for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> PHYSICS (Total: 744 journals)
    - MECHANICS (20 journals)
    - NUCLEAR PHYSICS (44 journals)
    - OPTICS (86 journals)
    - PHYSICS (541 journals)
    - SOUND (17 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (541 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 7)
Acta Mechanica     Hybrid Journal   (Followers: 15)
Advanced Composite Materials     Hybrid Journal   (Followers: 11)
Advanced Functional Materials     Hybrid Journal   (Followers: 34)
Advanced Materials     Hybrid Journal   (Followers: 336)
Advances in Condensed Matter Physics     Open Access   (Followers: 6)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Geophysics     Full-text available via subscription   (Followers: 4)
Advances in High Energy Physics     Open Access   (Followers: 12)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 1)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 13)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 14)
Advances in OptoElectronics     Open Access   (Followers: 3)
Advances In Physics     Hybrid Journal   (Followers: 7)
Advances in Physics Theories and Applications     Open Access   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 8)
Advances in Synchrotron Radiation     Hybrid Journal   (Followers: 1)
AIP Advances     Open Access   (Followers: 4)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Condensed Matter Physics     Open Access   (Followers: 2)
American Journal of Signal Processing     Open Access   (Followers: 8)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 1)
Annalen der Physik     Hybrid Journal   (Followers: 2)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 3)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 2)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 3)
Annals of Physics     Hybrid Journal   (Followers: 2)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 4)
APL Materials     Open Access   (Followers: 4)
Applied Composite Materials     Hybrid Journal   (Followers: 8)
Applied Physics A     Hybrid Journal   (Followers: 9)
Applied Physics Frontier     Open Access   (Followers: 1)
Applied Physics Letters     Hybrid Journal   (Followers: 25)
Applied Physics Research     Open Access   (Followers: 6)
Applied Physics Reviews     Hybrid Journal   (Followers: 7)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 5)
Applied Remote Sensing Journal     Open Access   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 12)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 2)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
Astronomy & Geophysics     Hybrid Journal   (Followers: 1)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 3)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 3)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 5)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 29)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 15)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Biomedical Imaging and Intervention Journal     Open Access   (Followers: 5)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 7)
BMC Nuclear Medicine     Open Access   (Followers: 5)
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 38)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 4)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Cells     Open Access   (Followers: 1)
Central European Journal of Physics     Hybrid Journal   (Followers: 1)
CERN courier. International journal of high energy physics     Free  
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 1)
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 1)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 29)
Composites Part B : Engineering     Hybrid Journal   (Followers: 28)
Computational Materials Science     Hybrid Journal   (Followers: 18)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal  
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal  
Contemporary Concepts of Condensed Matter Science     Full-text available via subscription  
Contemporary Physics     Hybrid Journal   (Followers: 10)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 3)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)
COSPAR Colloquia Series     Full-text available via subscription   (Followers: 1)
Cryogenics     Hybrid Journal   (Followers: 14)
Current Applied Physics     Full-text available via subscription   (Followers: 4)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Differential Equations and Nonlinear Mechanics     Open Access   (Followers: 4)
Doklady Physics     Hybrid Journal   (Followers: 1)

        1 2 3 4 5 6 | Last

Annales Geophysicae (ANGEO)
   Journal TOC RSS feeds Export to Zotero [5 followers]  Follow    
  This is an Open Access Journal Open Access journal
     ISSN (Print) 0992-7689 - ISSN (Online) 1432-0576
     Published by European Geosciences Union Homepage  [8 journals]   [SJR: 1.151]   [H-I: 57]
  • Aspects of magnetosphere–ionosphere coupling in sawtooth substorms:
           a case study

    • Abstract: Aspects of magnetosphere–ionosphere coupling in sawtooth substorms: a case study

