for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> PHYSICS (Total: 793 journals)
    - ELECTRICITY AND MAGNETISM (10 journals)
    - MECHANICS (20 journals)
    - NUCLEAR PHYSICS (48 journals)
    - OPTICS (90 journals)
    - PHYSICS (572 journals)
    - SOUND (22 journals)
    - THERMODYNAMICS (31 journals)

PHYSICS (572 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 8)
Acta Mechanica     Hybrid Journal   (Followers: 17)
Advanced Composite Materials     Hybrid Journal   (Followers: 51)
Advanced Functional Materials     Hybrid Journal   (Followers: 47)
Advanced Materials     Hybrid Journal   (Followers: 199)
Advanced Science Focus     Free   (Followers: 3)
Advanced Structural and Chemical Imaging     Open Access  
Advances in Condensed Matter Physics     Open Access   (Followers: 6)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 4)
Advances in Geophysics     Full-text available via subscription   (Followers: 6)
Advances in High Energy Physics     Open Access   (Followers: 16)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 3)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 15)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 17)
Advances in OptoElectronics     Open Access   (Followers: 4)
Advances In Physics     Hybrid Journal   (Followers: 9)
Advances in Physics Theories and Applications     Open Access   (Followers: 8)
Advances in Remote Sensing     Open Access   (Followers: 11)
AIP Advances     Open Access   (Followers: 8)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 4)
American Journal of Applied Sciences     Open Access   (Followers: 33)
American Journal of Condensed Matter Physics     Open Access   (Followers: 4)
American Journal of Signal Processing     Open Access   (Followers: 10)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 2)
Annalen der Physik     Hybrid Journal   (Followers: 4)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 3)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 2)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 4)
Annals of Physics     Hybrid Journal   (Followers: 5)
Annals of West University of Timisoara - Physics     Open Access  
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 5)
APL Materials     Open Access   (Followers: 8)
Applied Composite Materials     Hybrid Journal   (Followers: 38)
Applied Physics A     Hybrid Journal   (Followers: 9)
Applied Physics Frontier     Open Access   (Followers: 1)
Applied Physics Letters     Hybrid Journal   (Followers: 29)
Applied Physics Research     Open Access   (Followers: 4)
Applied Physics Reviews     Hybrid Journal   (Followers: 10)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 6)
Applied Remote Sensing Journal     Open Access   (Followers: 12)
Applied Spectroscopy     Full-text available via subscription   (Followers: 16)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 3)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
Asia Pacific Physics Newsletter     Hybrid Journal  
ASTRA Proceedings     Open Access  
Astronomy & Geophysics     Hybrid Journal   (Followers: 4)
Astronomy and Astrophysics Review     Hybrid Journal   (Followers: 2)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 4)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 4)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 11)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 35)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 18)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 16)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 6)
Boson Journal of Modern Physics     Open Access  
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 41)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 3)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Case Studies in Nondestructive Testing and Evaluation     Open Access   (Followers: 2)
Cells     Open Access   (Followers: 1)
CERN courier. International journal of high energy physics     Free   (Followers: 4)
Chemical Physics of Solid Surfaces     Full-text available via subscription  
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription   (Followers: 1)
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 2)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cogent Physics     Open Access  
Cohesion and Structure     Full-text available via subscription   (Followers: 2)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Computational Physics     Full-text available via subscription   (Followers: 1)
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Complex Analysis and its Synergies     Open Access  
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 123)
Composites Part B : Engineering     Hybrid Journal   (Followers: 142)
Computational Astrophysics and Cosmology     Open Access  
Computational Condensed Matter     Open Access  
Computational Materials Science     Hybrid Journal   (Followers: 22)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal   (Followers: 1)

        1 2 3 4 5 6 | Last

Journal Cover Archive for Rational Mechanics and Analysis
  [SJR: 3.472]   [H-I: 57]   [3 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1432-0673 - ISSN (Online) 0003-9527
   Published by Springer-Verlag Homepage  [2280 journals]
  • Second-Order Γ-limit for the Cahn–Hilliard Functional
    • Abstract: The goal of this paper is to solve a long standing open problem, namely, the asymptotic development of order 2 by Γ-convergence of the mass-constrained Cahn–Hilliard functional.
      PubDate: 2016-03-01
       
