for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> PHYSICS (Total: 781 journals)
    - ELECTRICITY AND MAGNETISM (9 journals)
    - MECHANICS (19 journals)
    - NUCLEAR PHYSICS (48 journals)
    - OPTICS (90 journals)
    - PHYSICS (566 journals)
    - SOUND (20 journals)
    - THERMODYNAMICS (29 journals)

PHYSICS (566 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 7)
Acta Mechanica     Hybrid Journal   (Followers: 16)
Advanced Composite Materials     Hybrid Journal   (Followers: 51)
Advanced Functional Materials     Hybrid Journal   (Followers: 40)
Advanced Materials     Hybrid Journal   (Followers: 237)
Advanced Science Focus     Free   (Followers: 1)
Advances in Condensed Matter Physics     Open Access   (Followers: 6)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Geophysics     Full-text available via subscription   (Followers: 5)
Advances in High Energy Physics     Open Access   (Followers: 11)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 3)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 14)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 15)
Advances in OptoElectronics     Open Access   (Followers: 3)
Advances In Physics     Hybrid Journal   (Followers: 7)
Advances in Physics Theories and Applications     Open Access   (Followers: 8)
Advances in Remote Sensing     Open Access   (Followers: 9)
AIP Advances     Open Access   (Followers: 5)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 2)
American Journal of Applied Sciences     Open Access   (Followers: 29)
American Journal of Condensed Matter Physics     Open Access   (Followers: 4)
American Journal of Signal Processing     Open Access   (Followers: 9)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 2)
Annalen der Physik     Hybrid Journal   (Followers: 3)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 4)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 1)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 5)
Annals of Physics     Hybrid Journal   (Followers: 3)
Annals of West University of Timisoara - Physics     Open Access  
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 4)
APL Materials     Open Access   (Followers: 6)
Applied Composite Materials     Hybrid Journal   (Followers: 37)
Applied Physics A     Hybrid Journal   (Followers: 10)
Applied Physics Frontier     Open Access   (Followers: 1)
Applied Physics Letters     Hybrid Journal   (Followers: 25)
Applied Physics Research     Open Access   (Followers: 5)
Applied Physics Reviews     Hybrid Journal   (Followers: 8)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 5)
Applied Remote Sensing Journal     Open Access   (Followers: 10)
Applied Spectroscopy     Full-text available via subscription   (Followers: 15)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 3)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
Asia Pacific Physics Newsletter     Hybrid Journal  
ASTRA Proceedings     Open Access  
Astronomy & Geophysics     Hybrid Journal   (Followers: 3)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 3)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 3)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 10)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 35)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 15)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 7)
BMC Nuclear Medicine     Open Access   (Followers: 5)
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 41)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 4)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Case Studies in Nondestructive Testing and Evaluation     Open Access  
Cells     Open Access   (Followers: 1)
CERN courier. International journal of high energy physics     Free   (Followers: 1)
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 1)
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 1)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cogent Physics     Open Access  
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Computational Physics     Full-text available via subscription  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 111)
Composites Part B : Engineering     Hybrid Journal   (Followers: 140)
Computational Astrophysics and Cosmology     Open Access  
Computational Condensed Matter     Open Access  
Computational Materials Science     Hybrid Journal   (Followers: 21)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal  
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal   (Followers: 1)
Contemporary Concepts of Condensed Matter Science     Full-text available via subscription  
Contemporary Physics     Hybrid Journal   (Followers: 12)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 3)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)

        1 2 3 4 5 6 | Last

Journal Cover   Annales Geophysicae (ANGEO)
  [SJR: 1.176]   [H-I: 63]   [4 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Print) 0992-7689 - ISSN (Online) 1432-0576
   Published by European Geosciences Union Homepage  [8 journals]
  • How much does weather control fire size and intensity in the Mediterranean
           region?

    • Abstract: How much does weather control fire size and intensity in the Mediterranean region?

