for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> PHYSICS (Total: 780 journals)
    - MECHANICS (19 journals)
    - NUCLEAR PHYSICS (48 journals)
    - OPTICS (90 journals)
    - PHYSICS (565 journals)
    - SOUND (20 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (565 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 7)
Acta Mechanica     Hybrid Journal   (Followers: 16)
Advanced Composite Materials     Hybrid Journal   (Followers: 51)
Advanced Functional Materials     Hybrid Journal   (Followers: 41)
Advanced Materials     Hybrid Journal   (Followers: 227)
Advanced Science Focus     Free   (Followers: 1)
Advances in Condensed Matter Physics     Open Access   (Followers: 6)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Geophysics     Full-text available via subscription   (Followers: 5)
Advances in High Energy Physics     Open Access   (Followers: 11)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 3)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 14)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 16)
Advances in OptoElectronics     Open Access   (Followers: 3)
Advances In Physics     Hybrid Journal   (Followers: 7)
Advances in Physics Theories and Applications     Open Access   (Followers: 8)
Advances in Remote Sensing     Open Access   (Followers: 10)
AIP Advances     Open Access   (Followers: 5)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 2)
American Journal of Applied Sciences     Open Access   (Followers: 30)
American Journal of Condensed Matter Physics     Open Access   (Followers: 4)
American Journal of Signal Processing     Open Access   (Followers: 9)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 2)
Annalen der Physik     Hybrid Journal   (Followers: 3)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 4)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 1)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 4)
Annals of Physics     Hybrid Journal   (Followers: 3)
Annals of West University of Timisoara - Physics     Open Access  
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 4)
APL Materials     Open Access   (Followers: 6)
Applied Composite Materials     Hybrid Journal   (Followers: 37)
Applied Physics A     Hybrid Journal   (Followers: 10)
Applied Physics Frontier     Open Access   (Followers: 2)
Applied Physics Letters     Hybrid Journal   (Followers: 24)
Applied Physics Research     Open Access   (Followers: 5)
Applied Physics Reviews     Hybrid Journal   (Followers: 9)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 5)
Applied Remote Sensing Journal     Open Access   (Followers: 11)
Applied Spectroscopy     Full-text available via subscription   (Followers: 16)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 3)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
Asia Pacific Physics Newsletter     Hybrid Journal  
ASTRA Proceedings     Open Access  
Astronomy & Geophysics     Hybrid Journal   (Followers: 3)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 3)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 3)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 10)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 35)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 15)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 7)
BMC Nuclear Medicine     Open Access   (Followers: 5)
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 41)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 4)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Case Studies in Nondestructive Testing and Evaluation     Open Access  
Cells     Open Access   (Followers: 1)
CERN courier. International journal of high energy physics     Free   (Followers: 1)
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 1)
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 1)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cogent Physics     Open Access  
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Computational Physics     Full-text available via subscription  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 108)
Composites Part B : Engineering     Hybrid Journal   (Followers: 137)
Computational Astrophysics and Cosmology     Open Access  
Computational Condensed Matter     Open Access  
Computational Materials Science     Hybrid Journal   (Followers: 21)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal  
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal   (Followers: 1)
Contemporary Concepts of Condensed Matter Science     Full-text available via subscription  
Contemporary Physics     Hybrid Journal   (Followers: 12)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 3)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)

        1 2 3 4 5 6 | Last

Journal Cover   Annales Geophysicae (ANGEO)
  [SJR: 1.176]   [H-I: 63]   [4 followers]  Follow
  This is an Open Access Journal Open Access journal
   ISSN (Print) 0992-7689 - ISSN (Online) 1432-0576
   Published by European Geosciences Union Homepage  [8 journals]
  • Association of the pre-monsoon thermal field over north India and the
           western Tibetan Plateau with summer monsoon rainfall over India

    • Abstract: Association of the pre-monsoon thermal field over north India and the western Tibetan Plateau with summer monsoon rainfall over India

