for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> PHYSICS (Total: 767 journals)
    - MECHANICS (20 journals)
    - NUCLEAR PHYSICS (44 journals)
    - OPTICS (91 journals)
    - PHYSICS (557 journals)
    - SOUND (18 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (557 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 7)
Acta Mechanica     Hybrid Journal   (Followers: 15)
Advanced Composite Materials     Hybrid Journal   (Followers: 16)
Advanced Functional Materials     Hybrid Journal   (Followers: 38)
Advanced Materials     Hybrid Journal   (Followers: 400)
Advances in Condensed Matter Physics     Open Access   (Followers: 8)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Geophysics     Full-text available via subscription   (Followers: 4)
Advances in High Energy Physics     Open Access   (Followers: 12)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 3)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 16)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 14)
Advances in OptoElectronics     Open Access   (Followers: 3)
Advances In Physics     Hybrid Journal   (Followers: 9)
Advances in Physics Theories and Applications     Open Access   (Followers: 8)
Advances in Remote Sensing     Open Access   (Followers: 8)
Advances in Synchrotron Radiation     Hybrid Journal   (Followers: 1)
AIP Advances     Open Access   (Followers: 6)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 2)
American Journal of Applied Sciences     Open Access   (Followers: 31)
American Journal of Condensed Matter Physics     Open Access   (Followers: 5)
American Journal of Signal Processing     Open Access   (Followers: 8)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 2)
Annalen der Physik     Hybrid Journal   (Followers: 3)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 4)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 1)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 3)
Annals of Physics     Hybrid Journal   (Followers: 2)
Annals of West University of Timisoara - Physics     Open Access  
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 4)
APL Materials     Open Access   (Followers: 6)
Applied Composite Materials     Hybrid Journal   (Followers: 9)
Applied Physics     Open Access  
Applied Physics A     Hybrid Journal   (Followers: 9)
Applied Physics Frontier     Open Access   (Followers: 1)
Applied Physics Letters     Hybrid Journal   (Followers: 26)
Applied Physics Research     Open Access   (Followers: 6)
Applied Physics Reviews     Hybrid Journal   (Followers: 8)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 5)
Applied Remote Sensing Journal     Open Access   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 12)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 2)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
ASTRA Proceedings     Open Access  
Astronomy & Geophysics     Hybrid Journal   (Followers: 1)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 3)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 7)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 34)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 14)
Biomedical Imaging and Intervention Journal     Open Access   (Followers: 5)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 7)
BMC Nuclear Medicine     Open Access   (Followers: 5)
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 39)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 4)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Cells     Open Access   (Followers: 1)
Central European Journal of Physics     Hybrid Journal   (Followers: 1)
CERN courier. International journal of high energy physics     Free  
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 1)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 53)
Composites Part B : Engineering     Hybrid Journal   (Followers: 72)
Computational Astrophysics and Cosmology     Open Access  
Computational Materials Science     Hybrid Journal   (Followers: 19)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal  
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal  
Contemporary Concepts of Condensed Matter Science     Full-text available via subscription  
Contemporary Physics     Hybrid Journal   (Followers: 12)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 3)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)
COSPAR Colloquia Series     Full-text available via subscription   (Followers: 1)
Cryogenics     Hybrid Journal   (Followers: 17)
Current Applied Physics     Full-text available via subscription   (Followers: 4)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)

        1 2 3 4 5 6 | Last

Journal Cover   Chinese Journal of Chemical Physics
  [3 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1674-0068
   This journal is no longer being updated because it doesn't publish new issues
    or its RSS feed has been removed by the publisher
  • Melting analysis on microbeads in rapid temperature-gradient inside
           microchannels for single nucleotide polymorphisms detectiona)
    • Authors: Kan-Chien Li; Shih-Torng Ding, En-Chung Lin, Lon (Alex) Wang Yen-Wen Lu
      Abstract: A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production.