      Annales Geophysicae, 33, 931-939, 2015

      Author(s): C. Hernandez, P. Drobinski, and S. Turquety

      This study investigates the synoptic conditions favorable to wildfires in the Mediterranean region, in terms of fire intensity and burnt area. As reported in the literature, Mediterranean large wildfires are associated with a blocking situation. However, this study shows the existence of two types of wildfires controlled by the blocking high intensity: (1) fast build-up of a weak blocking produces intense wildfires associated with strong winds which allow propagation over long distances; (2) longer build-up of strong blocking situation produces less intense wildfires associated with weaker winds which also propagate over long distances. Another major step forward of this study in the understanding of the drivers of those wildfires is the evidence of a perfect match between the period of wildfire activity and the persistence of the favorable synoptic conditions: the wildfire activity starts at the onset of the blocking situation and ends with the transition to a less favorable synoptic weather pattern. Such strong control of the wildfire activity by the concomitant weather is a very promising result regarding fire risk management, especially considering the accidental nature of the Mediterranean wildfires.
      PubDate: 2015-07-30T00:00:00+02:00
       
  • Several notes on the OH* layer

    • Abstract: Several notes on the OH* layer

      Annales Geophysicae, 33, 923-930, 2015

      Author(s): M. Grygalashvyly

      This brief note introduces several analytical approaches to OH* layer parameters. The number density and height of the OH* layer peak are determined by the distributions of atomic oxygen and temperature, and by corresponding vertical gradients. The theory can be applied to satellite-borne and ground-based airglow measurements, as well as to model results.
      PubDate: 2015-07-27T00:00:00+02:00
       
  • Planetary period oscillations in Saturn's magnetosphere: comments on the
           relation between post-equinox periods determined from magnetic field and
           SKR emission data

    • Abstract: Planetary period oscillations in Saturn's magnetosphere: comments on the relation between post-equinox periods determined from magnetic field and SKR emission data

      Annales Geophysicae, 33, 901-912, 2015

      Author(s): S. W. H. Cowley and G. Provan

      We discuss the properties of Saturn planetary period oscillations (PPOs) deduced from analysis of Saturn kilometric radiation (SKR) modulations by Fischer et al. (2014), and from prior analysis of magnetic field oscillations data by Andrews et al. (2012) and Provan et al. (2013), with emphasis on the post-equinox interval from early 2010 to early 2013. Fischer et al. (2014) characterize this interval as showing single phase-locked periods in the northern and southern SKR modulations observed in polarization-separated data, while the magnetic data generally show the presence of separated dual periods, northern remaining shorter than southern. We show that the single SKR period corresponds to the southern magnetic period early in 2010, segues into the northern period in late 2010, and returns to the southern period in mid-2012, approximately in line with changes in the dominant magnetic oscillation. An exception occurs in mid-February to late August 2011 when two periods are again discerned in SKR data, in good agreement with the ongoing dual periods in the magnetic data. Fischer et al. (2014) discuss this change in terms of a large jump in the southern SKR period related to the Great White Spot storm, which the magnetic data show is primarily due instead to a reappearance in the SKR data of the ongoing southern modulation in a transitory interval of resumed southern dominance. In the earlier interval from early April 2010 to mid-February 2011 when Fischer et al. (2014) deduce single phase-locked periods, we show unequivocal evidence in the magnetic data for the presence of separated dual oscillations of approximately equal amplitude. We suggest that the apparent single SKR periods result from a previously reported phenomenon in which modulations associated with one hemisphere appear in polarization-separated data associated with the other. In the following interval, mid-August 2011 to early April 2012, when Fischer et al. (2014) again report phase-locked northern and southern oscillations, no ongoing southern oscillation of separate period is discerned in the magnetic data. However, the magnetic amplitude data show that if a phase-locked southern oscillation is indeed present, its amplitude must be less than ~ 5–10 % of the northern oscillation.
      PubDate: 2015-07-24T00:00:00+02:00
       