      Annales Geophysicae, 33, 1051-1058, 2015

      Author(s): S. D. Bansod, S. Fadnavis, and S. P. Ghanekar

      In this paper, interannual variability of tropospheric air temperatures over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). For this purpose, monthly grid-point temperatures in the entire troposphere over the Asian summer monsoon region and ISMR data for the period 1949–2012 have been used. Spatial correlation patterns are investigated between the temperature field in the lower tropospheric levels during May over the Asian summer monsoon region and ISMR. The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region, with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region – region R1 (north Bay of Bengal: region R2). The observed dipole is seen significantly up to a level of 850 hPa and eventually disappears at 700 hPa. Thermal indices evaluated at 850 hPa level, based on average air temperatures over the north India and western Tibetan Plateau region (TI1) and the north Bay of Bengal region (TI2) during May, show a strong, significant relationship with the ISMR. The results are found to be consistent and robust, especially in the case of TI1 during the period of analysis. A physical mechanism for the relationship between these indices and ISMR is proposed. Finally the composite annual cycle of tropospheric air temperature over R1 during flood/drought years of ISMR is examined. The study brings out the importance of the TI1 in the prediction of flood/drought conditions over the Indian subcontinent.
      PubDate: 2015-08-25T00:00:00+02:00
  • Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and

    • Abstract: Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013

      Annales Geophysicae, 33, 1037-1050, 2015

      Author(s): J. Paral, M. K. Hudson, B. T. Kress, M. J. Wiltberger, J. R. Wygant, and H. J. Singer

      Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon–Fedder–Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8–9 October 2012 and 17–18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.
      PubDate: 2015-08-20T00:00:00+02:00
  • Observation of a new type of low-frequency waves at comet

    • Abstract: Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko

      Annales Geophysicae, 33, 1031-1036, 2015

      Author(s): I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier

      We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
      PubDate: 2015-08-19T00:00:00+02:00
  • Numerical study of upper hybrid to Z-mode leakage
           during electromagnetic pumping of groups of striations in the ionosphere

    • Abstract: Numerical study of upper hybrid to Z-mode leakage during electromagnetic pumping of groups of striations in the ionosphere

      Annales Geophysicae, 33, 1019-1030, 2015

      Author(s): B. Eliasson and T. B. Leyser

      We investigate numerically the interaction between ionospheric magnetic field-aligned density striations and a left-hand circularly polarized (L)-mode wave. The L-mode wave is scattered into upper hybrid (UH) waves which are partially trapped in the striations, but leak energy to electromagnetic waves in the Z-mode branch. For small-amplitude (1 %) striations, this loss mechanism leads to a significant reduction in amplitude of the UH waves. For several striations organized in a lattice, the leaking of Z-mode waves is compensated by influx of Z-mode radiation from neighboring striations, leading to an increased amplitude of the weakly trapped UH waves. For large-amplitude (10 %) striations the trapped UH waves rapidly increase in amplitude far beyond the threshold for parametric instabilities, and the Z-mode leakage is less important. The results have relevance for the growth of striations and the onset of UH and lower hybrid turbulence during electromagnetic high-frequency pumping of ionospheric plasma, which require large-amplitude UH waves.
      PubDate: 2015-08-19T00:00:00+02:00
  • Profile of a low-Mach-number shock in two-fluid plasma theory

    • Abstract: Profile of a low-Mach-number shock in two-fluid plasma theory

      Annales Geophysicae, 33, 1011-1017, 2015

      Author(s): M. Gedalin, Y. Kushinsky, and M. Balikhin

      Magnetic profiles of low-Mach-number collisionless shocks in space plasmas are studied within the two-fluid plasma theory. Particular attention is given to the upstream magnetic oscillations generated at the ramp. By including weak resistive dissipation in the equations of motion for electrons and protons, the dependence of the upstream wave train features on the ratio of the dispersion length to the dissipative length is established quantitatively. The dependence of the oscillation amplitude and spatial damping scale on the shock normal angle θ is found.
      PubDate: 2015-08-18T00:00:00+02:00
  • Nonlinear wave interactions of kinetic sound waves

    • Abstract: Nonlinear wave interactions of kinetic sound waves

      Annales Geophysicae, 33, 1007-1010, 2015

      Author(s): G. Brodin and L. Stenflo

      We reconsider the nonlinear resonant interaction between three electrostatic waves in a magnetized plasma. The general coupling coefficients derived from kinetic theory are reduced here to the low-frequency limit. The main contribution to the coupling coefficient we find in this way agrees with the coefficient recently presented in Annales Geophysicae. But we also deduce another contribution which sometimes can be important, and which qualitatively agrees with that of an even more recent paper. We have thus demonstrated how results derived from fluid theory can be improved and generalized by means of kinetic theory. Possible extensions of our results are outlined.
      PubDate: 2015-08-14T00:00:00+02:00
  • Ionospheric variations over Indian low latitudes close to the equator and
           comparison with IRI-2012