      Annales Geophysicae, 32, 1277-1291, 2014

      Author(s): P. E. Sandholt and C. J. Farrugia

      In a case study we report on repetitive substorm activity during storm time which was excited during Earth passage of an interplanetary coronal mass ejection (ICME) on 18 August 2003. Applying a combination of magnetosphere and ground observations during a favourable multi-spacecraft configuration in the plasma sheet (GOES-10 at geostationary altitude) and in the tail lobes (Geotail and Cluster-1), we monitor the temporal–spatial evolution of basic elements of the substorm current system. Emphasis is placed on activations of the large-scale substorm current wedge (SCW), spanning the 21:00–03:00 MLT sector of the near-Earth plasma sheet (GOES-10 data during the interval 06:00–12:00 UT), and magnetic perturbations in the tail lobes in relation to ground observations of auroral electrojets and convection in the polar cap ionosphere. The joint ground–satellite observations are interpreted in terms of sequential intensifications and expansions of the outer and inner current loops of the SCW and their respective associations with the westward electrojet centred near midnight (24:00 MLT) and the eastward electrojet observed at 14:00–15:00 MLT. Combined magnetic field observations across the tail lobe from Cluster and Geotail allow us to make estimates of enhancements of the cross-polar-cap potential (CPCP) amounting to ≈ 30–60 kV (lower limits), corresponding to monotonic increases of the PCN index by 1.5 to 3 mV m−1 from inductive electric field coupling in the magnetosphere–ionosphere (M–I) system during the initial transient phase of the substorm expansion.
      PubDate: 2014-10-20T00:00:00+02:00
  • Applying inversion techniques to derive source currents and geoelectric
           fields for geomagnetically induced current calculations

    • Abstract: Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

      Annales Geophysicae, 32, 1263-1275, 2014

      Author(s): J. S. de Villiers and P. J. Cilliers

      This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC) in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber) of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.
      PubDate: 2014-10-16T00:00:00+02:00
  • Magnetic clouds' structure in the magnetosheath as observed by Cluster and
           Geotail: four case studies

    • Abstract: Magnetic clouds' structure in the magnetosheath as observed by Cluster and Geotail: four case studies

      Annales Geophysicae, 32, 1247-1261, 2014

      Author(s): L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua

      Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.
      PubDate: 2014-10-15T00:00:00+02:00
  • Formation of the high-energy ion population in the earth's magnetotail:
           spacecraft observations and theoretical models

    • Abstract: Formation of the high-energy ion population in the earth's magnetotail: spacecraft observations and theoretical models

      Annales Geophysicae, 32, 1233-1246, 2014

      Author(s): A. V. Artemyev, I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich

      We investigate the formation of the high-energy (E ∈ [20,600] keV) ion population in the earth's magnetotail. We collect statistics of 4 years of Interball / Tail observations (1995–1998) in the vicinity of the neutral plane in the magnetotail region (X
      PubDate: 2014-10-13T00:00:00+02:00
  • E layer dominated ionosphere observed by EISCAT/ESR radars during solar

    • Abstract: E layer dominated ionosphere observed by EISCAT/ESR radars during solar minimum

      Annales Geophysicae, 32, 1223-1231, 2014

      Author(s): Hongtao Cai, Fei Li, Ge Shen, Weijia Zhan, Kangjun Zhou, Ian Willian McCrea, and Shuying Ma

      According to the study by Mayer and Jakowski (2009), periods of E layer dominated ionosphere (ELDI) are defined as being characterized by vertical electron density profiles having a maximum density at E layer altitudes. In this paper, characteristics of ELDI intervals have been investigated, focusing on their temporal variations, using field-aligned measurements from the EISCAT and ESR radars during the interval 2009–2011. ELDI events were identified using simple but reasonable criteria, in which a minimal duration was required to exclude possible "fake" events induced by random errors in measurements. It was found that ELDIs were observed more often in winter and earlier spring than other seasons, especially in the auroral zone. The occurrence of ELDI intervals peaks around geomagnetic midnight at auroral latitudes, while it reaches a maximum around geomagnetic local noon at the latitude of the ESR. Our results imply that ELDI intervals appear to be a sporadic rather than a regular phenomenon, in disagreement with previous results inferred from radio occultation measurements. The discrepancy between the typical durations of ELDI events observed by the two radars is remarkable, being 30 min on average at Tromsø but about a half of this at Svalbard. During intervals of ELDI, the mean thicknesses of the E layer are quite close at the two sites, as are the values of HmE and the ratio of NmE / NmF2. Case studies confirm that either extra E layer ionization or F layer density depletion alone could lead to the presence of ELDIs. Based on a careful check on ELDI intervals of various types, however, we suggest that both of them play a critical role in ELDI formation.
      PubDate: 2014-10-10T00:00:00+02:00
  • Identification of the propagation mode of a solar wind wave associated
           with Pc5 pulsations in the magnetosphere