      PubDate: 2014-11-26T13:39:28Z
  • Label-free density difference amplification-based cell sorting
    • Authors: Jihwan Song; Minsun Song, Taewook Kang, Dongchoul Kim Luke P. Lee
      Abstract: The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.
      PubDate: 2014-11-26T13:39:21Z
  • On-chip multi-gas incubation for microfluidic cell cultures under hypoxia
    • Authors: Atsushi Takano; Masato Tanaka Nobuyuki Futai
      Abstract: We developed a simple system that regulates CO2 and O2 levels within a microfluidic chip. This system enables long-term cell culture under hypoxic conditions without the need of a CO2 incubator or a multi-gas incubator. Hypoxic conditions were generated using a miniature water jacket containing dissolved ascorbate as an oxygen scavenger. Formulations of the water jacket were determined that enables both 5% pCO2 and desired pO2 levels ranging from 5 to 15%. We also cultured PC-12 cells and primary neuronal cells from chick embryos under hypoxia and observed hypoxia-induced cell death and inhibition of neurite outgrowth.
      PubDate: 2014-11-25T13:47:35Z
  • Fabrication of two dimensional polyethylene terephthalate nanofluidic chip
           using hot embossing and thermal bonding technique
    • Authors: Zhifu Yin; E Cheng, Helin Zou, Li Chen Shenbo Xu
      Abstract: We present in this paper a method for obtaining a low cost and high replication precision 2D (two dimensional) nanofluidic chip with a PET (polyethylene terephthalate) sheet, which uses hot embossing and a thermal bonding technique. The hot embossing process parameters were optimized by both experiments and the finite element method to improve the replication precision of the 2D nanochannels. With the optimized process parameters, 174.67 ± 4.51 nm wide and 179.00 ± 4.00 nm deep nanochannels were successfully replicated into the PET sheet with high replication precision of 98.4%. O2 plasma treatment was carried out before the bonding process to decrease the dimension loss and improve the bonding strength of the 2D nanofluidic chip. The bonding parameters were optimized by bonding rate of the nanofluidic chip. The experiment results show that the bonding strength of the 2D PET nanofluidic chip is 0.664 MPa, and the total dimension loss of 2D nanochannels is 4.34 ± 7.03 nm and 18.33 ± 9.52 nm, in width and depth, respectively. The fluorescence images demonstrate that there is no blocking or leakage over the entire micro- and nanochannels. With this fabrication technology, low cost polymer nanochannels can be fabricated, which allows for commercial manufacturing of nano-components.
      PubDate: 2014-11-25T13:47:27Z
  • Electrowetting on dielectric device with crescent electrodes for reliable
           and low-voltage droplet manipulation
    • Authors: Xiaowei Xu; Lining Sun, Liguo Chen, Zhaozhong Zhou, Junjian Xiao Yuliang Zhang
      Abstract: Digital microfluidics based on electrowetting on dielectric is an emerging popular technology that manipulates single droplets at the microliter or even the nanoliter level. It has the unique advantages of rapid response, low reagent consumption, and high integration and is mainly applied in the field of biochemical analysis. However, currently, this technology still has a few problems, such as high control voltage, low droplet velocity, and continuity in flow, limiting its application. In this paper, through theoretical analysis and numerical simulation, it is deduced that a drive electrode with a crescent configuration can reduce the driving voltage. The experimental results not only validate this deduction but also indicate that crescent electrode can improve the droplet motion continuity and the success in split rate.
