for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> PHYSICS (Total: 734 journals)
    - ELECTRICITY AND MAGNETISM (7 journals)
    - MECHANICS (18 journals)
    - NUCLEAR PHYSICS (44 journals)
    - OPTICS (84 journals)
    - PHYSICS (536 journals)
    - SOUND (17 journals)
    - THERMODYNAMICS (28 journals)

PHYSICS (536 journals)                  1 2 3 4 5 6 | Last

Acta Acustica united with Acustica     Full-text available via subscription   (Followers: 7)
Acta Mechanica     Hybrid Journal   (Followers: 15)
Acta Physica Slovaca     Open Access   (Followers: 3)
Advanced Composite Materials     Hybrid Journal   (Followers: 10)
Advanced Functional Materials     Hybrid Journal   (Followers: 31)
Advanced Materials     Hybrid Journal   (Followers: 279)
Advances in Condensed Matter Physics     Open Access   (Followers: 6)
Advances in Exploration Geophysics     Full-text available via subscription   (Followers: 3)
Advances in Geophysics     Full-text available via subscription   (Followers: 4)
Advances in High Energy Physics     Open Access   (Followers: 12)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 1)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 11)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 13)
Advances in OptoElectronics     Open Access   (Followers: 3)
Advances In Physics     Hybrid Journal   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 7)
Advances in Synchrotron Radiation     Hybrid Journal   (Followers: 1)
AIP Advances     Open Access   (Followers: 4)
AIP Conference Proceedings     Full-text available via subscription  
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Condensed Matter Physics     Open Access   (Followers: 2)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 1)
Annalen der Physik     Hybrid Journal   (Followers: 2)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 3)
Annales Henri PoincarĂ©     Hybrid Journal   (Followers: 2)
Annales UMCS, Physica     Open Access  
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 3)
Annals of Physics     Hybrid Journal   (Followers: 2)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 1)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 9)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 1)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 4)
APL Materials     Open Access   (Followers: 2)
Applied Composite Materials     Hybrid Journal   (Followers: 8)
Applied Physics A     Hybrid Journal   (Followers: 9)
Applied Physics Frontier     Open Access   (Followers: 1)
Applied Physics Letters     Hybrid Journal   (Followers: 23)
Applied Physics Research     Open Access   (Followers: 6)
Applied Physics Reviews     Hybrid Journal   (Followers: 7)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 5)
Applied Remote Sensing Journal     Open Access   (Followers: 8)
Applied Spectroscopy     Full-text available via subscription   (Followers: 12)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 2)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 3)
Astronomy & Geophysics     Hybrid Journal   (Followers: 1)
Astrophysical Journal Letters     Full-text available via subscription   (Followers: 2)
Astrophysical Journal Supplement Series     Full-text available via subscription   (Followers: 2)
Atoms     Open Access  
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 4)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Axioms     Open Access  
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 25)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 14)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 11)
Biomedical Imaging and Intervention Journal     Open Access   (Followers: 5)
Biophysical Reviews     Hybrid Journal  
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 3)
BMC Biophysics     Open Access   (Followers: 7)
BMC Nuclear Medicine     Open Access   (Followers: 5)
Brazilian Journal of Physics     Hybrid Journal  
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 5)
Bulletin of Materials Science     Open Access   (Followers: 35)
Bulletin of the Atomic Scientists     Full-text available via subscription   (Followers: 4)
Bulletin of the Lebedev Physics Institute     Hybrid Journal   (Followers: 1)
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal  
Caderno Brasileiro de Ensino de FĂ­sica     Open Access  
Canadian Journal of Physics     Full-text available via subscription   (Followers: 1)
Cells     Open Access  
Central European Journal of Physics     Hybrid Journal   (Followers: 1)
Chinese Journal of Astronomy and Astrophysics     Full-text available via subscription  
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 1)
Chinese Physics B     Full-text available via subscription  
Chinese Physics C     Full-text available via subscription  
Chinese Physics Letters     Full-text available via subscription  
Cohesion and Structure     Full-text available via subscription   (Followers: 1)
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 3)
Communications in Theoretical Physics     Full-text available via subscription   (Followers: 1)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 26)
Composites Part B : Engineering     Hybrid Journal   (Followers: 24)
Computational Materials Science     Hybrid Journal   (Followers: 15)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 1)
Computational Particle Mechanics     Hybrid Journal  
Computational Science and Discovery     Full-text available via subscription  
Computer Physics Communications     Hybrid Journal  
Contemporary Concepts of Condensed Matter Science     Full-text available via subscription  
Contemporary Physics     Hybrid Journal   (Followers: 9)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 3)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 2)
COSPAR Colloquia Series     Full-text available via subscription  
Cryogenics     Hybrid Journal   (Followers: 11)
Current Applied Physics     Full-text available via subscription   (Followers: 4)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Differential Equations and Nonlinear Mechanics     Open Access   (Followers: 4)
Doklady Physics     Hybrid Journal   (Followers: 1)
Dynamical Properties of Solids     Full-text available via subscription  