    • Abstract: Identification of the propagation mode of a solar wind wave associated with Pc5 pulsations in the magnetosphere

      Annales Geophysicae, 32, 1217-1221, 2014

      Author(s): A. D. M. Walker and J. A. E. Stephenson

      A case study of a magnetohydrodynamic (MHD) wave in the solar wind that is strongly correlated with a magnetospheric field line resonance observed by the SuperDARN (Super Dual Auroral Radar Network) radar at Sanae, Antarctica is presented. The data from the ACE (Advanced Composition Explorer) satellite at the solar libration point are analysed. The data time series are bandpass filtered at the pulsation frequency and the analytic signal deduced. From these data the partition of energy between the field components is computed. It is shown that energy is equally partitioned between the kinetic energy and transverse magnetic potential energy densities. The energy flux vector is closely aligned with the background magnetic field. The transverse magnetic and velocity components are in antiphase. This is the first identification of the triggering wave as a transverse Alfvén wave which originates upstream from the space craft and is propagated to the magnetosphere to trigger the pulsation.
      PubDate: 2014-10-10T00:00:00+02:00
  • Simulation study of the plasma-brake effect

    • Abstract: Simulation study of the plasma-brake effect

      Annales Geophysicae, 32, 1207-1216, 2014

      Author(s): P. Janhunen

      Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.
      PubDate: 2014-10-07T00:00:00+02:00
  • A case study of gravity wave dissipation in the polar MLT region using
           sodium LIDAR and radar data

    • Abstract: A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data

      Annales Geophysicae, 32, 1195-1205, 2014

      Author(s): T. Takahashi, S. Nozawa, M. Tsutsumi, C. Hall, S. Suzuki, T. T. Tsuda, T. D. Kawahara, N. Saito, S. Oyama, S. Wada, T. Kawabata, H. Fujiwara, A. Brekke, A. Manson, C. Meek, and R. Fujii

      This paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp ≤ 1). The sodium LIDAR observations conducted at Tromsø, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (GW) signature. Derived vertical and horizontal wavelengths, maximum amplitude, apparent and intrinsic period, and horizontal phase velocity were about ~ 11.9 km, ~ 1.38 × 103 km, ~ 15 K, 4 h, ~ 7.7 h, and ~ 96 m s−1, respectively, between a height of 80 and 95 km. Of particular interest is a temporal development of the uppermost altitude that the GW reached. The GW disappeared around 95 km height between 16:30 and 21:00 UT, while after 21:00 UT the GW appeared to propagate to higher altitudes (above 100 km). We have evaluated three mechanisms (critical-level filtering, convective and dynamic instabilities) for dissipations using data obtained by the sodium LIDAR and a meteor radar. It is found that critical-level filtering did not occur, and the convective and dynamic instabilities occurred on some occasions. MF radar echo power showed significant enhancements between 18:30 and 21:00 UT, and an overturning feature of the sodium mixing ratio was observed between 18:30 and 21:20 UT above about 95 km. From these results, we have concluded that the GW was dissipated by wave breaking and instabilities before 21:00 UT. We have also investigated the difference of the background atmosphere for the two intervals and would suggest that a probable cause of the change in the GW propagation was due to the difference in the temperature gradient of the background atmosphere above 94 km.
      PubDate: 2014-10-07T00:00:00+02:00
  • The structure of fast sausage waves in current-carrying coronal loops

    • Abstract: The structure of fast sausage waves in current-carrying coronal loops