      PubDate: 2014-11-24T13:59:03Z
  • Increasing label-free stem cell sorting capacity to reach
           transplantation-scale throughput
    • Authors: Melinda G. Simon; Ying Li, Janahan Arulmoli, Lisa P. McDonnell, Adnan Akil, Jamison L. Nourse, Abraham P. Lee Lisa A. Flanagan
      Abstract: Dielectrophoresis (DEP) has proven an invaluable tool for the enrichment of populations of stem and progenitor cells owing to its ability to sort cells in a label-free manner and its biological safety. However, DEP separation devices have suffered from a low throughput preventing researchers from undertaking studies requiring large numbers of cells, such as needed for cell transplantation. We developed a microfluidic device designed for the enrichment of stem and progenitor cell populations that sorts cells at a rate of 150,000 cells/h, corresponding to an improvement in the throughput achieved with our previous device designs by over an order of magnitude. This advancement, coupled with data showing the DEP-sorted cells retain their enrichment and differentiation capacity when expanded in culture for periods of up to 2 weeks, provides sufficient throughput and cell numbers to enable a wider variety of experiments with enriched stem and progenitor cell populations. Furthermore, the sorting devices presented here provide ease of setup and operation, a simple fabrication process, and a low associated cost to use that makes them more amenable for use in common biological research laboratories. To our knowledge, this work represents the first to enrich stem cells and expand them in culture to generate transplantation-scale numbers of differentiation-competent cells using DEP.
      PubDate: 2014-11-20T13:40:58Z
  • Development of a three-dimensional cell culture system based on
           microfluidics for nuclear magnetic resonance and optical monitoring
    • Authors: Vicent Esteve; Javier Berganzo, Rosa Monge, M. Carmen Martínez-Bisbal, Rosa Villa, Bernardo Celda Luis Fernandez
      Abstract: A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients.
      PubDate: 2014-11-18T13:46:11Z
  • Colored wax-printed timers for two-dimensional and three-dimensional
           assays on paper-based devices
    • Authors: Chen-Hsun Weng; Ming-Yi Chen, Chi-Hsiang Shen Ruey-Jen Yang
      Abstract: Microfluidic paper-based analytical devices (μPADs) are widely used for performing diagnostic assays. However, in many assays, time-delay valves are required to improve the sensitivity and specificity of the results. Accordingly, this study presents a simple, low-cost method for realizing time-delay valves using a color wax printing process. In the proposed approach, the time-delay effect is controlled through a careful selection of both the color and the saturation of the wax content. The validity of the proposed method is demonstrated by performing nitrite and oxalate assays using both a simple two-dimensional μPAD and a three-dimensional μPAD incorporating a colored wax-printed timer. The experimental results confirm that the flow time can be controlled through an appropriate selection of the color and the wax content. In addition, it is shown that nitrite and oxalate assays can be performed simultaneously on a single device. In general, the results presented in this study show that the proposed μPADs provide a feasible low-cost alternative to conventional methods for performing diagnostic assays.
      PubDate: 2014-11-18T13:46:03Z
  • A microfluidic device to apply shear stresses to polarizing ciliated
           airway epithelium using air flow
    • Authors: Dennis Trieu; Thomas K. Waddell Alison P. McGuigan
      Abstract: Organization of airway epithelium determines ciliary beat direction and coordination for proper mucociliary clearance. Fluidic shear stresses have the potential to influence ciliary organization. Here, an in vitro fluidic flow system was developed for inducing long-term airflow shear stresses on airway epithelium with a view to influencing epithelial organization. Our system consists of a fluidic device for cell culture, integrated into a humidified airflow circuit. The fluidic device has a modular design and is made from a combination of polystyrene and adhesive components incorporated into a 6-well filter membrane insert. We demonstrate the system operates within physiologically relevant shear and pressure ranges and estimate the shear stress exerted on the epithelial cell layer as a result of air flow using a computational model. For both the bronchial epithelial cell line BEAS2B and primary human tracheal airway epithelial cells, we demonstrate that cells remain viable within the device when exposed to airflow for 24 h and that normal differentiation and cilia formation occurs. Furthermore, we demonstrate the utility of our device for exploring the impact of exposing cells to airflow: our tool enables quantification of cytoskeletal organization, and is compatible with in situ bead assays to assess the orientation of cilia beating.
