for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> COMPUTER SCIENCE (Total: 2064 journals)
    - ANIMATION AND SIMULATION (31 journals)
    - ARTIFICIAL INTELLIGENCE (101 journals)
    - AUTOMATION AND ROBOTICS (105 journals)
    - CLOUD COMPUTING AND NETWORKS (64 journals)
    - COMPUTER ARCHITECTURE (10 journals)
    - COMPUTER ENGINEERING (11 journals)
    - COMPUTER GAMES (16 journals)
    - COMPUTER PROGRAMMING (26 journals)
    - COMPUTER SCIENCE (1196 journals)
    - COMPUTER SECURITY (46 journals)
    - DATA BASE MANAGEMENT (14 journals)
    - DATA MINING (35 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (29 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (40 journals)
    - INFORMATION SYSTEMS (110 journals)
    - INTERNET (93 journals)
    - SOCIAL WEB (51 journals)
    - SOFTWARE (33 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1196 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 20)
Abakós     Open Access   (Followers: 4)
ACM Computing Surveys     Hybrid Journal   (Followers: 27)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 8)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 12)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 15)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 5)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 12)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 15)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 5)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 4)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 19)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 8)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Hybrid Journal   (Followers: 29)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 2)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 28)
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 7)
Advances in Artificial Intelligence     Open Access   (Followers: 15)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19)
Advances in Computer Engineering     Open Access   (Followers: 4)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 51)
Advances in Engineering Software     Hybrid Journal   (Followers: 27)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 13)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Human-Computer Interaction     Open Access   (Followers: 20)
Advances in Materials Sciences     Open Access   (Followers: 14)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 44)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 5)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 9)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
AI EDAM     Hybrid Journal  
Air, Soil & Water Research     Open Access   (Followers: 11)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 5)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Data Science     Hybrid Journal   (Followers: 12)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 1)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 12)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 11)
Applied Computer Systems     Open Access   (Followers: 2)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 10)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Applied System Innovation     Open Access  
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 142)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 7)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 7)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access   (Followers: 1)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 4)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 11)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Big Data and Cognitive Computing     Open Access   (Followers: 2)
Biodiversity Information Science and Standards     Open Access  
Bioinformatics     Hybrid Journal   (Followers: 294)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 21)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 37)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 47)
British Journal of Educational Technology     Hybrid Journal   (Followers: 140)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 15)
Capturing Intelligence     Full-text available via subscription  
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cell Communication and Signaling     Open Access   (Followers: 2)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 14)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 15)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Communication Methods and Measures     Hybrid Journal   (Followers: 12)
Communication Theory     Hybrid Journal   (Followers: 21)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Computational Physics     Full-text available via subscription   (Followers: 2)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 52)
Communications of the Association for Information Systems     Open Access   (Followers: 16)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 9)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 16)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 5)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 14)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 30)
Computer     Full-text available via subscription   (Followers: 96)
Computer Aided Surgery     Open Access   (Followers: 6)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Communications     Hybrid Journal   (Followers: 16)
Computer Journal     Hybrid Journal   (Followers: 9)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 23)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 12)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 2)
Computer Music Journal     Hybrid Journal   (Followers: 19)
Computer Physics Communications     Hybrid Journal   (Followers: 7)

