for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> COMPUTER SCIENCE (Total: 1897 journals)
    - ANIMATION AND SIMULATION (28 journals)
    - AUTOMATION (37 journals)
    - COMPUTER ARCHITECTURE (9 journals)
    - COMPUTER ENGINEERING (11 journals)
    - COMPUTER GAMES (13 journals)
    - COMPUTER GRAPHICS (31 journals)
    - COMPUTER PROGRAMMING (19 journals)
    - COMPUTER SCIENCE (1189 journals)
    - COMPUTER SECURITY (41 journals)
    - CYBERNETICS AND ROBOTICS (58 journals)
    - DATA BASE MANAGEMENT (14 journals)
    - DATA MINING (22 journals)
    - INFORMATION SYSTEMS (89 journals)
    - INTERNET (82 journals)
    - SOCIAL WEB (37 journals)
    - SOFTWARE (31 journals)
    - THEORY OF COMPUTING (6 journals)

COMPUTER SCIENCE (1189 journals)            First | 5 6 7 8 9 10 11 12     

Journal of Interaction Science     Open Access  
Journal of Interactive Humanities     Open Access   (Followers: 1)
Journal of Interactive Marketing     Hybrid Journal   (Followers: 4)
Journal of Interactive Media in Education     Open Access   (Followers: 5)
Journal of K-Theory     Full-text available via subscription  
Journal of Kufa for Mathematics and Computer     Open Access  
Journal of Laboratory Automation     Hybrid Journal  
Journal of Language Modelling     Open Access  
Journal of Law, Information and Science     Full-text available via subscription   (Followers: 24)
Journal of Location Based Services     Hybrid Journal   (Followers: 2)
Journal of Logic and Computation     Hybrid Journal  
Journal of Manufacturing Systems     Full-text available via subscription   (Followers: 6)
Journal of Material Cycles and Waste Management     Hybrid Journal   (Followers: 2)
Journal of mathematical and computational science     Open Access   (Followers: 5)
Journal of Mathematical Imaging and Vision     Hybrid Journal   (Followers: 2)
Journal of Medical Systems     Hybrid Journal   (Followers: 2)
Journal of Metallurgy     Open Access   (Followers: 2)
Journal of Mobile, Embedded and Distributed Systems     Open Access   (Followers: 2)
Journal of Molecular Structure     Hybrid Journal   (Followers: 3)
Journal of Multimedia     Open Access   (Followers: 2)
Journal of Multivariate Analysis     Hybrid Journal   (Followers: 4)
Journal of Nanoparticle Research     Hybrid Journal   (Followers: 3)
Journal of Network and Computer Applications     Hybrid Journal   (Followers: 3)
Journal of Network and Systems Management     Hybrid Journal  
Journal of Networks     Open Access   (Followers: 4)
Journal of Neural Engineering     Hybrid Journal   (Followers: 3)
Journal of Neural Transmission     Hybrid Journal   (Followers: 2)
Journal of Number Theory     Full-text available via subscription  
Journal of Optical and Fiber Communications Reports     Hybrid Journal   (Followers: 1)
Journal of Optimization Theory and Applications     Hybrid Journal   (Followers: 2)
Journal of Organizational and End User Computing     Full-text available via subscription   (Followers: 2)
Journal of Organizational Behavior     Hybrid Journal   (Followers: 25)
Journal of Organizational Computing and Electronic Commerce     Hybrid Journal   (Followers: 1)
Journal of Parallel and Distributed Computing     Hybrid Journal   (Followers: 6)
Journal of Policy Analysis and Management     Hybrid Journal   (Followers: 14)
Journal of Process Control     Hybrid Journal   (Followers: 2)
Journal of Proteome Science and Computational Biology     Open Access  
Journal of Real-Time Image Processing     Hybrid Journal   (Followers: 7)
Journal of Revenue and Pricing Management     Partially Free   (Followers: 5)
Journal of Scheduling     Hybrid Journal   (Followers: 3)
Journal of Science and Technology of the Arts     Open Access   (Followers: 2)
Journal of Scientific Computing     Hybrid Journal   (Followers: 2)
Journal of Second Language Writing     Hybrid Journal   (Followers: 12)
Journal of Sensor Technology     Open Access   (Followers: 2)
Journal of Sensors     Open Access   (Followers: 7)
Journal of Signal Processing Systems     Hybrid Journal  
Journal of Software     Open Access   (Followers: 1)
Journal of Software : Evolution and Process     Hybrid Journal   (Followers: 2)