  • Observations of thermosphere and ionosphere changes due to the dissipative
           6.5-day wave in the lower thermosphere

    • Abstract: Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere

      Annales Geophysicae, 33, 913-922, 2015

      Author(s): Q. Gan, J. Yue, L. C. Chang, W. B. Wang, S. D. Zhang, and J. Du

      In the current work, temperature and wind data from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during the years 2002–2007 were used to describe the seasonal variations of the westward propagating 6.5-day planetary wave in the mesosphere and lower thermosphere (MLT). Thermospheric composition data from the TIMED satellite and ionospheric total electron content (TEC) from the International Global Navigation Satellite System (GNSS) Service were then employed to carry out two case studies on the effect of this dissipating wave on the thermosphere/ionosphere. In both cases, there were westward anomalies of ~ 30–40 m s−1 in zonal wind in the MLT region that were caused by momentum deposition of the 6.5-day wave, which had peak activity during equinoxes. The westward zonal wind anomalies led to extra poleward meridional flows in both hemispheres. Meanwhile, there were evident overall reductions of thermospheric column density O / N2 ratio and ionospheric TEC with magnitudes of up to 16–24 % during these two strong 6.5-day wave events. Based on the temporal correlation between O / N2 and TEC reductions, as well as the extra poleward meridional circulations associated with the 6.5-day waves, we conclude that the dissipative 6.5-day wave in the lower thermosphere can cause changes in the thermosphere/ionosphere via the mixing effect, similar to the quasi-two-day wave (QTDW) as predicted by Yue and Wang (2014).
      PubDate: 2015-07-24T00:00:00+02:00
       
  • WHU VHF radar observations of the diurnal tide and its variability in the
           lower atmosphere over Chongyang (114.14° E, 29.53° N), China

    • Abstract: WHU VHF radar observations of the diurnal tide and its variability in the lower atmosphere over Chongyang (114.14° E, 29.53° N), China

      Annales Geophysicae, 33, 865-874, 2015

      Author(s): C. Huang, S. Zhang, Q. Zhou, F. Yi, K. Huang, Y. Gong, Y. Zhang, and Q. Gan

      The diurnal tide (DT) and its variability in the lower atmosphere over Chongyang (114.14° E, 29.53° N) were studied based on the newly established Wuhan University (WHU) VHF radar observations with the height intervals of 0.145 km (below 9 km) and 0.58 km (above 9 km) in the whole year of 2012. We find that the DT was the dominant tidal component and showed remarkable height and season variations. A prominent seasonally dependent height variability characteristic is that maximum DT amplitude usually occurs around 6 km in the winter and spring months, which might be due to the tidal wave energy concentration arising from the reflections from the strong eastward tropospheric jet around 13 km and the ground surface. Our results suggest that the background wind is a crucial cause for height variability and seasonal variability of DT. In April 2012, a notable strengthening of DT is observed. Meanwhile, the significant higher harmonics of tides, i.e., the semidiurnal, terdiurnal, and even quarterdiurnal tides, can also be observed, which has seldom been reported. Interestingly, these four tidal components displayed consistent short-term variability, implying that they were excited by the same dramatically varying tidal source. In addition, we identified two symptoms of the coupling of DT and planetary waves (PWs), which can also lead to the short-term DT variability. One is the sum and difference interactions between DT and PWs, causing the tidal amplitude short-term variability as a consequence of the energy exchange among the interacting waves. The other one is the modulation of DT by PWs, leading to that the amplitude of DT varies with the periods of the PWs.
      PubDate: 2015-07-23T00:00:00+02:00
       
  • Eddy diffusion coefficients and their upper limits based on application of
           the similarity theory

    • Abstract: Eddy diffusion coefficients and their upper limits based on application of the similarity theory