        1 2 3 4 5 6 | Last

Journal Cover
Chaos, Solitons & Fractals
Journal Prestige (SJR): 0.678
Citation Impact (citeScore): 2
Number of Followers: 3  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0960-0779
Published by Elsevier Homepage  [3163 journals]
  • Unreliable determination of fractal characteristics using the capacity
           dimension and a new method for computing the information dimension
    • Abstract: Publication date: August 2018Source: Chaos, Solitons & Fractals, Volume 113Author(s): Jingshou Liu, Wenlong Ding, Junsheng Dai, Gang Zhao, Yaxiong Sun, Haimeng Yang Fractal theory has been widely applied in a variety of disciplines to understand the theory behind chaotic phenomena based on internal self-similarity. In this study, three ideal geological models are used to analyze the unreliability of the capacity dimension in the fractal calculation of geological bodies with different scales. Additionally, by varying the side length r of the statistical units, the geological meanings of the fractal dimension D and the correlation coefficient R2 are discussed. The points of information (POIs) are densely filled by binarizing the geological bodies to black/white. Based on the optimized r of a geological body, an algorithm is derived that divides the grids of the statistical units to determine the probability of the POIs falling into different grids. The information dimension (DI) and R2 of a geological body are obtained by fitting the variable data. An example calculation of the information dimension field in the Jinhu sag is presented to demonstrate the methodology and to test its reliability. The results show that determining the appropriate side length of the statistical unit is key to evaluating the fractal calculation. Compared to the capacity dimension, DI is more reliable in the fractal calculation of multi-scale geological bodies; DI is thereby the preferred fractal dimension to use in the analyses of these types of geological bodies.
       
  • Analytical integrability problem for perturbations of cubic Kolmogorov
           systems
    • Abstract: Publication date: August 2018Source: Chaos, Solitons & Fractals, Volume 113Author(s): Antonio Algaba, Cristóbal García, Manuel Reyes We solve, by using normal forms, the analytical integrability problem for differential systems in the plane whose first homogeneous component is a cubic Kolmogorov system whose origin is an isolated singularity. As an application, we give the analytically integrable systems of a class of systems x˙=x(P2+P3),y˙=y(Q2+Q3), with Pi, Qi homogeneous polynomials of degree i. We also prove that for any n ≥ 3, there are analytically integrable perturbations of x˙=xPn,y˙=yQn which are not orbital equivalent to its first homogeneous component.
       
  • Scale-free and small-world properties of hollow cube networks
    • Abstract: Publication date: August 2018Source: Chaos, Solitons & Fractals, Volume 113Author(s): Jia He, Yumei Xue In this paper, we construct the evolving networks from hollow cube in fractal geometry by encoding. We set the unit cubes as nodes of network, where two nodes are neighbors if and only if their corresponding cubes have common surface. We also study some characteristics of the network, such as degree distribution, clustering coefficient and average path length. We obtain this network with small world and scale-free properties by the self-similar structure.
       
  • Twin birds inside and outside the cage
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Sajad Jafari, Soroush Dehghan, Guanrong Chen, Sifeu Takougang Kingni, Karthikeyan Rajagopal This paper introduces a chaotic system in the spherical coordinates which, when expressed in the Cartesian coordinate system, has a chaotic attractor located in an impassable sphere like a bird in the cage. It also has a coexisting attractor outside that sphere. Basic dynamical properties of this system are investigated and its FPGA realization is demonstrated.
       
  • Lyapunov and reversibility errors for Hamiltonian flows
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): F. Panichi, G. Turchetti We discuss the stability of a Hamiltonian system by comparing the standard Lyapunov error (LE) with the forward error (FE) due to a small random perturbation. We introduce also the reversibility error (RE) where the evolution is computed forward up to time t and backwards to t=0 in presence of noise. This procedure has been investigated in the case of symplectic maps, but it turns out that the results are simpler in the case of a noisy flow, in the limit of zero noise amplitude. Indeed the stochastic processes defined by the displacement of the noisy orbit at time t for FE, or at time 0 for RE after the evolution up to time t, satisfy linear Langevin equations, are Gaussian processes, and the errors are just their root mean square deviations. All the errors are expressed in terms of the fundamental matrix L(t) of the tangent flow and can be evaluated numerically using a symplectic integrator. Letting eL(t) be the Lyapunov error and eR(t) be the reversibility error a very simple relation holds eR2(t)=∫0teL2(s)ds. The integral relation is quite natural since the local errors due to a random perturbations accumulate during the evolution whereas for the Lyapunov case the error is introduced only at time zero and propagated. The plot of errors for initial conditions in a Poincaré section reflects the phase portrait, whereas in the action plane it allows to single out the resonance strips. We have applied the method to a 3D Hamiltonian model H=H0(J)+λV(Θ), where analytic estimates can be obtained for the single resonances from perturbation theory. This allows to inspect the double resonance structure where the single resonance strips intersect. We have also considered the Hénon–Heiles Hamiltonian to show numerically the equivalence of the errors apart from a shift of 1/2 in the power law exponent in the case of regular orbits. The reversibility error method (REM), previously introduced as the error due to round off in the symplectic integration, appears to be comparable with RE also for the models considered here.
       