        1 2 3 4 5 6 | Last

Journal Cover Archive for Rational Mechanics and Analysis
   [5 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1432-0673 - ISSN (Online) 0003-9527
     Published by Springer-Verlag Homepage  [2209 journals]   [SJR: 3.43]   [H-I: 51]
  • Atomic to Continuum Passage for Nanotubes: A Discrete Saint-Venant
           Principle and Error Estimates
    • Abstract: Abstract We consider general infinite nanotubes of atoms in ${\mathbb{R}^3}$ where each atom interacts with all the others through a two-body potential. At the equilibrium, the positions of the atoms satisfy a Euler–Lagrange equation. When there are no exterior forces and for a suitable geometry, a particular family of nanotubes is the set of perfect nanotubes at the equilibrium. When exterior forces are applied on the nanotube, we compare the nanotube to nanotubes of the previous family. In part I of the paper, this quantitative comparison is formulated in our first main result as a discrete Saint-Venant principle. As a corollary, we also give a Liouville classification result. Our Saint-Venant principle can be derived for a large class of potentials (including the Lennard-Jones potential), when the perfect nanotubes at the equilibrium are stable. The approach is designed to be applicable to nanotubes that can have general shapes like, for instance, carbon nanotubes or DNA, under the oversimplified assumption that all the atoms are identical. In part II of the paper, we derive from our Saint-Venant principle a macroscopic mechanical model for general nanotubes. We prove that every solution is well approximated by the solution of a continuum model involving stretching and twisting, but no bending. We establish error estimates between the discrete and the continuous solution. More precisely we give two error estimates: one at the microscopic level and one at the macroscopic level.
      PubDate: 2014-07-01
       
  • Local Analysis of Solutions of Fractional Semi-Linear Elliptic Equations
           with Isolated Singularities
    • Abstract: Abstract In this paper, we study the local behaviors of nonnegative local solutions of fractional order semi-linear equations ${(-\Delta )^\sigma u=u^{\frac{n+2\sigma}{n-2\sigma}}}$ with an isolated singularity, where ${\sigma\in (0,1)}$ . We prove that all the solutions are asymptotically radially symmetric. When σ = 1, these have been proved by Caffarelli et al. (Comm Pure Appl Math 42:271–297, 1989).
      PubDate: 2014-07-01
       
  • Global Well-Posedness of Compressible Navier–Stokes Equations for
           Some Classes of Large Initial Data
    • Abstract: Abstract We prove the global well-posedness of three dimensional compressible Navier–Stokes equations for some classes of large initial data, which may have large oscillation for the density and large energy for the velocity. The proof uses the special structure of the system (especially the effective viscous flux).
      PubDate: 2014-07-01
       
  • Sharp Two-Sided Heat Kernel Estimates of Twisted Tubes and Applications
    • Abstract: Abstract We prove on-diagonal bounds for the heat kernel of the Dirichlet Laplacian ${-\Delta^D_\Omega}$ in locally twisted three-dimensional tubes Ω. In particular, we show that for any fixed x the heat kernel decays for large times as ${{\rm e}^{-E_1t} t^{-3/2}}$ , where E 1 is the fundamental eigenvalue of the Dirichlet Laplacian on the cross section of the tube. This shows that any, suitably regular, local twisting speeds up the decay of the heat kernel with respect to the case of straight (untwisted) tubes. Moreover, the above large time decay is valid for a wide class of subcritical operators defined on a straight tube. We also discuss some applications of this result, such as Sobolev inequalities and spectral estimates for Schrödinger operators ${-\Delta^D_\Omega-V}$ .
      PubDate: 2014-07-01
       