    • Abstract: Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012

      Annales Geophysicae, 33, 997-1006, 2015

      Author(s): P. Pavan Chaitanya, A. K. Patra, N. Balan, and S. V. B. Rao

      In this paper, we analyze daytime observations of the critical frequencies of the F2 (foF2) and F3 (foF3) layers based on ionosonde observations made from Indian low latitudes close to the magnetic equator and study their local time, seasonal, planetary-scale variations (including the solar rotation effect), and solar activity dependence. Given the occurrence of the F3 layer, which has remarkable local time, seasonal and solar activity dependences, variations in foF2 have been evaluated. Local time variations in foF2 and foF3 show noon "bite-out" in all seasons and in all solar activity conditions, which are attributed to vertically upward plasma transport by the zonal electric field and meridional neutral wind. Comparison of observed foF2 with those of the IRI-2012 model clearly shows that the model values are always higher than observed values and the largest difference is observed during noontime owing to the noon bite-out phenomenon. Peak frequency of the F layer (foF2 / foF3), however, is found to have better agreement with IRI-2012 model. Seasonal variations of foF2 and foF3 show stronger asymmetry at the solstices than at the equinoxes. The strong asymmetry at the solstice is attributed to the asymmetry in the meridional neutral wind with a secondary contribution from E × B drifts, and the relatively weak asymmetry observed at the equinox is attributed to the asymmetry in E × B drifts. Variations in foF2 and foF3 with solar flux clearly show the saturation effect when F10.7 exceeds ~ 120 sfu, which is different from that of the mid-latitudes. Irrespective of solar flux, both foF2 and foF3 in summer, however, are found to be remarkably lower than those observed in other seasons. Variations in foF2 show dominant periods of ~ 27, ~ 16 and ~ 6 days. Intriguingly, amplitudes of ~ 27-day variations in foF2 are found to be maximum in low solar activity (LSA), moderate in medium solar activity (MSA) and minimum in high solar activity (HSA), while the amplitudes of ~ 27-day variations in F10.7 are minimum in LSA, moderate in MSA and maximum in HSA. These results are presented and discussed in light of current observational and model-based knowledge on the variations of low-latitude foF2 and foF3.
      PubDate: 2015-08-13T00:00:00+02:00
  • Strange VLF bursts in northern Scandinavia: case study of the afternoon
           "mushroom-like" hiss on 8 December 2013

    • Abstract: Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013

      Annales Geophysicae, 33, 991-995, 2015

      Author(s): J. Manninen, N. G. Kleimenova, A. Kozlovsky, I. A. Kornilov, L. I. Gromova, Y. V. Fedorenko, and T. Turunen

      We investigate a non-typical very low frequency (VLF) 1–4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency–time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2–3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8–1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth–ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron–cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1–10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF–VLF (ultra low frequency–very low frequency) wave interaction and the ionosphere waveguide propagation.
      PubDate: 2015-08-12T00:00:00+02:00
  • Stimulated Brillouin scattering during electron gyro-harmonic heating at

    • Abstract: Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

      Annales Geophysicae, 33, 983-990, 2015

      Author(s): H. Y. Fu, W. A. Scales, P. A. Bernhardt, S. J. Briczinski, M. J. Kosch, A. Senior, M. T. Rietveld, T. K. Yeoman, and J. M. Ruohoniemi

      Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.
      PubDate: 2015-08-11T00:00:00+02:00
  • Statistical analysis of storm-time near-Earth current systems

    • Abstract: Statistical analysis of storm-time near-Earth current systems

      Annales Geophysicae, 33, 965-982, 2015

      Author(s): M. W. Liemohn, R. M. Katus, and R. Ilie

      Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric model results for all of the 90 intense storms (disturbance storm-time (Dst) minimum < −100 nT) from solar cycle 23 (1996–2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland–Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models.
      PubDate: 2015-08-07T00:00:00+02:00
  • A case study on generation mechanisms of a sporadic sodium layer above
           Tromsø (69.6° N) during a night of high auroral activity

    • Abstract: A case study on generation mechanisms of a sporadic sodium layer above Tromsø (69.6° N) during a night of high auroral activity

      Annales Geophysicae, 33, 941-953, 2015

      Author(s): T. Takahashi, S. Nozawa, T. T. Tsuda, Y. Ogawa, N. Saito, T. Hidemori, T. D. Kawahara, C. Hall, H. Fujiwara, N. Matuura, A. Brekke, M. Tsutsumi, S. Wada, T. Kawabata, S. Oyama, and R. Fujii