  • Higher Order Convergence Rates in Theory of Homogenization: Equations of
           Non-divergence Form
    • Abstract: We establish higher order convergence rates in the theory of periodic homogenization of both linear and fully nonlinear uniformly elliptic equations of non-divergence form. The rates are achieved by involving higher order correctors which fix the errors occurring both in the interior and on the boundary layer of our physical domain. The proof is based on a viscosity method and a new regularity theory which captures the stability of the correctors with respect to the shape of our limit profile.
      PubDate: 2016-03-01
       
  • Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the
           Navier–Stokes Equations Near the Two Dimensional Couette Flow
    • Abstract: In this work we study the long time inviscid limit of the two dimensional Navier–Stokes equations near the periodic Couette flow. In particular, we confirm at the nonlinear level the qualitative behavior predicted by Kelvin’s 1887 linear analysis. At high Reynolds number Re, we prove that the solution behaves qualitatively like two dimensional Euler for times \({{t \lesssim Re^{1/3}}}\) , and in particular exhibits inviscid damping (for example the vorticity weakly approaches a shear flow). For times \({{t \gtrsim Re^{1/3}}}\) , which is sooner than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise dependence of the vorticity is rapidly eliminated by an enhanced dissipation effect. Afterwards, the remaining shear flow decays on very long time scales \({{t \gtrsim Re}}\) back to the Couette flow. When properly defined, the dissipative length-scale in this setting is \({{\ell_D \sim Re^{-1/3}}}\) , larger than the scale \({{\ell_D \sim Re^{-1/2}}}\) predicted in classical Batchelor–Kraichnan two dimensional turbulence theory. The class of initial data we study is the sum of a sufficiently smooth function and a small (with respect to Re −1) L 2 function.
      PubDate: 2016-03-01
       
  • Approximation by Multipoles of the Multiple Acoustic Scattering by Small
           Obstacles in Three Dimensions and Application to the Foldy Theory of
           Isotropic Scattering
    • Abstract: The asymptotic analysis carried out in this paper for the problem of a multiple scattering in three dimensions of a time-harmonic wave by obstacles whose size is small as compared with the wavelength establishes that the effect of the small bodies can be approximated at any order of accuracy by the field radiated by point sources. Among other issues, this asymptotic expansion of the wave furnishes a mathematical justification with optimal error estimates of Foldy’s method that consists in approximating each small obstacle by a point isotropic scatterer. Finally, it is shown how this theory can be further improved by adequately locating the center of phase of the point scatterers and the taking into account of self-interactions. In this way, it is established that the usual Foldy model may lead to an approximation whose asymptotic behavior is the same than that obtained when the multiple scattering effects are completely neglected.
      PubDate: 2016-03-01
       
  • Cauchy Tetrahedron Argument Applied to Higher Contact Interactions
    • Abstract: Second gradient theories are nowadays used in many studies in order to describe in detail some transition layers which may occur in micro-structured materials and in which physical properties are sharply varying. Sometimes higher order theories are also evoked. Up to now these models have not been based on a construction of stresses similar to the one due to Cauchy, which has been applied only for simple materials. It has been widely recognized that the fundamental assumption by Cauchy that the traction depends only on the normal of the dividing surface cannot be maintained for higher gradient theories. However, this observation did not urge any author, to our knowledge, to revisit the Cauchy construction in order to adapt it to a more general conceptual framework. This is what we do in this paper for a continuum of grade N (also called N-th gradient continuum). Our construction is very similar to the one due to Cauchy; based on the tetrahedron argument, it does not introduce any argument of a different nature. In particular, we avoid invoking the principle of virtual work. As one should expect, the balance assumption and the regularity hypotheses have to be adapted to the new framework and tensorial computations become more complex.
      PubDate: 2016-03-01
       
  • Fractional Hardy–Lieb–Thirring and Related Inequalities for
           Interacting Systems
    • Abstract: We prove analogues of the Lieb–Thirring and Hardy–Lieb–Thirring inequalities for many-body quantum systems with fractional kinetic operators and homogeneous interaction potentials, where no anti-symmetry on the wave functions is assumed. These many-body inequalities imply interesting one-body interpolation inequalities, and we show that the corresponding one- and many-body inequalities are actually equivalent in certain cases.
      PubDate: 2016-03-01
       