  • Analysis of the Cahn–Hilliard Equation with a Relaxation Boundary
           Condition Modeling the Contact Angle Dynamics
    • Abstract: Abstract We analyze the Cahn–Hilliard equation with a relaxation boundary condition modeling the evolution of an interface in contact with the solid boundary. An L ∞ estimate is established which enables us to prove the global existence of the solution. We also study the sharp interface limit of the system. The dynamic of the contact point and the contact angle are derived and the results are compared with the numerical simulations.
      PubDate: 2014-07-01
       
  • Front Speed Enhancement by Incompressible Flows in Three or Higher
           Dimensions
    • Abstract: Abstract We study, in dimensions N ≥ 3, the family of first integrals of an incompressible flow: these are ${H^{1}_{\rm loc}}$ functions whose level surfaces are tangential to the streamlines of the advective incompressible field. One main motivation for this study comes from earlier results proving that the existence of nontrivial first integrals of an incompressible flow q is the main key that leads to a “linear speed up” by a large advection of pulsating traveling fronts solving a reaction–advection–diffusion equation in a periodic heterogeneous framework. The family of first integrals is not well understood in dimensions N ≥ 3 due to the randomness of the trajectories of q and this is in contrast with the case N = 2. By looking at the domain of propagation as a union of different components produced by the advective field, we provide more information about first integrals and we give a class of incompressible flows which exhibit “ergodic components” of positive Lebesgue measure (and hence are not shear flows) and which, under certain sharp geometric conditions, speed up the KPP fronts linearly with respect to the large amplitude. In the proofs, we establish a link between incompressibility, ergodicity, first integrals and the dimension to give a sharp condition about the asymptotic behavior of the minimal KPP speed in terms of the configuration of ergodic components.
      PubDate: 2014-07-01
       
  • Proportionality of Components, Liouville Theorems and a Priori Estimates
           for Noncooperative Elliptic Systems
    • Abstract: Abstract We study qualitative properties of positive solutions of noncooperative, possibly nonvariational, elliptic systems. We obtain new classification and Liouville type theorems in the whole Euclidean space, as well as in half-spaces, and deduce a priori estimates and the existence of positive solutions for related Dirichlet problems. We significantly improve the known results for a large class of systems involving a balance between repulsive and attractive terms. This class contains systems arising in biological models of Lotka–Volterra type, in physical models of Bose–Einstein condensates and in models of chemical reactions.
      PubDate: 2014-07-01
       
  • Monotonicity and 1-Dimensional Symmetry for Solutions of an Elliptic
           System Arising in Bose–Einstein Condensation
    • Abstract: Abstract We study monotonicity and 1-dimensional symmetry for positive solutions with algebraic growth of the following elliptic system: $$\left\{\begin{array}{ll} -\Delta u = -u \upsilon^2 &\quad {\rm in}\, \mathbb{R}^N\\ -\Delta \upsilon= -u^2 \upsilon &\quad {{\rm in}\, \mathbb{R}^N},\end{array}\right.$$ for every dimension ${N \geqq 2}$ . In particular, we prove a Gibbons-type conjecture proposed by Berestycki et al.
      PubDate: 2014-07-01
       
  • A General Class of Free Boundary Problems for Fully Nonlinear Elliptic
           Equations
    • Abstract: Abstract In this paper we study the fully nonlinear free boundary problem $$\left\{\begin{array}{ll}F(D^{2}u) = 1 & {\rm almost \, everywhere \, in}\, B_{1} \cap \Omega\\ D^{2} u \leqq K & {\rm almost \, everywhere \, in} \, B_{1} \setminus \Omega,\end{array}\right.$$ where K > 0, and Ω is an unknown open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that W 2,n solutions are locally C 1,1 inside B 1. Under the extra condition that ${\Omega \supset \{D{u} \neq 0 \}}$ and a uniform thickness assumption on the coincidence set {D u = 0}, we also show local regularity for the free boundary ${\partial \Omega \cap B_1}$ .
      PubDate: 2014-07-01
       