      We have quantitatively evaluated generation mechanisms of a sporadic sodium layer (SSL) based on observational data obtained by multiple instruments at a high-latitude station: Ramfjordmoen, Tromsø, Norway (69.6° N, 19.2° E). The sodium lidar observed an SSL at 21:18 UT on 22 January 2012. The SSL was observed for 18 min, with a maximum sodium density of about 1.9 × 1010 m−3 at 93 km with a 1.1 km thickness. The European Incoherent Scatter (EISCAT) UHF radar observed a sporadic E layer (Es layer) above 90 km from 20:00 to 23:00 UT. After 20:00 UT, the Es layer gradually descended and reached 94 km at 21:18 UT when the SSL appeared at the same altitude. In this event, considering the abundance of sodium ions (10 % or less), the Es layer could provide only about 37 % or less of the sodium atoms to the SSL. We have investigated a temporal development of the normal sodium ion layer with a consideration of chemical reactions and the effect of the (southwestward) electric field using observational values of the neutral temperature, electron density, horizontal neutral wind, and electric field. This calculation has shown that those processes, including contributions of the Es layer, would provide about 88 % of sodium atoms of the SSL. The effects of meteor absorption and auroral particle sputtering appear to be less important. Therefore, we have concluded that the major source of the SSL was sodium ions in a normal sodium ion layer. Two processes – namely the downward transportation of sodium ions from a normal sodium ion layer due to the electric field and the additional supply of sodium ions from the Es layer under relatively high electron density conditions (i.e., in the Es layer) – played a major role in generating the SSL in this event. Furthermore, we have found that the SSL was located in a lower-temperature region and that the temperature inside the SSL did not show any remarkable temperature enhancements.
      PubDate: 2015-08-05T00:00:00+02:00
  • Van Allen Probe observations of drift-bounce resonances with Pc 4
           pulsations and wave–particle interactions in the pre-midnight inner

    • Abstract: Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere

      Annales Geophysicae, 33, 955-964, 2015

      Author(s): G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon

      We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
      PubDate: 2015-08-05T00:00:00+02:00
  • How much does weather control fire size and intensity in the Mediterranean

    • Abstract: How much does weather control fire size and intensity in the Mediterranean region?

      Annales Geophysicae, 33, 931-939, 2015

      Author(s): C. Hernandez, P. Drobinski, and S. Turquety

      This study investigates the synoptic conditions favorable to wildfires in the Mediterranean region, in terms of fire intensity and burnt area. As reported in the literature, Mediterranean large wildfires are associated with a blocking situation. However, this study shows the existence of two types of wildfires controlled by the blocking high intensity: (1) fast build-up of a weak blocking produces intense wildfires associated with strong winds which allow propagation over long distances; (2) longer build-up of strong blocking situation produces less intense wildfires associated with weaker winds which also propagate over long distances. Another major step forward of this study in the understanding of the drivers of those wildfires is the evidence of a perfect match between the period of wildfire activity and the persistence of the favorable synoptic conditions: the wildfire activity starts at the onset of the blocking situation and ends with the transition to a less favorable synoptic weather pattern. Such strong control of the wildfire activity by the concomitant weather is a very promising result regarding fire risk management, especially considering the accidental nature of the Mediterranean wildfires.
      PubDate: 2015-07-30T00:00:00+02:00
  • Several notes on the OH&ast; layer

    • Abstract: Several notes on the OH* layer

      Annales Geophysicae, 33, 923-930, 2015

      Author(s): M. Grygalashvyly

      This brief note introduces several analytical approaches to OH* layer parameters. The number density and height of the OH* layer peak are determined by the distributions of atomic oxygen and temperature, and by corresponding vertical gradients. The theory can be applied to satellite-borne and ground-based airglow measurements, as well as to model results.
      PubDate: 2015-07-27T00:00:00+02:00
  • Planetary period oscillations in Saturn's magnetosphere: comments on the
           relation between post-equinox periods determined from magnetic field and
           SKR emission data

    • Abstract: Planetary period oscillations in Saturn's magnetosphere: comments on the relation between post-equinox periods determined from magnetic field and SKR emission data