  • Gamma Convergence of a Family of Surface–Director Bending Energies
           with Small Tilt
    • Abstract: We prove a Gamma-convergence result for a family of bending energies defined on smooth surfaces in \({\mathbb{R}^3}\) equipped with a director field. The energies strongly penalize the deviation of the director from the surface unit normal and control the derivatives of the director. Such types of energies arise, for example, in a model for bilayer membranes introduced by Peletier and Röger (Arch Ration Mech Anal 193(3), 475–537, 2009). Here we prove in three space dimensions in the vanishing-tilt limit a Gamma-liminf estimate with respect to a specific curvature energy. In order to obtain appropriate compactness and lower semi-continuity properties we use tools from geometric measure theory, in particular the concept of generalized Gauss graphs and curvature varifolds.
      PubDate: 2016-03-01
       
  • On a Free Boundary Problem for the Curvature Flow with Driving Force
    • Abstract: We study a free boundary problem associated with the curvature dependent motion of planar curves in the upper half plane whose two endpoints slide along the horizontal axis with prescribed fixed contact angles. Our first main result concerns the classification of solutions; every solution falls into one of the three categories, namely, area expanding, area bounded and area shrinking types. We then study in detail the asymptotic behavior of solutions in each category. Among other things we show that solutions are asymptotically self-similar both in the area expanding and the area shrinking cases, while solutions converge to either a stationary solution or a traveling wave in the area bounded case. We also prove results on the concavity properties of solutions. One of the main tools of this paper is the intersection number principle, however in order to deal with solutions with free boundaries, we introduce what we call “the extended intersection number principle”, which turns out to be exceedingly useful in handling curves with moving endpoints.
      PubDate: 2016-03-01
       
  • Resolvent Estimates for High-Contrast Elliptic Problems with Periodic
           Coefficients
    • Abstract: We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\) ) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.
      PubDate: 2016-03-01
       
  • New Periodic Solutions for Newtonian n -Body Problems with Dihedral Group
           Symmetry and Topological Constraints
    • Abstract: In this paper, we prove the existence of a family of new non-collision periodic solutions for the classical Newtonian n-body problems. In our assumption, the \({n=2l \geqq 4}\) particles are invariant under the dihedral rotation group D l in \({\mathbb{R}^3}\) such that, at each instant, the n particles form two twisted l-regular polygons. Our approach is the variational minimizing method and we show that the minimizers are collision-free by level estimates and local deformations.
      PubDate: 2016-03-01
       
  • Weak Solutions for the Cahn–Hilliard Equation with Degenerate
           Mobility
    • Abstract: In this paper, we study the well-posedness of Cahn–Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn–Hilliard equations with non-degenerate mobilities.
      PubDate: 2016-03-01
       
  • Optimal Scaling in Solids Undergoing Ductile Fracture by Crazing
    • Abstract: We derive optimal scaling laws for the macroscopic fracture energy of polymers failing by crazing. We assume that the effective deformation-theoretical free-energy density is additive in the first and fractional deformation-gradients, with zero growth in the former and linear growth in the latter. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. For this particular geometry, we derive optimal scaling laws for the dependence of the specific fracture energy on cross-sectional area, micromechanical parameters, opening displacement and intrinsic length of the material. In particular, the upper bound is obtained by means of a construction of the crazing type.
      PubDate: 2016-02-01
       
  • Subsonic-Sonic Limit of Approximate Solutions to Multidimensional Steady
           Euler Equations
    • Abstract: A compactness framework is established for approximate solutions to subsonic-sonic flows governed by the steady full Euler equations for compressible fluids in arbitrary dimension. The existing compactness frameworks for the two-dimensional irrotational case do not directly apply for the steady full Euler equations in higher dimensions. The new compactness framework we develop applies for both non-homentropic and rotational flows. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass balance and the vorticity, along with the Bernoulli law and the entropy relation, through a more delicate analysis on the phase space. As direct applications, we establish two existence theorems for multidimensional subsonic-sonic full Euler flows through infinitely long nozzles.
      PubDate: 2016-02-01
       