Journal of Software Engineering     Open Access   (Followers: 6)
Journal of Solar Energy Engineering     Full-text available via subscription   (Followers: 17)
Journal of Spatial Information Science     Open Access   (Followers: 1)
Journal of Statistical Software     Open Access   (Followers: 8)
Journal of Symbolic Computation     Hybrid Journal   (Followers: 1)
Journal of Systems and Software     Hybrid Journal   (Followers: 6)
Journal of Systems Architecture     Hybrid Journal   (Followers: 3)
Journal of Systems Integration     Open Access   (Followers: 1)
Journal of Systems Science and Complexity     Hybrid Journal   (Followers: 5)
Journal of Systems Science and Systems Engineering     Hybrid Journal   (Followers: 2)
Journal of Telecommunications Management     Full-text available via subscription   (Followers: 2)
Journal of the ACM     Full-text available via subscription   (Followers: 1)
Journal of the American Medical Informatics Association     Full-text available via subscription   (Followers: 13)
Journal of the Association for History and Computing     Open Access   (Followers: 4)
Journal of the Brazilian Computer Society     Open Access  
Journal of the Text Encoding Initiative     Open Access   (Followers: 1)
Journal of Theoretical and Computational Chemistry     Hybrid Journal   (Followers: 7)
Journal of Transplantation     Open Access   (Followers: 3)
Journal of Transportation Systems Engineering and Information Technology     Full-text available via subscription   (Followers: 13)
Journal of Turbulence     Hybrid Journal  
Journal of Urban Regeneration and Renewal     Full-text available via subscription   (Followers: 9)
Journal of Visual Communication and Image Representation     Hybrid Journal   (Followers: 5)
Journal of VLSI Design Tools & Technology     Full-text available via subscription  
Journal of Water and Land Development     Open Access   (Followers: 1)
Journal of Zhejiang University SCIENCE C     Hybrid Journal  
Journal on Chain and Network Science     Full-text available via subscription   (Followers: 2)
Journal on Data Semantics     Hybrid Journal   (Followers: 2)
Journal on Multimodal User Interfaces     Hybrid Journal   (Followers: 3)
Jurnal Ilmu Komputer dan Informasi     Open Access  
Jurnal Informatika     Open Access   (Followers: 2)
Jurnal Informatika     Open Access   (Followers: 3)
Jurnal INKOM : Jurnal Informatika, Sistem Kendali dan Komputer     Open Access   (Followers: 1)
Jurnal Sistem Komputer     Open Access  
Jurnal Teknologi     Open Access   (Followers: 1)
KI - K√ľnstliche Intelligenz     Hybrid Journal  
Knowledge and Information Systems     Hybrid Journal   (Followers: 10)
Knowledge Management Research & Practice     Hybrid Journal   (Followers: 14)
Kybernetes     Hybrid Journal   (Followers: 1)
Landscape and Ecological Engineering     Hybrid Journal   (Followers: 3)
Language & Communication     Hybrid Journal   (Followers: 14)
Language Resources and Evaluation     Hybrid Journal   (Followers: 6)
Learning Technologies, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Lecture Notes in Computer Science     Hybrid Journal   (Followers: 1)
Legal Theory     Hybrid Journal   (Followers: 7)
Leonardo     Hybrid Journal   (Followers: 9)
Library Hi Tech News     Hybrid Journal   (Followers: 686)
Library Technology Reports     Full-text available via subscription   (Followers: 166)
Linear Algebra and its Applications     Full-text available via subscription   (Followers: 4)
Literary and Linguistic Computing     Hybrid Journal   (Followers: 6)
LMS Journal of Computation and Mathematics     Free  
Logic and Analysis     Hybrid Journal  
Logica Universalis     Hybrid Journal  

  First | 5 6 7 8 9 10 11 12     

Journal Cover Journal of Scheduling
   [5 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1099-1425 - ISSN (Online) 1094-6136
     Published by Springer-Verlag Homepage  [2210 journals]   [SJR: 1.857]   [H-I: 34]
  • A mixed-integer linear programming approach to the optimization of
           event-bus schedules: a scheduling application in the tourism sector
    • Abstract: Abstract This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.