      Annales Geophysicae, 32, 1189-1193, 2014

      Author(s): D. B. Bembitov, B. B. Mikhalyaev, and M. S. Ruderman

      We study fast sausage waves in a model coronal loop that consists of a cylindrical core with axial magnetic field and coaxial annulus with purely azimuthal magnetic field. The magnetic field is discontinuous at the tube and core boundaries, and there are surface currents with the opposite directions on these boundaries. The principal mode of fast sausage waves in which the magnetic pressure perturbation has no nodes in the radial direction can exist for arbitrary wavelength. The results for the fundamental radial mode of sausage waves are applied to the interpretation of observed periodic pulsations of microwave emission in flaring loops with periods of a few tens of seconds. Radial plasma motion has opposite directions at the tube and core boundaries. This leads to the periodic contraction and expansion of the annulus. We assume that the principal mode of fast sausage waves in the current-carrying coronal loops is able to produce a current sheet. However, the nonlinear analysis is needed to confirm this conjecture.
      PubDate: 2014-09-24T00:00:00+02:00
  • Observations of the generation of eastward equatorial electric fields near

    • Abstract: Observations of the generation of eastward equatorial electric fields near dawn

      Annales Geophysicae, 32, 1169-1175, 2014

      Author(s): M. C. Kelley, F. S. Rodrigues, R. F. Pfaff, and J. Klenzing

      We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardière et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh–Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m−1, but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well.
      PubDate: 2014-09-19T00:00:00+02:00
  • Comparison of methods for modelling geomagnetically induced currents

    • Abstract: Comparison of methods for modelling geomagnetically induced currents

      Annales Geophysicae, 32, 1177-1187, 2014

      Author(s): D. H. Boteler and R. J. Pirjola

      Assessing the geomagnetic hazard to power systems requires reliable modelling of the geomagnetically induced currents (GIC) produced in the power network. This paper compares the Nodal Admittance Matrix method with the Lehtinen–Pirjola method and shows them to be mathematically equivalent. GIC calculation using the Nodal Admittance Matrix method involves three steps: (1) using the voltage sources in the lines representing the induced geoelectric field to calculate equivalent current sources and summing these to obtain the nodal current sources, (2) performing the inversion of the admittance matrix and multiplying by the nodal current sources to obtain the nodal voltages, (3) using the nodal voltages to determine the currents in the lines and in the ground connections. In the Lehtinen–Pirjola method, steps 2 and 3 of the Nodal Admittance Matrix calculation are combined into one matrix expression. This involves inversion of a more complicated matrix but yields the currents to ground directly from the nodal current sources. To calculate GIC in multiple voltage levels of a power system, it is necessary to model the connections between voltage levels, not just the transmission lines and ground connections considered in traditional GIC modelling. Where GIC flow to ground through both the high-voltage and low-voltage windings of a transformer, they share a common path through the substation grounding resistance. This has been modelled previously by including non-zero, off-diagonal elements in the earthing impedance matrix of the Lehtinen–Pirjola method. However, this situation is more easily handled in both the Nodal Admittance Matrix method and the Lehtinen–Pirjola method by introducing a node at the neutral point.
      PubDate: 2014-09-19T00:00:00+02:00
  • New results of structured VLF emissions observed simultaneously at two
           closely located stations near L ~ 5.5

    • Abstract: New results of structured VLF emissions observed simultaneously at two closely located stations near L ~ 5.5

      Annales Geophysicae, 32, 1163-1167, 2014

      Author(s): J. Manninen, N. G. Kleimenova, Yu. V. Fedorenko, P. A. Bespalov, and T. Turunen

      Simultaneous records of VLF (very low frequencies) emissions have been carried out at two ground-based stations located at similar geomagnetic latitudes near L ~ 5.5 and spaced in the longitude by ~ 400 km, Kannuslehto (KAN) in Finland and Lovozero (LOZ) in Russia, using quite similar VLF receivers with two calibrated orthogonal air-core loop antennas. We found that the general spectral properties of the VLF chorus emissions at these two stations were similar and typically have right-hand polarization. Contrary to VLF chorus, the short-period VLF emissions (periodic emissions, PE) in which separated spectral elements are repeated with the periodicity of 3–4 s were mostly left-hand polarized. Usually, these waves propagated in the north–south direction. We suppose that PEs are generated inside of the plasmasphere by the cyclotron instability under a quasi-linear relaxation of the energetic electron distribution function. However, sometimes PE occurred only at an individual station. We speculated that this could be due to the influence of the local inhomogeneities to the VLF waves during the propagation through the ionospheric trough to the ground. Unusual series of short-duration (10–100 s) bursts of VLF emissions, lasting several hours, were also found in the morning under very quiet geomagnetic conditions (Kp ~ 0–1). Generally, these emissions were observed simultaneously at KAN and LOZ showing both right-hand and left-hand polarization, and different arrival directions provided the rather extended ionospheric exit area.
      PubDate: 2014-09-18T00:00:00+02:00
  • Ionospheric shock waves triggered by rockets