  • Quantitative Compactness Estimates for Hamilton–Jacobi Equations
    • Abstract: We study quantitative compactness estimates in \({\mathbf{W}^{1,1}_{{\rm loc}}}\) for the map \({S_t}\) , \({t > 0}\) that is associated with the given initial data \({u_0\in {\rm Lip} (\mathbb{R}^N)}\) for the corresponding solution \({S_t u_0}\) of a Hamilton–Jacobi equation $$u_t+H\big(\nabla_{\!x} u\big)=0, \qquad t\geq 0,\quad x\in\mathbb{R}^N,$$ with a uniformly convex Hamiltonian \({H=H(p)}\) . We provide upper and lower estimates of order \({1/\varepsilon^N}\) on the Kolmogorov \({\varepsilon}\) -entropy in \({\mathbf{W}^{1,1}}\) of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of “resolution” of a numerical method implemented for this equation.
      PubDate: 2016-02-01
       
  • On Dynamics of Lagrangian Trajectories for Hamilton–Jacobi Equations
    • Abstract: Characteristic curves of a Hamilton–Jacobi equation can be seen as action minimizing trajectories of fluid particles. However this description is valid only for smooth solutions. For nonsmooth “viscosity” solutions, which give rise to discontinuous velocity fields, this picture holds only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we discuss two physically meaningful regularization procedures, one corresponding to vanishing viscosity and another to weak noise limit. We show that for any convex Hamiltonian, a viscous regularization allows us to construct a nonsmooth flow that extends particle trajectories and determines dynamics inside the shock manifolds. This flow consists of integral curves of a particular “effective” velocity field, which is uniquely defined everywhere in the flow domain and is discontinuous on shock manifolds. The effective velocity field arising in the weak noise limit is generally non-unique and different from the viscous one, but in both cases there is a fundamental self-consistency condition constraining the dynamics.
      PubDate: 2016-02-01
       
  • BV Estimates in Optimal Transportation and Applications
    • Abstract: In this paper we study the BV regularity for solutions of certain variational problems in Optimal Transportation. We prove that the Wasserstein projection of a measure with BV density on the set of measures with density bounded by a given BV function f is of bounded variation as well and we also provide a precise estimate of its BV norm. Of particular interest is the case f = 1, corresponding to a projection onto a set of densities with an L ∞ bound, where we prove that the total variation decreases by projection. This estimate and, in particular, its iterations have a natural application to some evolutionary PDEs as, for example, the ones describing a crowd motion. In fact, as an application of our results, we obtain BV estimates for solutions of some non-linear parabolic PDE by means of optimal transportation techniques. We also establish some properties of the Wasserstein projection which are interesting in their own right, and allow, for instance, for the proof of the uniqueness of such a projection in a very general framework.
      PubDate: 2016-02-01
       
  • The Compressible to Incompressible Limit of One Dimensional Euler
           Equations: The Non Smooth Case
    • Abstract: We prove a rigorous convergence result for the compressible to incompressible limit of weak entropy solutions to the isothermal one dimensional Euler equations.
      PubDate: 2016-02-01
       
  • Landau Damping in Sobolev Spaces for the Vlasov-HMF Model
    • Abstract: We consider the Vlasov-HMF (Hamiltonian Mean-Field) model. We consider solutions starting in a small Sobolev neighborhood of a spatially homogeneous state satisfying a linearized stability criterion (Penrose criterion). We prove that these solutions exhibit a scattering behavior to a modified state, which implies a nonlinear Landau damping effect with polynomial rate of damping.
      PubDate: 2016-02-01
       
  • Long-time Stability in Systems of Conservation Laws, Using Relative
           Entropy/Energy
    • Abstract: We study the long-time stability of shock-free solutions of hyperbolic systems of conservation laws, under an arbitrarily large initial disturbance in L 2∩ L ∞. We use the relative entropy method, a robust tool which allows us to consider rough and large disturbances. We display practical examples in several space dimensions, for scalar equations as well as isentropic gas dynamics. For full gas dynamics, we use a trick from Chen [1], in which the estimate is made in terms of the relative mechanical energy instead of the relative mathematical entropy.
      PubDate: 2016-02-01
       
  • Function Spaces for Liquid Crystals
    • Abstract: We consider the relationship between three continuum liquid crystal theories: Oseen–Frank, Ericksen and Landau–de Gennes. It is known that the function space is an important part of the mathematical model and by considering various function space choices for the order parameters s, n, and Q, we establish connections between the variational formulations of these theories. We use these results to justify a version of the Oseen–Frank theory using special functions of bounded variation. This proposed model can describe both orientable and non-orientable defects. Finally we study a number of frustrated nematic and cholesteric liquid crystal systems and show that the model predicts the existence of point and surface discontinuities in the director.
      PubDate: 2016-02-01
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015