      Annales Geophysicae, 33, 901-912, 2015

      Author(s): S. W. H. Cowley and G. Provan

      We discuss the properties of Saturn planetary period oscillations (PPOs) deduced from analysis of Saturn kilometric radiation (SKR) modulations by Fischer et al. (2014), and from prior analysis of magnetic field oscillations data by Andrews et al. (2012) and Provan et al. (2013), with emphasis on the post-equinox interval from early 2010 to early 2013. Fischer et al. (2014) characterize this interval as showing single phase-locked periods in the northern and southern SKR modulations observed in polarization-separated data, while the magnetic data generally show the presence of separated dual periods, northern remaining shorter than southern. We show that the single SKR period corresponds to the southern magnetic period early in 2010, segues into the northern period in late 2010, and returns to the southern period in mid-2012, approximately in line with changes in the dominant magnetic oscillation. An exception occurs in mid-February to late August 2011 when two periods are again discerned in SKR data, in good agreement with the ongoing dual periods in the magnetic data. Fischer et al. (2014) discuss this change in terms of a large jump in the southern SKR period related to the Great White Spot storm, which the magnetic data show is primarily due instead to a reappearance in the SKR data of the ongoing southern modulation in a transitory interval of resumed southern dominance. In the earlier interval from early April 2010 to mid-February 2011 when Fischer et al. (2014) deduce single phase-locked periods, we show unequivocal evidence in the magnetic data for the presence of separated dual oscillations of approximately equal amplitude. We suggest that the apparent single SKR periods result from a previously reported phenomenon in which modulations associated with one hemisphere appear in polarization-separated data associated with the other. In the following interval, mid-August 2011 to early April 2012, when Fischer et al. (2014) again report phase-locked northern and southern oscillations, no ongoing southern oscillation of separate period is discerned in the magnetic data. However, the magnetic amplitude data show that if a phase-locked southern oscillation is indeed present, its amplitude must be less than ~ 5–10 % of the northern oscillation.
      PubDate: 2015-07-24T00:00:00+02:00
  • Observations of thermosphere and ionosphere changes due to the dissipative
           6.5-day wave in the lower thermosphere

    • Abstract: Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere

      Annales Geophysicae, 33, 913-922, 2015

      Author(s): Q. Gan, J. Yue, L. C. Chang, W. B. Wang, S. D. Zhang, and J. Du

      In the current work, temperature and wind data from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during the years 2002–2007 were used to describe the seasonal variations of the westward propagating 6.5-day planetary wave in the mesosphere and lower thermosphere (MLT). Thermospheric composition data from the TIMED satellite and ionospheric total electron content (TEC) from the International Global Navigation Satellite System (GNSS) Service were then employed to carry out two case studies on the effect of this dissipating wave on the thermosphere/ionosphere. In both cases, there were westward anomalies of ~ 30–40 m s−1 in zonal wind in the MLT region that were caused by momentum deposition of the 6.5-day wave, which had peak activity during equinoxes. The westward zonal wind anomalies led to extra poleward meridional flows in both hemispheres. Meanwhile, there were evident overall reductions of thermospheric column density O / N2 ratio and ionospheric TEC with magnitudes of up to 16–24 % during these two strong 6.5-day wave events. Based on the temporal correlation between O / N2 and TEC reductions, as well as the extra poleward meridional circulations associated with the 6.5-day waves, we conclude that the dissipative 6.5-day wave in the lower thermosphere can cause changes in the thermosphere/ionosphere via the mixing effect, similar to the quasi-two-day wave (QTDW) as predicted by Yue and Wang (2014).
      PubDate: 2015-07-24T00:00:00+02:00
  • WHU VHF radar observations of the diurnal tide and its variability in the
           lower atmosphere over Chongyang (114.14° E, 29.53° N), China

    • Abstract: WHU VHF radar observations of the diurnal tide and its variability in the lower atmosphere over Chongyang (114.14° E, 29.53° N), China

      Annales Geophysicae, 33, 865-874, 2015

      Author(s): C. Huang, S. Zhang, Q. Zhou, F. Yi, K. Huang, Y. Gong, Y. Zhang, and Q. Gan

      The diurnal tide (DT) and its variability in the lower atmosphere over Chongyang (114.14° E, 29.53° N) were studied based on the newly established Wuhan University (WHU) VHF radar observations with the height intervals of 0.145 km (below 9 km) and 0.58 km (above 9 km) in the whole year of 2012. We find that the DT was the dominant tidal component and showed remarkable height and season variations. A prominent seasonally dependent height variability characteristic is that maximum DT amplitude usually occurs around 6 km in the winter and spring months, which might be due to the tidal wave energy concentration arising from the reflections from the strong eastward tropospheric jet around 13 km and the ground surface. Our results suggest that the background wind is a crucial cause for height variability and seasonal variability of DT. In April 2012, a notable strengthening of DT is observed. Meanwhile, the significant higher harmonics of tides, i.e., the semidiurnal, terdiurnal, and even quarterdiurnal tides, can also be observed, which has seldom been reported. Interestingly, these four tidal components displayed consistent short-term variability, implying that they were excited by the same dramatically varying tidal source. In addition, we identified two symptoms of the coupling of DT and planetary waves (PWs), which can also lead to the short-term DT variability. One is the sum and difference interactions between DT and PWs, causing the tidal amplitude short-term variability as a consequence of the energy exchange among the interacting waves. The other one is the modulation of DT by PWs, leading to that the amplitude of DT varies with the periods of the PWs.
      PubDate: 2015-07-23T00:00:00+02:00
  • Eddy diffusion coefficients and their upper limits based on application of
           the similarity theory

