: Exact solutions of elastic Kirchhoff plates are available only for special geometries, loadings and kinematic boundary constraints. An effective solution procedure, based on an analogy between functionally graded orthotropic Saint-Venant beams under torsion and inhomogeneous isotropic Kirchhoff plates, with no kinematic boundary constraints, is proposed. The result extends the one contributed in Barretta (Acta Mech 224(12):2955–2964, 2013) for the special case of homogeneous Saint-Venant beams under torsion. Closed-form solutions for displacement, bending–twisting moment and curvature fields of an elliptic plate, corresponding to a functionally graded orthotropic beam, are evaluated. A new benchmark for computational mechanics is thus provided.
      PubDate: 2015-05-01
  • A proposal for defining continuous distribution of dislocations for
           objective structures
    • Abstract: Though targeting at different scales, the theory of objective structures and the theory of materially uniform bodies have some issues in common. We highlight those aspects of the two theories that share similar ideas, as well as delineate areas where they are inherently different. Prompt by the fact that materially uniform but inhomogeneous bodies ultimately describe dislocations into solids, we propose a way for defining continuous distribution of dislocations for objective structures. In the course of doing, so we draw upon combined theories of algebraic topology and discrete exterior calculus to model crystal elasticity. We also need a generalization of the theory of materially uniform bodies suitable for a class of micromorphic bodies.
      PubDate: 2015-05-01
  • Expansion/contraction of a spherical elastic/plastic shell revisited
    • Abstract: A semi-analytic solution for the elastic/plastic distribution of stress and strain in a spherical shell subject to pressure over its inner and outer radii and subsequent unloading is presented. The Bauschinger effect is taken into account. The flow theory of plasticity is adopted in conjunction with quite an arbitrary yield criterion and its associated flow rule. The yield stress is an arbitrary function of the equivalent strain. It is shown that the boundary value problem is significantly simplified if the equivalent strain is used as an independent variable instead of the radial coordinate. In particular, numerical methods are only necessary to evaluate ordinary integrals and solve simple transcendental equations. An illustrative example is provided to demonstrate the distribution of residual stresses and strains.
      PubDate: 2015-05-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015