      PubDate: 2014-11-14T15:43:15Z
  • Effect of a dual inlet channel on cell loading in microfluidics
    • Authors: Hoyoung Yun; Kisoo Kim Won Gu Lee
      Abstract: Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new “ upstream inlet ” to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4+ T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.
      PubDate: 2014-11-14T14:09:13Z
  • Traceable clonal culture and chemodrug assay of heterogeneous prostate
           carcinoma PC3 cells in microfluidic single cell array chips
    • Authors: Jaehoon Chung; Patrick N. Ingram, Tom Bersano-Begey Euisik Yoon
      Abstract: Cancer heterogeneity has received considerable attention for its role in tumor initiation and progression, and its implication for diagnostics and therapeutics in the clinic. To facilitate a cellular heterogeneity study in a low cost and highly efficient manner, we present a microfluidic platform that allows traceable clonal culture and characterization. The platform captures single cells into a microwell array and cultures them for clonal expansion, subsequently allowing on-chip characterization of clonal phenotype and response against drug treatments. Using a heterogeneous prostate cancer model, the PC3 cell line, we verified our prototype, identifying three different sub-phenotypes and correlating their clonal drug responsiveness to cell phenotype.
      PubDate: 2014-11-14T14:09:06Z
  • Optical chromatographic sample separation of hydrodynamically focused
    • Authors: A. Terray; C. G. Hebert S. J. Hart
      Abstract: Optical chromatography relies on the balance between the opposing optical and fluid drag forces acting on a particle. A typical configuration involves a loosely focused laser directly counter to the flow of particle-laden fluid passing through a microfluidic device. This equilibrium depends on the intrinsic properties of the particle, including size, shape, and refractive index. As such, uniquely fine separations are possible using this technique. Here, we demonstrate how matching the diameter of a microfluidic flow channel to that of the focusing laser in concert with a unique microfluidic platform can be used as a method to fractionate closely related particles in a mixed sample. This microfluidic network allows for a monodisperse sample of both polystyrene and poly(methyl methacrylate) spheres to be injected, hydrodynamically focused, and completely separated. To test the limit of separation, a mixed polystyrene sample containing two particles varying in diameter by less than 0.5 μm was run in the system. The analysis of the resulting separation sets the framework for continued work to perform ultra-fine separations.
      PubDate: 2014-11-11T13:43:26Z
  • Smartphone-interfaced lab-on-a-chip devices for field-deployable
           enzyme-linked immunosorbent assay
    • Authors: Arnold Chen; Royal Wang, Candace R. S. Bever, Siyuan Xing, Bruce D. Hammock Tingrui Pan
      Abstract: The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10−3–104  μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments.
      PubDate: 2014-11-05T13:47:00Z
  • Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber
           optic microheater
    • Authors: Hyun-Tae Kim; Hyungdae Bae, Zhijian Zhang, Abisola Kusimo Miao Yu
      Abstract: We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power.
      PubDate: 2014-10-31T12:43:19Z
  • Computational investigations of the mixing performance inside liquid slugs
           generated by a microfluidic T-junction
    • Authors: Yuehao Li; Rupesh K. Reddy, Challa S. S. R. Kumar Krishnaswamy Nandakumar
      Abstract: Droplet-based microfluidics has gained extensive research interest as it overcomes several challenges confronted by conventional single-phase microfluidics. The mixing performance inside droplets/slugs is critical in many applications such as advanced material syntheses and in situ kinetic measurements. In order to understand the effects of operating conditions on the mixing performance inside liquid slugs generated by a microfluidic T-junction, we have adopted the volume of fluid method coupled with the species transport model to study and quantify the mixing efficiencies inside slugs. Our simulation results demonstrate that an efficient mixing process is achieved by the intimate collaboration of the twirling effect and the recirculating flow. Only if the reagents are distributed transversely by the twirling effect, the recirculating flow can bring in convection mechanism thus facilitating mixing. By comparing the mixing performance inside slugs at various operating conditions, we find that slug size plays the key role in influencing the mixing performance as it determines the amount of fluid to be distributed by the twirling effect. For the cases where short slugs are generated, the mixing process is governed by the fast convection mechanism because the twirling effect can distribute the fluid to the flow path of the recirculating flow effectively. For cases with long slugs, the mixing process is dominated by the slow diffusion mechanism since the twirling effect is insufficient to distribute the large amount of fluid. In addition, our results show that increasing the operating velocity has limited effects on improving the mixing performance. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.