      PubDate: 2014-12-01
  • Processing time generation schemes for parallel machine scheduling
           problems with various correlation structures
    • Abstract: Abstract This research considers the generation of random processing times for parallel machine scheduling problems. We present several processing time generation schemes that consider different levels and combinations of machine correlation and job correlation. Also, metrics to evaluate the amounts of machine relatedness and job uniformity for the randomly generated processing times of a given problem instance are presented. The proposed schemes generate desirable problem instances that can be used to test different solution approaches (such as heuristics, dynamic programming, and branch-and-bound). Computational results indicate that the schemes provide problem instances with many desirable properties.
      PubDate: 2014-12-01
  • Review of real-time vehicle schedule recovery methods in transportation
    • Abstract: Abstract This paper presents a comprehensive review on methods for real-time schedule recovery in transportation services. The survey concentrates on published research on recovery of planned schedules in the occurrence of one or several severe disruptions such as vehicle breakdowns, accidents, and delays. Only vehicle assignment and rescheduling are reviewed; crew scheduling and passenger logistics problems during disruptions are not. Real-time vehicle schedule recovery problems (RTVSRP) are classified into three classes: vehicle rescheduling, for road-based services, train-based rescheduling, and airline schedule recovery problems. For each class, a classification of the models is presented based on problem formulations and solution strategies. The paper concludes that RTVSRP is a challenging problem that requires quick and good quality solutions to very difficult and complex situations, involving several different contexts, restrictions, and objectives. The paper also identifies research gaps to be investigated in the future, stimulating research in this area.
      PubDate: 2014-12-01
  • An analysis of constructive algorithms for the airport baggage sorting
           station assignment problem
    • Abstract: Abstract The assignment of airport resources can significantly affect the quality of service provided by airlines and airports. High quality assignments can support airlines and airports in adhering to published schedules by minimising changes or delays while waiting for resources to become available. In this paper, we consider the problem of assigning available baggage sorting stations to flights which have already been scheduled and allocated to stands. A model for the problem is presented, and the different objectives which have to be considered are highlighted. A number of constructive algorithms for sorting station assignments are then presented and their effects are compared and analysed when different numbers of sorting stations are available. It can be observed that appropriate algorithm selection is highly dependent upon whether or not reductions in service time are permitted and upon the flight density in relation to the number of sorting stations. Finally, since these constructive approaches produce different solutions which are better for different trade-offs of the objectives, we utilise these as initial solutions for an evolutionary algorithm as well as for an Integer Linear Programming model in CPLEX. We show that in both cases they are helpful for improving the results which are obtainable within reasonable solution times.
      PubDate: 2014-12-01
  • A reduction approach to the two-campus transport problem
    • Abstract: Abstract The two-campus transport problem (TCTP) is a dial-a-ride problem with only two destinations. The problem is motivated by a transport problem between two campuses of an academic college. The two campuses are located in two different cities. Lecturers living in one city are sometimes asked to teach at the other city’s campus. The problem is that of transporting the lecturers from one campus to the other, using a known set of vehicles, so as to minimize the time the lecturers wait for their transport. We mathematically model the general TCTP, and provide an algorithm that solves it, which is polynomial in the number of lecturers. The algorithm is based on a reduction to a shortest path problem.
      PubDate: 2014-12-01
  • Scheduling of parallel machines with sequence-dependent batches and
           product incompatibilities in an automotive glass facility
    • Abstract: Abstract This application is motivated by a complex real-world scheduling problem found in the bottleneck workstation of the production line of an automotive safety glass manufacturing facility. The scheduling problem consists of scheduling jobs (glass parts) on a number of parallel batch processing machines (furnaces), assigning each job to a batch, and sequencing the batches on each machine. The two main objectives are to maximize the utilization of the parallel machines and to minimize the delay in the completion date of each job in relation to a required due date (specific for each job). Aside from the main objectives, the output batches should also produce a balanced workload on the parallel machines, balanced job due dates within each batch, and minimal capacity loss in the batches. The scheduling problem also considers a batch capacity constraint, sequence-dependent processing times, incompatible product families, additional resources, and machine capability. We propose a two-phase heuristic approach that combines exact methods with search heuristics. The first phase comprises a four-stage mixed-integer linear program for building the batches; the second phase is based on a Greedy Randomized Adaptive Search Procedure for sequencing the batches assigned to each machine. We conducted experiments on instances with up to 100 jobs built with real data from the manufacturing facility. The results are encouraging both in terms of computing time—5 min in average—and quality of the solutions—less than 10 % relative gap from the optimal solution in the first phase and less than 5 % in the second phase. Additional experiments were conducted on randomly generated instances of small, medium, and large size.