      Annales Geophysicae, 33, 857-864, 2015

      Author(s): M. N. Vlasov and M. C. Kelley

      The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT) includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981). The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921) and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT). This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1) estimated in the Turbulent Oxygen Mixing Experiment (TOMEX) do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997) meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes are larger than the Ked maximum value corresponding to the criterion. Analysis of the experimental data on meteor train observations shows that energy dissipation with a small rate of about 0.2 W kg−1 sometimes can induce turbulence with eddy scales very close to the scale height of the atmosphere. Our results also explain the discrepancy between the large cooling rates calculated by Vlasov and Kelley (2014) and the temperatures given by the MSIS-E-90 model because, in these cases, the measured eddy diffusion coefficients used in calculating the cooling rates are larger than the maximum value presented above.
      PubDate: 2015-07-23T00:00:00+02:00
       
  • Spectral properties of electrostatic drift wave turbulence in the
           laboratory and the ionosphere

    • Abstract: Spectral properties of electrostatic drift wave turbulence in the laboratory and the ionosphere

      Annales Geophysicae, 33, 875-900, 2015

      Author(s): H. L. Pécseli

      Low-frequency electrostatic drift wave turbulence has been studied in both laboratory plasmas and in space. The present review describes a number of such laboratory experiments together with results obtained by instrumented spacecraft in the Earth's near and distant ionospheres. The summary emphasizes readily measurable quantities, such as the turbulent power spectra for the fluctuations in plasma density, potential and electric fields. The agreement between power spectra measured in the laboratory and in space seems to be acceptable, but there are sufficiently frequent counterexamples to justify a future dedicated analysis, for instance by numerical tools, to explain deviations. When interpreting spectra at low ionospheric altitudes, it is necessary to give attention to the DC ionospheric electric fields and the differences in the physics of electron–ion collisions and collisions of charged particles with neutrals for cases with significant Hall drifts. These effects modify the drift wave spectra. A dedicated laboratory experiment accounted for some of these differences.
      PubDate: 2015-07-23T00:00:00+02:00
       
  • Solar-wind control of plasma sheet dynamics

    • Abstract: Solar-wind control of plasma sheet dynamics

      Annales Geophysicae, 33, 845-855, 2015

      Author(s): M. Myllys, E. Kilpua, and T. Pulkkinen

      The purpose of this study is to quantify how solar-wind conditions affect the energy and plasma transport in the geomagnetic tail and its large-scale configuration. To identify the role of various effects, the magnetospheric data were sorted according to different solar-wind plasma and interplanetary magnetic field (IMF) parameters: speed, dynamic pressure, IMF north–south component, epsilon parameter, Auroral Electrojet (AE) index and IMF ultra low-frequency (ULF) fluctuation power. We study variations in the average flow speed pattern and the occurrence rate of fast flow bursts in the magnetotail during different solar-wind conditions using magnetospheric data from five Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission spacecraft and solar-wind data from NASA's OMNIWeb. The time interval covers the years from 2008 to 2011 during the deep solar minimum between cycles 23 and 24 and the relatively quiet rising phase of cycle 24. Hence, we investigate magnetospheric processes and solar-wind–magnetospheric coupling during a relatively quiet state of the magnetosphere. We show that the occurrence rate of the fast ( Vtail > 100 km s−1) sunward flows varies under different solar-wind conditions more than the occurrence of the fast tailward flows. The occurrence frequency of the fast tailward flows does not change much with the solar-wind conditions. We also note that the sign of the IMF BZ has the most visible effect on the occurrence rate and pattern of the fast sunward flows. High-speed flow bursts are more common during the slow than fast solar-wind conditions.
      PubDate: 2015-07-21T00:00:00+02:00
       
  • Auroral ion acoustic wave enhancement observed with a radar interferometer
           system

    • Abstract: Auroral ion acoustic wave enhancement observed with a radar interferometer system

      Annales Geophysicae, 33, 837-844, 2015

      Author(s): N. M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, and T. Grydeland

      Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.
      PubDate: 2015-07-20T00:00:00+02:00
       
  • Estimating along-track plasma drift speed from electron density
           measurements by the three Swarm satellites