    • Abstract: Ionospheric shock waves triggered by rockets

      Annales Geophysicae, 32, 1145-1152, 2014

      Author(s): C. H. Lin, J. T. Lin, C. H. Chen, J. Y. Liu, Y. Y. Sun, Y. Kakinami, M. Matsumura, W. H. Chen, H. Liu, and R. J. Rau

      This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC) derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK) Taepodong-2 and 2013 South Korea (SK) Korea Space Launch Vehicle-II (KSLV-II) rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.
      PubDate: 2014-09-16T00:00:00+02:00
  • On the man-made contamination on ULF measurements: evidence for
           disturbances related to an electrified DC railway

    • Abstract: On the man-made contamination on ULF measurements: evidence for disturbances related to an electrified DC railway

      Annales Geophysicae, 32, 1153-1161, 2014

      Author(s): U. Villante, A. Piancatelli, and P. Palangio

      An analysis of measurements performed at L'Aquila (Italy) during a deep minimum of solar and magnetospheric activity (2008–2010) allowed for the evaluation of possible contamination of the ultralow-frequency (ULF) spectrum (f ≈ 1–500 mHz) from artificial disturbances, practically in absence of natural signals. In addition, the city evacuation and the interruption of all industrial and social activities after the strong earthquake of 6 April 2009 allowed also for the examination of possible changes of the contamination level under remarkably changed environmental conditions. Our analysis reveals a persistent, season-independent, artificial signal, with the same characteristics in the H and Z components, that affects during daytime hours the entire spectrum; such contamination persists after the city evacuation. We speculate that the DC electrified railway (located ≈ 33 km from the Geomagnetic Observatory of L'Aquila, it maintained the same train traffic after the earthquake) is responsible for the observed disturbances.
      PubDate: 2014-09-16T00:00:00+02:00
  • Spatial and seasonal variability of medium- and high-frequency gravity
           waves in the lower atmosphere revealed by US radiosonde data

    • Abstract: Spatial and seasonal variability of medium- and high-frequency gravity waves in the lower atmosphere revealed by US radiosonde data

      Annales Geophysicae, 32, 1129-1143, 2014

      Author(s): S. D. Zhang, C. M. Huang, K. M. Huang, F. Yi, Y. H. Zhang, Y. Gong, and Q. Gan

      We extended the broad spectral method proposed by Zhang et al. (2013) for the extraction of medium- and high-frequency gravity waves (MHGWs). This method was applied to 11 years (1998–2008) of radiosonde data from 92 stations in the Northern Hemisphere to investigate latitudinal, continuous vertical and seasonal variability of MHGW parameters in the lower atmosphere (2–25 km). The latitudinal and vertical distributions of the wave energy density and horizontal momentum fluxes as well as their seasonal variations exhibit considerable consistency with those of inertial gravity waves. Despite the consistency, the MHGWs have much larger energy density, horizontal momentum fluxes and wave force, indicating the more important role of MHGWs in energy and momentum transportation and acceleration of the background. For the observed MHGWs, the vertical wavelengths are usually larger than 8 km; the horizontal wavelengths peak in the middle troposphere at middle–high latitudes. These characteristics are obviously different from inertial gravity waves. The energy density and horizontal momentum fluxes have similar latitude-dependent seasonality: both of them are dominated by a semiannual variation at low latitudes and an annual variation at middle latitudes; however at high latitudes, they often exhibit more than two peaks per year in the troposphere. Compared with the inertial GWs, the derived intrinsic frequencies are more sensitive to the spatiotemporal variation of the buoyancy frequency, and at all latitudinal regions they are higher in summer. The wavelengths have a weaker seasonal variation; an evident annual cycle can be observed only at middle latitudes.
      PubDate: 2014-09-12T00:00:00+02:00
  • Remote sensing of the Io torus plasma ribbon using natural radio
           occultation of the Jovian radio emissions