  • KAM for Reversible Derivative Wave Equations
    • Abstract: Abstract We prove the existence of Cantor families of small amplitude, analytic, linearly stable quasi-periodic solutions of reversible derivative wave equations.
      PubDate: 2014-06-01
       
  • Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid
           Equations
    • Abstract: Abstract We prove the absence of anomalous dissipation of energy for long time averaged solutions of the forced critical surface quasi-geostrophic equation in two spatial dimensions.
      PubDate: 2014-06-01
       
  • Riesz Potentials and Nonlinear Parabolic Equations
    • Abstract: Abstract The spatial gradient of solutions to nonlinear degenerate parabolic equations can be pointwise estimated by the caloric Riesz potential of the right hand side datum, exactly as in the case of the heat equation. Heat kernels type estimates persist in the nonlinear case.
      PubDate: 2014-06-01
       
  • The Nonlinear Heat Equation on        class="a-plus-plus">W-Random Graphs
    • Abstract: Abstract For systems of coupled differential equations on a sequence of W-random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.
      PubDate: 2014-06-01
       
  • Erratum Erratum to: Stability Properties of the Riemann Ellipsoids
    • PubDate: 2014-06-01
       
  • Weak Solutions of the Navier–Stokes Equations for Compressible Flows
           in a Half-Space with No-Slip Boundary Conditions
    • Abstract: Abstract We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.
      PubDate: 2014-06-01
       
  • On the Propagation of Weakly Nonlinear Random Dispersive Waves
    • Abstract: Abstract We study several basic dispersive models with random periodic initial data such that the different Fourier modes are independent random variables. Motivated by the vast physics literature on related topics, we then study how much the Fourier modes of the solution at later times remain decorrelated. Our results are sensitive to the resonances associated with the dispersive relation and to the particular choice of the initial data.
      PubDate: 2014-06-01
       
  • Analytical Validation of a Continuum Model for Epitaxial Growth with
           Elasticity on Vicinal Surfaces
    • Abstract: Abstract Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.
      PubDate: 2014-06-01
       
  • A Priori Estimates for Free Boundary Problem of Incompressible Inviscid
           Magnetohydrodynamic Flows
    • Abstract: Abstract In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid magnetohydrodynamics equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical point of view used in Christodoulou and Lindblad (Commun Pure Appl Math 53:1536–1602, 2000), and estimating quantities such as the second fundamental form and the velocity of the free surface. We identify the well-posedness condition that the outer normal derivative of the total pressure including the fluid and magnetic pressures is negative on the free boundary, which is similar to the physical condition (Taylor sign condition) for the incompressible Euler equations of fluids.
      PubDate: 2014-01-15
       
  • Pointwise Bounds for the Solutions of the Smoluchowski Equation with
           Diffusion
    • Abstract: Abstract We prove various decay bounds on solutions (f n : n > 0) of the discrete and continuous Smoluchowski equations with diffusion. More precisely, we establish pointwise upper bounds on n ℓ f n in terms of a suitable average of the moments of the initial data for every positive ℓ. As a consequence, we can formulate sufficient conditions on the initial data to guarantee the finiteness of ${L^p(\mathbb{R}^d \times [0, T])}$ norms of the moments ${X_a(x, t) := \sum_{m\in\mathbb{N}}m^a f_m(x, t)}$ , ( ${\int_0^{\infty} m^a f_m(x, t)dm}$ in the case of continuous Smoluchowski’s equation) for every ${p \in [1, \infty]}$ . In previous papers [11] and [5] we proved similar results for all weak solutions to the Smoluchowski’s equation provided that the diffusion coefficient d(n) is non-increasing as a function of the mass. In this paper we apply a new method to treat general diffusion coefficients and our bounds are expressed in terms of an auxiliary function ${\phi(n)}$ that is closely related to the total increase of the diffusion coefficient in the interval (0, n].
      PubDate: 2014-01-09
       
  • Regularity and Asymptotic Behavior of Nonlinear Stefan Problems
    • Abstract: Abstract We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu \nabla_{x} u ^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ , μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .
      PubDate: 2014-01-08
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014