    • Abstract: Estimating along-track plasma drift speed from electron density measurements by the three Swarm satellites

      Annales Geophysicae, 33, 829-835, 2015

      Author(s): J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill

      Plasma convection in the high-latitude ionosphere provides important information about magnetosphere–ionosphere–thermosphere coupling. In this study we estimate the along-track component of plasma convection within and around the polar cap, using electron density profiles measured by the three Swarm satellites. The velocity values estimated from the two different satellite pairs agree with each other. In both hemispheres the estimated velocity is generally anti-sunward, especially for higher speeds. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network data. Our method can supplement currently available instruments for ionospheric plasma velocity measurements, especially in cases where these traditional instruments suffer from their inherent limitations. Also, the method can be generalized to other satellite constellations carrying electron density probes.
      PubDate: 2015-07-08T00:00:00+02:00
       
  • Impact of local data assimilation on tropical cyclone predictions over the
           Bay of Bengal using the ARW model

    • Abstract: Impact of local data assimilation on tropical cyclone predictions over the Bay of Bengal using the ARW model

      Annales Geophysicae, 33, 805-828, 2015

      Author(s): M. M. Greeshma, C. V. Srinivas, V. Yesubabu, C. V. Naidu, R. Baskaran, and B. Venkatraman

      The tropical cyclone (TC) track and intensity predictions over Bay of Bengal (BOB) using the Advanced Research Weather Research and Forecasting (ARW) model are evaluated for a number of data assimilation experiments using various types of data. Eight cyclones that made landfall along the east coast of India during 2008–2013 were simulated. Numerical experiments included a control run (CTL) using the National Centers for Environmental Prediction (NCEP) 3-hourly 0.5 × 0.5° resolution Global Forecasting System (GFS) analysis as the initial condition, and a series of cycling mode variational assimilation experiments with Weather Research and Forecasting (WRF) data assimilation (WRFDA) system using NCEP global PrepBUFR observations (VARPREP), Atmospheric Motion Vectors (VARAMV), Advanced Microwave Sounding Unit (AMSU) A and B radiances (VARRAD) and a combination of PrepBUFR and RAD (VARPREP+RAD). The impact of different observations is investigated in detail in a case of the strongest TC, Phailin, for intensity, track and structure parameters, and finally also on a larger set of cyclones. The results show that the assimilation of AMSU radiances and Atmospheric Motion Vectors (AMV) improved the intensity and track predictions to a certain extent and the use of operationally available NCEP PrepBUFR data which contains both conventional and satellite observations produced larger impacts leading to improvements in track and intensity forecasts. The forecast improvements are found to be associated with changes in pressure, wind, temperature and humidity distributions in the initial conditions after data assimilation. The assimilation of mass (radiance) and wind (AMV) data showed different impacts. While the motion vectors mainly influenced the track predictions, the radiance data merely influenced forecast intensity. Of various experiments, the VARPREP produced the largest impact with mean errors (India Meteorological Department (IMD) observations less the model values) of 78, 129, 166, 210 km in the vector track position, 10.3, 5.8, 4.8, 9.0 hPa deeper than IMD data in central sea level pressure (CSLP) and 10.8, 3.9, −0.2, 2.3 m s−1 stronger than IMD data in maximum surface winds (MSW) for 24, 48, 72, 96 h forecasts respectively. An improvement of about 3–36 % in track, 6–63 % in CSLP, 26–103 % in MSW and 11–223 % in the radius of maximum winds in 24–96 h lead time forecasts are found with VARPREP over CTL, suggesting the advantages of assimilation of operationally available PrepBUFR data for cyclone predictions. The better predictions with PrepBUFR could be due to quality-controlled observations in addition to containing different types of data (conventional, satellite) covering an effectively larger area. The performance degradation of VARPREP+RAD with the assimilation of all available observations over the domain after 72 h could be due to poor area coverage and bias in the radiance data.
      PubDate: 2015-07-03T00:00:00+02:00
       