    • Abstract: Eddy diffusion coefficients and their upper limits based on application of the similarity theory

      Annales Geophysicae, 33, 857-864, 2015

      Author(s): M. N. Vlasov and M. C. Kelley

      The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT) includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981). The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921) and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT). This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1) estimated in the Turbulent Oxygen Mixing Experiment (TOMEX) do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997) meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes are larger than the Ked maximum value corresponding to the criterion. Analysis of the experimental data on meteor train observations shows that energy dissipation with a small rate of about 0.2 W kg−1 sometimes can induce turbulence with eddy scales very close to the scale height of the atmosphere. Our results also explain the discrepancy between the large cooling rates calculated by Vlasov and Kelley (2014) and the temperatures given by the MSIS-E-90 model because, in these cases, the measured eddy diffusion coefficients used in calculating the cooling rates are larger than the maximum value presented above.
      PubDate: 2015-07-23T00:00:00+02:00
  • Spectral properties of electrostatic drift wave turbulence in the
           laboratory and the ionosphere

    • Abstract: Spectral properties of electrostatic drift wave turbulence in the laboratory and the ionosphere

      Annales Geophysicae, 33, 875-900, 2015

      Author(s): H. L. Pécseli

      Low-frequency electrostatic drift wave turbulence has been studied in both laboratory plasmas and in space. The present review describes a number of such laboratory experiments together with results obtained by instrumented spacecraft in the Earth's near and distant ionospheres. The summary emphasizes readily measurable quantities, such as the turbulent power spectra for the fluctuations in plasma density, potential and electric fields. The agreement between power spectra measured in the laboratory and in space seems to be acceptable, but there are sufficiently frequent counterexamples to justify a future dedicated analysis, for instance by numerical tools, to explain deviations. When interpreting spectra at low ionospheric altitudes, it is necessary to give attention to the DC ionospheric electric fields and the differences in the physics of electron–ion collisions and collisions of charged particles with neutrals for cases with significant Hall drifts. These effects modify the drift wave spectra. A dedicated laboratory experiment accounted for some of these differences.
      PubDate: 2015-07-23T00:00:00+02:00
  • Solar-wind control of plasma sheet dynamics

    • Abstract: Solar-wind control of plasma sheet dynamics

      Annales Geophysicae, 33, 845-855, 2015

      Author(s): M. Myllys, E. Kilpua, and T. Pulkkinen

      The purpose of this study is to quantify how solar-wind conditions affect the energy and plasma transport in the geomagnetic tail and its large-scale configuration. To identify the role of various effects, the magnetospheric data were sorted according to different solar-wind plasma and interplanetary magnetic field (IMF) parameters: speed, dynamic pressure, IMF north–south component, epsilon parameter, Auroral Electrojet (AE) index and IMF ultra low-frequency (ULF) fluctuation power. We study variations in the average flow speed pattern and the occurrence rate of fast flow bursts in the magnetotail during different solar-wind conditions using magnetospheric data from five Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission spacecraft and solar-wind data from NASA's OMNIWeb. The time interval covers the years from 2008 to 2011 during the deep solar minimum between cycles 23 and 24 and the relatively quiet rising phase of cycle 24. Hence, we investigate magnetospheric processes and solar-wind–magnetospheric coupling during a relatively quiet state of the magnetosphere. We show that the occurrence rate of the fast ( Vtail > 100 km s−1) sunward flows varies under different solar-wind conditions more than the occurrence of the fast tailward flows. The occurrence frequency of the fast tailward flows does not change much with the solar-wind conditions. We also note that the sign of the IMF BZ has the most visible effect on the occurrence rate and pattern of the fast sunward flows. High-speed flow bursts are more common during the slow than fast solar-wind conditions.
      PubDate: 2015-07-21T00:00:00+02:00
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015