      PubDate: 2014-12-01
  • Flowshop scheduling with interstage job transportation
    • Abstract: Abstract There are a variety of joint job production and transportation scheduling problems that arise in modern manufacturing systems. In this paper, we study two such problems that arise in a flowshop environment where there are two processing stages and a single transporter that is available to deliver the finished jobs from the first stage to the second. In the first problem, there is a single machine in each of the two flowshop stages and jobs have different sizes when loaded onto the transporter. In the second problem, there are two parallel machines in the first stage and a single machine in the second stage, and the transporter can carry only one job in each shipment. The objective of both problems is to minimize the makespan, i.e., the completion time of the last job in the second stage. The two problems are both strongly NP-hard. For each problem, we propose a fast heuristic and show that the heuristic has a tight worst-case bound of 2.
      PubDate: 2014-11-25
  • The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem
    • Abstract: Abstract Scheduling projects is a difficult and time consuming process, and has far-reaching implications for any organization’s operations. By generalizing various aspects of project scheduling, decision makers are enabled to capture reality and act accordingly. In the context of the MISTA 2013 conference, the first MISTA challenge, organized by the authors, introduced such a general problem model: the Multi-Mode Resource-Constrained Multi-Project Scheduling Problem (MRCMPSP). The present paper reports on the competition and provides a discussion on its results. Furthermore, it provides an analysis of the submitted algorithms, and a study of their common elements. By making all benchmark datasets and results publicly available, further research on the MRCMPSP is stimulated.
      PubDate: 2014-11-22
  • A learning-based optimization approach to multi-project scheduling
    • Abstract: Abstract The present paper introduces a learning-based optimization approach to the resource-constrained multi-project scheduling problem. Multiple projects, each with their own set of activities, need to be scheduled. The objectives dealt with here include minimization of the average project delay and total makespan. The availability of local and global resources, precedence relations between activities, and non-equal project start times have to be considered. The proposed approach relies on a simple sequence learning game played by a group of project managers. The project managers each learn their activity list locally using reinforcement learning, more specifically learning automata. Meanwhile, they learn how to choose a suitable place in the overall sequence of all activity lists. All the projects need to arrive at a unique place in this sequence. A mediator, who usually has to solve a complex optimization problem, now manages a simple dispersion game. Through the mediator, a sequence of feasible activity lists is eventually scheduled by using a serial schedule generation scheme, which is adopted from single project scheduling. It is shown that the sequence learning approach has a large positive effect on minimizing the average project delay. In fact, the combination of local reinforcement learning, the sequence learning game and a forward-backward implementation of the serial scheduler significantly improves the best known results for all the MPSPLIB datasets. In addition, several new best results were obtained for both considered objectives: minimizing the average project delay and minimizing the total makespan.
      PubDate: 2014-11-04
  • The impact of core precedences in a cyclic RCPSP with precedence delays
    • Abstract: Abstract In this paper, we introduce a new kind of constraint, called a core precedence constraint, in a cyclic resource-constrained project scheduling problem (RCPSP) with precedence delays. We show, by an example, which kind of industrial constraints might be modeled by such core precedences in a periodic production setting. We then establish that these constraints can be quite easily added to an integer linear programming formulation of the cyclic RCPSP. Although core precedences seem to be very similar to classical precedence, they can induce infeasibility even without resource constraints. Moreover, we show that the feasibility checking problem is NP-complete in the strong sense, even assuming unit processing times and no resource constraints.
      PubDate: 2014-10-21
  • Optimal delivery time quotation in supply chains to minimize tardiness and
           delivery costs
    • Abstract: Abstract There are many situations when, due to unexpected delays, the supplier may not be able to deliver some orders by the promised due dates. We present a model for quoting attainable delivery times to minimize tardiness penalties and delivery costs, when deliveries take place in batches. We show that the general problem is strongly \({\mathcal {NP}}\) -hard, but when all orders have the same per-unit due-date-assignment cost, it is \({\mathcal {NP}}\) -hard only in the ordinary sense. For the latter case, we present a pseudo-polynomial algorithm, which is converted into a fully polynomial-time approximation scheme. If the tardiness penalties are also identical, we show that the problem can be solved in polynomial time.