  • Investigation of weather anomalies in the low-latitude islands of the
           Indian Ocean in 1991

    • Abstract: Investigation of weather anomalies in the low-latitude islands of the Indian Ocean in 1991

      Annales Geophysicae, 33, 789-804, 2015

      Author(s): A. Réchou and S. Kirkwood

      Temperature, precipitation and sunshine duration measurements at meteorological stations across the southern Indian Ocean have been analysed to try to differentiate the possible influence of the Mount Pinatubo volcanic eruption in the Philippines in June 1991 and the normal weather forcings. During December 1991, precipitation on the tropical islands Glorieuses (11.6° S) and Mayotte (12.8° S) was 4 and 3 times greater, respectively, than the climatological mean (precipitation is greater by more than than twice the standard deviation (SD)). Mean sunshine duration (expressed in sun hours per day) was only 6 h on Mayotte, although the sunshine duration is usually more than 7.5 ± 0.75 h, and on the Glorieuses it was only 5 h, although it is usually 8.5 ± 1 h. Mean and SD of sunshine duration are based on December (1964–2001 for Mayotte, 1966–1999 for the Glorieuses). The Madden–Julian Oscillation (MJO) is shown to correlate best with precipitation in this area. Variability controlling the warm zone on these two islands can be increased by the Indian Ocean Dipole (IOD), El Niño, the quasi-biennial oscillation (QBO) and/or solar activity (sunspot number, SSN). However, temperature records of these two islands show weak dependence on such forcings (temperatures are close to the climatological mean for December). This suggests that such weather forcings have an indirect effect on the precipitation. December 1991 was associated with unusually low values of the MJO index, which favours high rainfall, as well as with El Niño, eastern QBO and high SSN, which favour high variability. It is therefore not clear whether the Mount Pinatubo volcanic eruption had an effect. Since the precipitation anomalies at the Glorieuses and Mayotte are more or less local (Global Precipitation Climatology Project (GPCP) data) and the effect of the Pinatubo volcanic cloud should be more widespread, it seems unlikely that Pinatubo was the cause. Islands at higher southern latitudes (south of Tromelin at 15.5° S) were not affected by the Pinatubo eruption in terms of sunshine duration, precipitation or temperature.
      PubDate: 2015-07-02T00:00:00+02:00
       
  • Composite analysis of a major sudden stratospheric warming

    • Abstract: Composite analysis of a major sudden stratospheric warming

      Annales Geophysicae, 33, 783-788, 2015

      Author(s): K. Hocke, M. Lainer, and A. Schanz

      We present the characteristics of a major sudden stratospheric warming (SSW) by using the composite analysis method and ERA Interim reanalysis data from 1979 to 2014. The anomalies of the parameters total ozone column density (TOC), temperature (T), potential vorticity (PV), eastward wind (u), northward wind (v), vertical wind (w), and geopotential height (z) are derived with respect to the ERA Interim climatology (mean seasonal behaviour 1979 to 2014). The composites are calculated by using the time series of the anomalies and the central dates of 20 major SSWs. Increases of up to 90 Dobson units are found for polar TOC after the SSW. Polar TOC remains enhanced until the summer after the major SSW. Precursors of the SSW are a negative TOC anomaly 3 months before the SSW and enhanced temperature at 10 hPa at mid-latitudes about 1 month before the SSW. Eastward wind at 1 hPa is decreased at mid-latitudes about 1 month before the SSW. The 1 hPa geopotential height level is increased by about 500 m during the month before the SSW. These features are significant at the 2σ level for the mean behaviour of the ensemble of the major SSWs. However, knowledge of these precursors may not lead to a reliable prediction of an individual SSW since the variability of the individual SSWs and the polar winter stratosphere is large.
      PubDate: 2015-06-25T00:00:00+02:00
       