    • Abstract: Remote sensing of the Io torus plasma ribbon using natural radio occultation of the Jovian radio emissions

      Annales Geophysicae, 32, 1119-1128, 2014

      Author(s): M. Y. Boudjada, P. H. M. Galopeau, S. Sawas, and H. Lammer

      We study the Jovian hectometric (HOM) emissions recorded by the RPWS (Radio and Plasma Wave Science) experiment onboard the Cassini spacecraft during its Jupiter flyby. We analyze the attenuation band associated with the intensity extinction of HOM radiation. This phenomenon is interpreted as a refraction effect of the Jovian hectometric emission inside the Io plasma torus. This attenuation band was regularly observed during periods of more than 5 months, from the beginning of October 2000 to the end of March 2001. We estimate for this period the variation of the electron density versus the central meridian longitude (CML). We find a clear local time dependence. Hence the electron density was not higher than 5.0 × 104 cm−3 during 2 months, when the spacecraft approached the planet on the dayside. In the late afternoon and evening sectors, the electron density increases to 1.5 × 105 cm−3 and reach a higher value at some specific occasions. Additionally, we show that ultraviolet and hectometric wavelength observations have common features related to the morphology of the Io plasma torus. The maxima of enhancements/attenuations of UV/HOM observations occur close to the longitudes of the tip of the magnetic dipole in the southern hemisphere (20° CML) and in the northern hemisphere (200° CML), respectively. This is a significant indication about the importance of the Jovian magnetic field as a physical parameter in the coupling process between Jupiter and the Io satellite.
      PubDate: 2014-09-09T00:00:00+02:00
  • Cluster observations of the substructure of a flux transfer event:
           analysis of high-time-resolution particle data

    • Abstract: Cluster observations of the substructure of a flux transfer event: analysis of high-time-resolution particle data

      Annales Geophysicae, 32, 1093-1117, 2014

      Author(s): A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr

      Flux transfer events (FTEs) are signatures of transient reconnection at the dayside magnetopause, transporting flux from the dayside of the magnetosphere into the magnetotail lobes. They have previously been observed to contain a combination of magnetosheath and magnetospheric plasma. On 12 February 2007, the four Cluster spacecraft were widely separated across the magnetopause and observed a crater-like FTE as they crossed the Earth's dayside magnetopause through its low-latitude boundary layer. The particle instruments on the Cluster spacecraft were in burst mode and returning data providing 3-D velocity distribution functions (VDFs) at 4 s resolution during the observation of this FTE. Moreover, the magnetic field observed during the event remained closely aligned with the spacecraft spin axis and thus we have been able to use these 3-D data to reconstruct nearly full pitch angle distributions of electrons and ions at high time resolution (up to 32 times faster than available from the normal mode data stream). These observations within the boundary layer and inside the core of the FTE show that both the interior and the surrounding structure of the FTE consist of multiple individual layers of plasma, in greater number than previously identified. Our observations show a cold plasma inside the core, a thin layer of antiparallel-moving electrons at the edge of FTE itself, and field-aligned ions with Alfvénic speeds at the trailing edge of the FTE. We discuss the plasma characteristics in these FTE layers, their possible relevance to the magnetopause reconnection processes and attempt to distinguish which of the various different FTE models may be relevant in this case. These data are particularly relevant given the impending launch of NASA's MMS mission, for which similar observations are expected to be more routine.
      PubDate: 2014-09-08T00:00:00+02:00
  • Analysis of cloud-to-ground lightning and its relation with surface
           pollutants over Taipei, Taiwan

    • Abstract: Analysis of cloud-to-ground lightning and its relation with surface pollutants over Taipei, Taiwan