      PubDate: 2014-10-30T12:40:49Z
  • Continuous removal of glycerol from frozen-thawed red blood cells in a
           microfluidic membrane device
    • Authors: Ratih E. Lusianti; Adam Z. Higgins
      Abstract: Cryopreservation of human red blood cells (RBCs) in the presence of 40% glycerol allows a shelf-life of 10 years, as opposed to only 6 weeks for refrigerated RBCs. Nonetheless, cryopreserved blood is rarely used in clinical therapy, in part because of the requirement for a time-consuming (∼1 h) post-thaw wash process to remove glycerol before the product can be used for transfusion. The current deglycerolization process involves a series of saline washes in an automated centrifuge, which gradually removes glycerol from the cells in order to prevent osmotic damage. We recently demonstrated that glycerol can be extracted in as little as 3 min without excessive osmotic damage if the composition of the extracellular solution is precisely controlled. Here, we explore the potential for carrying out rapid glycerol extraction using a membrane-based microfluidic device, with the ultimate goal of enabling inline washing of cryopreserved blood. To assist in experimental design and device optimization, we developed a mass transfer model that allows prediction of glycerol removal, as well as the resulting cell volume changes. Experimental measurements of solution composition and hemolysis at the device outlet are in reasonable agreement with model predictions, and our results demonstrate that it is possible to reduce the glycerol concentration by more than 50% in a single device without excessive hemolysis. Based on these promising results, we present a design for a multistage process that is predicted to safely remove glycerol from cryopreserved blood in less than 3 min.
      PubDate: 2014-10-28T12:40:03Z
  • Preface to Special Topic: Selected Papers from the Advances in
           Microfluidics and Nanofluidics 2014 Conference in Honor of Professor
           Hsueh-Chia Chang's 60th Birthday
    • Authors: Chia-Fu Chou; Pei-Kuen Wei Yeng-Long Chen
      PubDate: 2014-10-28T12:39:59Z
  • Measurement and control of pressure driven flows in microfluidic devices
           using an optofluidic flow sensor
    • Authors: Mohammad Sadegh Cheri; Hamidreza Shahraki, Jalal Sadeghi, Mohammadreza Salehi Moghaddam Hamid Latifi
      Abstract: Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier–Stokes and continuity equations to validate the experimental results.
      PubDate: 2014-10-24T12:47:06Z
  • Microfluidic reactors for visible-light photocatalytic water purification
           assisted with thermolysis
    • Authors: Ning Wang; Furui Tan, Li Wan, Mengchun Wu Xuming Zhang
      Abstract: Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance.
      PubDate: 2014-10-24T12:46:57Z
  • Programmed sample delivery on a pressurized paper
    • Authors: Joong Ho Shin; Juhwan Park, Seung Hoon Kim Je-Kyun Park
      Abstract: This paper reports a method to control the fluid flow in paper-based microfluidic devices simply by pressing over the channel surface of paper, thereby decreasing the pore size and permeability of a non-woven polypropylene sheet. As a result, fluid resistance is increased in the pressed region and causes flow rate to decrease. We characterize the decrease of flow rate with respect to different amounts of pressure applied, and up to 740% decrease in flow velocity was achieved. In addition, we demonstrate flow rate control in a Y-shaped merging paper and sequential delivery of multiple color dyes in a three-branched paper. Furthermore, sequential delivery of multiple fluid samples is performed to demonstrate its application in multi-step colorimetric immunoassay, which shows a 4.3-fold signal increase via enhancement step.