  • In situ magnetotail magnetic flux calculation

    • Abstract: In situ magnetotail magnetic flux calculation

      Annales Geophysicae, 33, 769-781, 2015

      Author(s): M. A. Shukhtina and E. Gordeev

      We explore two new modifications of the magnetotail magnetic flux (F) calculation algorithm based on the Petrinec and Russell (1996) (PR96) approach of the tail radius determination. Unlike in the PR96 model, the tail radius value is calculated at each time step based on simultaneous magnetotail and solar wind observations. Our former algorithm, described in Shukhtina et al. (2009), required that the "tail approximation" requirement were fulfilled, i.e., it could be applied only tailward x ∼ −15 RE. The new modifications take into account the approximate uniformity of the magnetic field of external sources in the near and middle tail. Tests, based on magnetohydrodynamics (MHD) simulations, show that this approach may be applied at smaller distances, up to x ∼ −3 RE. The tests also show that the algorithm fails during long periods of strong positive interplanetary magnetic field (IMF) Bz. A new empirical formula has also been obtained for the tail radius at the terminator (at x = 0) which improves the calculations.
      PubDate: 2015-06-18T00:00:00+02:00
       
  • Hydroxyl layer: trend of number density and intra-annual variability

    • Abstract: Hydroxyl layer: trend of number density and intra-annual variability

      Annales Geophysicae, 33, 749-767, 2015

      Author(s): G. R. Sonnemann, P. Hartogh, U. Berger, and M. Grygalashvyly

      The layer of vibrationally excited hydroxyl (OH*) near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014), the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere). In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs) has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced chemical oscillator driven by the diurnal-periodic solar insolation. At the height of the OH* layer the system operates in the vicinity of chemical resonance. The solar cycle is mirrored in the data, but the long-term behavior due to the trend in the Lyman-α radiation is very small. The number density shows distinct hemispheric differences. The calculated OH* values show sometimes a step around a certain year. We introduce a method to find out the date of this step and discuss a possible reason for such behavior.
      PubDate: 2015-06-17T00:00:00+02:00
       
  • A comparison of overshoot modelling with observations of polar mesospheric
           summer echoes at radar frequencies of 56 and 224 MHz

    • Abstract: A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz

      Annales Geophysicae, 33, 737-747, 2015

      Author(s): O. Havnes, H. Pinedo, C. La Hoz, A. Senior, T. W. Hartquist, M. T. Rietveld, and M. J. Kosch

      We have compared radar observations of polar mesospheric summer echoes (PMSEs) modulated by artificial electron heating, at frequencies of 224 MHz (EISCAT VHF) and 56 MHz (MORRO). We have concentrated on 1 day of observation, lasting ~ 3.8 h. The MORRO radar, with its much wider beam, observes one or more PMSE layers all the time while the VHF radar observes PMSEs in 69% of the time. Statistically there is a clear difference between how the MORRO and the VHF radar backscatter reacts to the heater cycling (48 s heater on and 168 s heater off). While MORRO often reacts by having its backscatter level increased when the heater is switched on, as predicted by Scales and Chen (2008), the VHF radar nearly always sees the "normal" VHF overshoot behaviour with an initial rapid reduction of backscatter. However, in some heater cycles we do see a substantial recovery of the VHF backscatter after its initial reduction to levels several times above that just before the heater was switched on. For the MORRO radar a recovery during the heater-on phase is much more common. The reaction when the heater was switched off was a clear overshoot for nearly all VHF cases but less so for MORRO. A comparison of individual curves for the backscatter values as a function of time shows, at least for this particular day, that in high layers above ~ 85 km height, both radars see a reduction of the backscatter as the heater is switched on, with little recovery during the heater-on time. These variations are well described by present models. On the other hand, the backscatter in low layers at 81–82 km can be quite different, with modest or no reduction in backscatter as the heater is switched on, followed by a strong recovery for both radars to levels several times above that of the undisturbed PMSEs. This simultaneous, nearly identical behaviour at the two very different radar frequencies is not well described by present modelling.
      PubDate: 2015-06-16T00:00:00+02:00
       