  • Rational conformity behavior can promote cooperation in the prisoner's
           dilemma game
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Zhenxi Niu, Jiwei Xu, Dameng Dai, Tairan Liang, Deming Mao, Dawei Zhao In this paper, we explore the effects of rational conformity behavior on the evolution of cooperation in prisoner's dilemma. In general, we think individual updates strategy is based on the difference in income between himself and his neighbors. In real life, in order to avoid risks, they may be consistent with most individuals in the group, because they are not the worst. Therefore, we divide the players into two categories, one is traditional players and the other is rational conformists who update their strategies are based on the two factors: payoffs and the behavior of most individuals in their nearest neighbors. Through a large number of simulations, we find that, rational conformity behavior can promote cooperation in the prisoner's dilemma game, and the greater the proportion of rational players, the more obvious the promotion of cooperation. Our work may provide further insight in understanding the evolution of cooperation, players selectively follow others and make some adjustments according to the current environment to make their own situation better.
       
  • Randomly orthogonal factorizations with constraints in bipartite networks
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Sizhong Zhou, Hongxia Liu, Tao Zhang Many problems on computer science, chemistry, physics and network theory are related to factors, factorizations and orthogonal factorizations in graphs. For example, the telephone network design problems can be converted into maximum matchings of graphs; perfect matchings or 1-factors in graphs correspond to Kekulé structures in chemistry; the file transfer problems in computer networks can be modelled as (0, f)-factorizations in graphs; the designs of Latin squares and Room squares are related to orthogonal factorizations in graphs; the orthogonal (g, f)-colorings of graphs are related to orthogonal (g, f)-factorizations of graphs. In this paper, the orthogonal factorizations in graphs are discussed and we show that every bipartite (0,mf−(m−1)r)-graph G has a (0, f)-factorization randomly r-orthogonal to n vertex disjoint mr-subgraphs of G in certain conditions.
       
  • Legendre wavelets optimization method for variable-order fractional
           Poisson equation
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Mohammad Hossein Heydari, Zakieh Avazzadeh In this study, the Poisson equation is generalized with the concept of variable-order (V-O) fractional derivatives called variable-order fractional Poisson equation (V-OFPE). In order to find an accurate solution of this system, we establish an optimization method through the Legendre wavelets (LWs). To carry out the method, we firstly derive an operational matrix (OM) of V-O fractional derivative for the LWs to be employed in expanding the unknown solution. Then, the function of residual is applied to reform the V-OFPE to an optimization problem which leads to choose the unknown coefficients optimally. In the final step, we implement the constrained extremum method which adjoins the objective function implied from the two-norm of residual function and the constraints corresponded to the given boundary conditions by a set of Lagrange multipliers. Accordingly, the final optimal conditions are actually the algebraic equations including the expansion coefficients and Lagrange multipliers. Theoretical convergence and error analysis of the approximation procedure using the LWs are investigated. In addition, the applicability and computational efficiency are experimentally examined for some illustrative examples.
       
  • Study on the mild solution of Sobolev type Hilfer fractional evolution
           equations with boundary conditions
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Haide Gou, Baolin Li This paper is concerned with the fractional differential equations of Sobolev type with boundary conditions in a Banach space. With the help of properties of Hilfer fractional calculus, the theory of propagation family as well as the theory of the measure of noncompactness and the fixed point methods, we obtain the existence results of mild solutions for Sobolev type fractional evolution differential equations involving Hilfer fractional derivative. Finally, two examples are presented to illustrate the main result.
       