      PubDate: 2014-10-21
  • Scheduling multi-colour print jobs with sequence-dependent setup times
    • Abstract: Abstract In this paper, a scheduling problem is considered which arises in the packaging industry. Plastic and foil wrappers used for packaging candy bars, crisps and other snacks typically require overlay printing with multiple colours. Printing machines used for this purpose usually accommodate a small number of colours which are loaded into a magazine simultaneously. If two consecutively scheduled print jobs require significantly different colour overlays, then substantial down times are incurred during the transition from the former magazine colour configuration to the latter, because ink cartridges corresponding to colours not required for the latter job have to be cleaned after completion of the former job. The durations of these down times are therefore sequence dependent (the washing and refilling time is a function of the number of colours in which two consecutive printing jobs differ). It is consequently desirable to schedule print jobs so that the accumulated down times associated with all magazine colour transitions are as short as possible for each printing machine. We show that an instance of this scheduling problem can be modelled as the well-known tool switching problem, which is tractable for small instances only. The problem can, however, be solved rather effectively in heuristic fashion by decomposing it into two subproblems: a job grouping problem (which can be modelled as a unicost set covering problem) and a group sequencing problem (which is a generalisation of the celebrated travelling salesman problem). We solve the colour print scheduling problem both exactly and heuristically for small, randomly generated test problem instances, studying the trade-off between the time efficiency and solution quality of the two approaches. Finally, we apply both solution approaches to real problem data obtained from a printing company in the South African Western Cape as a special case study.
      PubDate: 2014-10-15
  • A memetic algorithm to solve an unrelated parallel machine scheduling
           problem with auxiliary resources in semiconductor manufacturing
    • Abstract: Abstract In this paper, we propose a metaheuristic for solving an original scheduling problem with auxiliary resources in a photolithography workshop of a semiconductor plant. The photolithography workshop is often a bottleneck, and improving scheduling decisions in this workshop can help to improve indicators of the whole plant. Two optimization criteria are separately considered: the weighted flow time (to minimize) and the number of products that are processed (to maximize). After stating the problem and giving some properties on the solution space, we show how these properties help us to efficiently solve the problem with the proposed memetic algorithm, which has been implemented and tested on large generated instances. Numerical experiments show that good solutions are obtained within a reasonable computational time.
      PubDate: 2014-10-02
  • Interval scheduling and colorful independent sets
    • Abstract: Abstract Numerous applications in scheduling, such as resource allocation or steel manufacturing, can be modeled using the NP-hard Independent Set problem (given an undirected graph and an integer \(k\) , find a set of at least \(k\) pairwise non-adjacent vertices). Here, one encounters special graph classes like 2-union graphs (edge-wise unions of two interval graphs) and strip graphs (edge-wise unions of an interval graph and a cluster graph), on which Independent Set remains \(\mathrm{NP}\) -hard but admits constant ratio approximations in polynomial time. We study the parameterized complexity of Independent Set on 2-union graphs and on subclasses like strip graphs. Our investigations significantly benefit from a new structural “compactness” parameter of interval graphs and novel problem formulations using vertex-colored interval graphs. Our main contributions are as follows: We show a complexity dichotomy: restricted to graph classes closed under induced subgraphs and disjoint unions, Independent Set is polynomial-time solvable if both input interval graphs are cluster graphs, and is \(\mathrm{NP}\) -hard otherwise. We chart the possibilities and limits of effective polynomial-time preprocessing (also known as kernelization). We extend Halldórsson and Karlsson (2006)’s fixed-parameter algorithm for Independent Set on strip graphs parameterized by the structural parameter “maximum number of live jobs” to show that the problem (also known as Job Interval Selection) is fixed-parameter tractable with respect to the parameter \(k\) and generalize their algorithm from strip graphs to 2-union graphs. Preliminary experiments with random data indicate that Job Interval Selection with up to 15 jobs and \(5\cdot 10^5\) intervals can be solved optimally in less than 5 min.
      PubDate: 2014-10-02
  • Preface
    • PubDate: 2014-10-01
  • A simultaneous and iterative approach for parallel machine scheduling with
           sequence-dependent family setups
    • Abstract: Abstract In this paper, we address a parallel machine scheduling problem to minimize the total weighted completion time, where product families are involved. Major setups occur when processing jobs of different families, and sequence dependencies are also taken into account. Considering its high practical relevance, we focus on the special case where all jobs of the same family have identical processing times. In order to avoid redundant setups, batching jobs of the same family can be performed. We first develop a variable neighborhood search algorithm (VNS) to solve the interrelated subproblems in a simultaneous manner. To further reduce computing time, we also propose an iterative scheme which alternates between a specific heuristic to form batches and a VNS scheme to schedule entire batches. Computational experiments are conducted which confirm the benefits of batching. Test results also show that both simultaneous and iterative approach outperform heuristics based on a fixed batch size and list scheduling. Furthermore, the iterative procedure succeeds in balancing solution quality and computing time.