      Annales Geophysicae, 32, 1085-1092, 2014

      Author(s): S. K. Kar and Y. A. Liou

      Premonsoon (March–April) cloud-to-ground (CG) lightning activity over Taipei, Taiwan, is analyzed in relation to surface pollutants like particulate matter (PM10), sulfur dioxide (SO2), nitrogen oxides (NOx) and ozone (O3) concentration for a period of 6 years (2005–2010). Other surface parameters like aerosol optical depth and cloud top temperature are also investigated taking data from Moderate Resolution Imaging Spectroradiometer satellite products. Results reveal that SO2 is more strongly associated with CG lightning activity compared to PM10 concentration. Other surface pollutants like NOx and O3 also show strong linear association with CG lightning flashes. Additional investigations have also been performed to extreme lightning events, particularly to a few long-lasting lightning episodes considering the concentrations of NOx and O3 found on days with no lightning activity as representative of the background concentration levels of the said two parameters. Results indicate that the NOx concentration on days with lightning activity is more than 2-fold compared to the non-lightning days while the O3 concentration is increased by 1.5-fold. Such increase in NOx and O3 concentration on days with lightning strongly supports the transport phenomena of NOx and O3 from the upper or middle troposphere to the lower troposphere by downdraft of the thunderstorm during its dissipation stage. Overall, studies suggest that enhanced surface pollution in a near-storm environment is strongly related to the increased lightning activity, which in turn increases the surface NOx level and surface O3 concentration over the area under study.
      PubDate: 2014-09-03T00:00:00+02:00
  • Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin

    • Abstract: Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin

      Annales Geophysicae, 32, 1073-1083, 2014

      Author(s): M. M. Amrutha, V. Sanil Kumar, T. R. Anoop, T. M. Balakrishnan Nair, A. Nherakkol, and C. Jeyakumar

      The wave statistical parameters during Cyclone Phailin which crossed the northern Bay of Bengal are described based on the Directional Waverider buoy-measured wave data from 8 to 13 October 2013. On 12 October 2013, the cyclone passed within 70 km of the Waverider buoy location with a wind speed of 59.2 m s−1 (115 knots), and during this period, a maximum significant wave height of 7.3 m and a maximum wave height of 13.5 m were measured at 50 m water depth. Eight freak wave events are observed during the study period. The ratio of the maximum wave height to significant wave height recorded is found to be higher than the theoretical value and the ratio of the crest height to wave height during the cyclone was 0.6 to 0.7. The characteristics of the wave spectra before and after the cyclone is studied and found that the high-frequency face of the wave spectrum is proportional to f−3 before the cyclone and is between f−4 and f−5 during the cyclone period.
      PubDate: 2014-09-02T00:00:00+02:00
  • Effect of plasma density on diffusion rates due to wave particle
           interactions with chorus and plasmaspheric hiss: extreme event analysis

    • Abstract: Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis

      Annales Geophysicae, 32, 1059-1071, 2014

      Author(s): A. Sicard-Piet, D. Boscher, R. B. Horne, N. P. Meredith, and V. Maget

      Wave particle interactions play an important role in controlling the dynamics of the radiation belts. The purpose of this study is to estimate how variations in the plasma density can affect diffusion rates resulting from interactions between chorus waves and plasmaspheric hiss with energetic particles and the resulting evolution of the energetic electron population. We perform a statistical analysis of the electron density derived from the plasma wave experiment on the CRRES satellite for two magnetic local time sectors corresponding to near midnight and near noon. We present the cumulative probability distribution of the electron plasma density for three levels of magnetic activity as measured by Kp. The largest densities are seen near L* = 2.5 while the smallest occur near L* = 6. The broadest distribution, corresponding to the greatest variability, occurs near L* = 4. We calculate diffusion coefficients for plasmaspheric hiss and whistler mode chorus for extreme values of the electron density and estimate the effects on the radiation belts using the Salammbô model. At L* = 4 and L* = 6, in the low density case, using the density from the 5th percentile of the cumulative distribution function, electron energy diffusion by chorus waves is strongest at 2 MeV and increases the flux by up to 3 orders of magnitude over a period of 24 h. In contrast, in the high density case, using the density from the 95th percentile, there is little acceleration at energies above 800 keV at L* = 6, and virtually no acceleration at L* = 4. In this case the strongest energy diffusion occurs at lower energies around 400 keV where the flux at L* = 6 increases 3 orders of magnitude.
      PubDate: 2014-08-29T00:00:00+02:00
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014