      PubDate: 2014-10-24T12:46:46Z
  • A novel microfluidic flow focusing method
    • Authors: Hai Jiang; Xuan Weng Dongqing Li
      Abstract: A new microfluidic method that allows hydrodynamic focusing in a microchannel with two sheath flows is demonstrated. The microchannel network consists of a T-shaped main channel and two T-shaped branch channels. The flows of the sample stream and the sheath streams in the microchannel are generated by electroosmotic flow-induced pressure gradients. In comparison with other flow focusing methods, this novel method does not expose the sample to electrical field, and does not need any external pumps, tubing, and valves.
      PubDate: 2014-10-21T12:57:12Z
  • Rapid microfluidic solid-phase extraction system for hyper-methylated DNA
           enrichment and epigenetic analysis
    • Authors: Arpita De; Wouter Sparreboom, Albert van den Berg Edwin T. Carlen
      Abstract: Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva, sample enrichment and amplification is typically required before detection. We present a rapid microfluidic solid phase extraction (μSPE) system for the capture and elution of low concentrations of hm-DNA (≤1 ng ml−1), based on a protein-DNA capture surface, into small volumes using a passive microfluidic lab-on-a-chip platform. All assay steps have been qualitatively characterized using a real-time surface plasmon resonance (SPR) biosensor, and quantitatively characterized using fluorescence spectroscopy. The hm-DNA capture/elution process requires less than 5 min with an efficiency of 71% using a 25 μl elution volume and 92% efficiency using a 100 μl elution volume.
      PubDate: 2014-10-21T12:57:06Z
  • Effective cell collection method using collagenase and ultrasonic
    • Authors: Y. Kurashina; K. Takemura, S. Miyata, J. Komotori T. Koyama
      Abstract: This study proposes a novel cell collection method based on collagenase treatment and ultrasonic vibration. The method collects calf chondrocytes from a reusable metal cell culture substrate. To develop our concept, we calculated the natural vibration modes of the cell culture substrate by a finite element method, and conducted eigenvalue and piezoelectric-structural analyses. Selecting the first out-of-plane vibration mode of the substrate, which has a single nodal circle, we designed and fabricated the cell collection device. The excited vibration mode properly realized our intentions. We then evaluated the cell collection ratio and the growth response, and observed the morphology of the collected cells. The collagenase and ultrasonic vibration treatment collected comparable numbers of cells to conventional trypsin and pipetting treatment, but improved the proliferating cell statistics. Morphological observations revealed that the membranes of cells collected by the proposed method remain intact; consequently, the cells are larger and rougher than cells collected by the conventional method. Therefore, we present a promising cell collection method for adhesive cell culturing process.
      PubDate: 2014-10-21T12:56:55Z
  • A microfluidic device to study cancer metastasis under chronic and
           intermittent hypoxia
    • Authors: Miguel A. Acosta; Xiao Jiang, Pin-Kang Huang, Kyle B. Cutler, Christine S. Grant, Glenn M. Walker Michael P. Gamcsik
      Abstract: Metastatic cancer cells must traverse a microenvironment ranging from extremely hypoxic, within the tumor, to highly oxygenated, within the host's vasculature. Tumor hypoxia can be further characterized by regions of both chronic and intermittent hypoxia. We present the design and characterization of a microfluidic device that can simultaneously mimic the oxygenation conditions observed within the tumor and model the cell migration and intravasation processes. This device can generate spatial oxygen gradients of chronic hypoxia and produce dynamically changing hypoxic microenvironments in long-term culture of cancer cells.
      PubDate: 2014-10-17T12:42:38Z
  • Advances in three-dimensional rapid prototyping of microfluidic devices
           for biological applications
    • Authors: P. F. O'Neill; A. Ben Azouz, M. Vázquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond D. Brabazon
      Abstract: The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.
      PubDate: 2014-10-16T12:43:51Z
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014