      PubDate: 2014-10-01
  • Stochastic and semidefinite optimization for scheduling in orthogonal
           frequency division multiple access networks
    • Abstract: Abstract In this paper, we propose stochastic binary quadratic programs for the scheduling resource allocation process of a wireless orthogonal frequency division multiple access network. More precisely, we formulate a two-stage stochastic model, then we further extend the two-stage model by introducing a knapsack probabilistic constrained approach, and finally we propose a multi-stage stochastic program for this problem. The models are aimed at minimizing the total power consumption of the network at each time slot of the scheduling process subject to user bit rates, sub-carrier and modulation linear constraints. In order to compute lower bounds, we derive linear and semidefinite programming relaxations for each of the proposed models. The bounds are also compared with a basic variable neighborhood search metaheuristic approach. Numerical results show tight lower bounds for the semidefinite relaxations when compared to the linear ones and with the metaheuristic. Moreover, near optimal solutions are found with the semidefinite relaxations for the two-stage model without using probabilistic constraints and for the multi-stage program as well.
      PubDate: 2014-10-01
  • A resilience optimization approach for workforce-inventory control
           dynamics under uncertainty
    • Abstract: Abstract The presence of uncertainties in manufacturing systems and supply chains can cause undesirable behavior. Failure to account for these in the design phase can further impair the capability of systems to respond to changes effectively. In this work, we consider a dynamic workforce-inventory control problem wherein inventory planning, production releases, and workforce hiring decisions need to be made. The objective is to develop planning rules to achieve important requirements related to dynamic transient behavior when system parameters are imprecisely known. To this end, we propose a resilience optimization model for the problem and develop a novel local search procedure that combines the strengths of recent developments in robust optimization technology and small signal stability analysis of dynamic systems. A numerical case study of the problem demonstrates significant improvements of the proposed solution in controlling fluctuations and high variability found in the system’s inventory, work-in-process, and workforce levels. Overall, the proposed model is shown to be computationally efficient and effective in hedging against model uncertainties.
      PubDate: 2014-10-01
  • Stochastic scheduling: A short history of index policies and new
           approaches to index generation for dynamic resource allocation
    • Abstract: Abstract In the 1970’s John Gittins discovered that multi-armed bandits, an important class of models for the dynamic allocation of a single key resource among a set of competing projects, have optimal solutions of index form. At each decision epoch such policies allocate the resource to whichever project has the largest Gittins index. Since the 1970’s, Gittins’ index result together with a range of developments and reformulations of it have constituted an influential stream of ideas and results contributing to research into the scheduling of stochastic objects. We give a brief account of many of the most important contributions to this work and proceed to describe how index theory has recently been developed to produce strongly performing heuristic policies for the dynamic allocation of a divisible resource to a collection of stochastic projects (or bandits). A limitation on this work concerns the need for the structural requirement of indexability which is notoriously difficult to establish. We introduce a general framework for the development of index policies for dynamic resource allocation which circumvents this difficulty. We utilise this framework to generate index policies for two model classes of independent interest. Their performance is evaluated in an extensive numerical study.
      PubDate: 2014-10-01
  • A more realistic approach for airport ground movement optimisation with
           stand holding
    • Abstract: Abstract In addition to having to handle constantly increasing numbers of aircraft, modern airports also have to address a wide range of environmental regulations and requirements. As airports work closer and closer to their maximal possible capacity, the operations problems that need to be solved become more and more complex. This increasing level of complexity leads to a situation where the introduction of advanced decision support systems becomes more and more attractive. Such systems have the potential to improve efficient airside operations and to mitigate against the environmental impact of those operations. This paper addresses the problem of moving aircraft from one location within an airport to another as efficiently as possible in terms of time and fuel spent. The problem is often called the ground movement problem and the movements are usually from gate/stands to a runway or vice-versa. We introduce a new sequential graph based algorithm to address this problem. This approach has several advantages over previous approaches. It increases the realism of the modelling and it draws upon a recent methodology to more accurately estimate taxi times. The algorithm aims to absorb as much waiting time for delay as possible at the stand (with engines off) rather than out on the taxiways (with engines running). The impact of successfully achieving this aim is to reduce the environmental pollution. This approach has been tested using data from a European hub airport and it has demonstrated very promising results. We compare the performance of the algorithm against a lower bound on the taxi time and the limits to the amount of waiting time that can be absorbed at stand.
      PubDate: 2014-10-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014