  • The MAGIC of CINEMA: first in-flight science results from a miniaturised
           anisotropic magnetoresistive magnetometer

    • Abstract: The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

      Annales Geophysicae, 33, 725-735, 2015

      Author(s): M. O. Archer, T. S. Horbury, P. Brown, J. P. Eastwood, T. M. Oddy, B. J. Whiteside, and J. G. Sample

      We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.
      PubDate: 2015-06-12T00:00:00+02:00
       
  • Electron-scale nested quadrupole Hall field in Cluster observations of
           magnetic reconnection

    • Abstract: Electron-scale nested quadrupole Hall field in Cluster observations of magnetic reconnection

      Annales Geophysicae, 33, 719-724, 2015

      Author(s): N. Jain and A. S. Sharma

      This paper presents the first evidence of a new and unique feature of spontaneous reconnection at multiple sites in electron current sheet, viz. a "nested quadrupole" structure of the Hall field at electron scales, in Cluster observations. The new nested quadrupole is a consequence of electron-scale processes in reconnection. Whistler response of the upstream plasma to the interaction of electron flows from neighboring reconnection sites produces a large-scale quadrupole Hall field enclosing the quadrupole fields of the multiple sites, thus forming a nested structure. Electron-magnetohydrodynamic simulations of an electron current sheet yields a mechanism of the formation of a nested quadrupole.
      PubDate: 2015-06-12T00:00:00+02:00
       
  • Dusk-to-nighttime enhancement of mid-latitude NmF2 in
           local summer: inter-hemispheric asymmetry and solar activity dependence

    • Abstract: Dusk-to-nighttime enhancement of mid-latitude NmF2 in local summer: inter-hemispheric asymmetry and solar activity dependence

      Annales Geophysicae, 33, 711-718, 2015

      Author(s): Y. Chen, L. Liu, H. Le, W. Wan, and H. Zhang

      In this paper ionosonde observations in the East Asia–Australia sector were collected to investigate dusk-to-nighttime enhancement of mid-latitude summer NmF2 (maximum electron density of the F2 layer) within the framework of NmF2 diurnal variation. NmF2 were normalized to two solar activity levels to investigate the dependence of the dusk-to-nighttime enhancement on solar activity. The dusk-to-nighttime enhancement of NmF2 is more evident at Northern Hemisphere stations than at Southern Hemisphere stations, with a remarkable latitudinal dependence. The dusk-to-nighttime enhancement shows both increasing and declining trends with solar activity increasing, which is somewhat different from previous conclusions. The difference in the dusk-to-nighttime enhancement between Southern Hemisphere and Northern Hemisphere stations is possibly related to the offset of the geomagnetic axis from the geographic axis. hmF2 (peak height of the F2 layer) diurnal variations show that daytime hmF2 begins to increase much earlier at low solar activity level than at high solar activity level at northern Akita and Wakkanai stations where the dusk-to-nighttime enhancement is more prominent at low solar activity level than at high solar activity level. That implies neutral wind phase is possibly also important for nighttime enhancement.
      PubDate: 2015-06-10T00:00:00+02:00
       
  • Equation of state for solar near-surface convection

    • Abstract: Equation of state for solar near-surface convection

      Annales Geophysicae, 33, 703-709, 2015

      Author(s): N. Vitas and E. Khomenko

      Numerical 3-D radiative hydrodynamical simulations are the main tool for the analysis of the interface between the solar convection zone and the photosphere. The equation of state is one of the necessary ingredients of these simulations. We compare two equations of state that are commonly used, one ideal and one nonideal, and quantify their differences. Using a numerical code we explore how these differences propagate with time in a 2-D convection simulation. We show that the runs with different equations of state (EOSs) and everything else identical relax to statistically steady states in which the mean temperature (in the range of the continuum optical depths typical for the solar photosphere) differs by less than 0.2%. For most applications this difference may be considered insignificant.
      PubDate: 2015-06-09T00:00:00+02:00
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015