  • Adaptive control method for chaotic power systems based on finite-time
           stability theory and passivity-based control approach
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Cong Wang, Hongli Zhang, Wenhui Fan, Ping Ma Chaotic oscillation in a power system is considered the main cause of power blackouts in large-scale interconnected power grids. The chaotic oscillation mechanisms and the control methods for chaos oscillation of power systems need to be analyzed. This paper thus proposed an adaptive control method for chaotic power systems using finite-time stability theory and passivity-based control approach. The adaptive feedback controller is first constructed using the finite-time stability theory and the passive theory to make the chaotic power system equivalent to a closed-loop passive system. We then proved that the passive power system can stabilize the equilibrium points. We also extensively studied fourth-order power system. Results show that the controller based on the finite-time theory and the passivity-based control approach can effectively stabilize the chaotic behavior within finite time. The control strategy was also found to be robust to the different power system states.
       
  • Dynamics in the controlled center manifolds by Hamiltonian
           structure-preserving stabilization
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Tong Luo, Ming Xu, Yunfeng Dong A two-dimensional hyperbolic Hamiltonian system can be linearly stabilized by a Hamiltonian structure-preserving controller. A linear symplectic transformation and the Lie series method can successfully normalize the expanded Hamiltonian function around a controlled stable equilibrium point, then the dynamics in the controlled center manifolds of which can be described by a Poincaré section. With the implement of the inverse transformation of the Lie series, the analytical results of the controlled manifolds can be obtained. Applying normalization and analytical calculation to planar solar sail three-body problem, we can get the normal form of the corresponding Hamiltonian function and trajectory around the chosen equilibrium point by analytical results. Finally, typical KAM theory is used to analyze the nonlinear stability of the controlled equilibrium point, and the stable region of the control gains are given by numerical calculation.
       
  • State estimation of chaotic Lurie system with logarithmic quantization
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Juanhui Zheng, Baotong Cui In this paper, we address the problem of state estimation of the Lurie system via the communication channel in the case of only this system outputs available. A coder-decoder scheme combines with a logarithmic quantization to form a novel and reliable communication channel. The errors between Lurie system outputs and observer outputs are regarded as the feedback signals, which are transmitted into the observer though the communication channel. A sufficient condition for input-to-state stability is given for the boundedness of the error of state estimation. The results of two examples show the effectiveness and superiority of the proposed communication channel of the logarithmic quantization.
       
  • Analysis of limit cycles and stochastic responses of a real-power
           vibration isolation system under delayed feedback control
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Dongmei Huang, Wei Li, Guidong Yang, Meijuan He In this paper, the dynamical properties of a real-power vibration isolation system with delayed feedback control subjected to deterministic and stochastic excitations are considered. According to the free vibration analysis, it is found that a large number of limit cycles may be existed for certain time delay and feedback gain. Then, the relationship of amplitude and frequency is derived for the undamped system. For the system with harmonic excitation, multi-valued phenomena are observed due to the existence of the limit cycles. In this respect, with the change of time delay, in every period the response is similar to time delay island, and the number of islands is different under different excitation frequency. Additionally, for analyzing the complex dynamic properties, the vibration isolation system with Gauss white noise excitation is explored by the largest Lyapunov exponent and the stationary probability density. The symmetrical period-doubling bifurcation phenomenon is found and verified. Finally, by using Monte Carlo simulation, the stationary probability density is explored from original system. The change of time delays can induce the occurrence of stochastic bifurcation and the response from two peaks becomes triple peaks.
       
  • Secure communication for non-ideal channel via robust TS fuzzy
           observer-based hyperchaotic synchronization
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Navid Vafamand, Shapour Khorshidi, Alireza Khayatian This paper proposes a novel hyperchaotic secure communication scheme for non-ideal communication channels. The proposed approach employs Takagi–Sugeno (TS) fuzzy model and linear matrix inequality (LMI) technique to design a controller which synchronizes the hyperchaotic transmitter and receiver systems. In the presented method, only few numbers of states are needed to be transformed which is consistent with the practical limitations of a non-ideal channel and highly secure communication. Therefore, a robust fuzzy observer is proposed to estimate the other states of the transmitter at the receiver side. Furthermore, since the channel is non-ideal, H∞ performance criterion is employed to derive robust observer and controller against the external disturbance and noise. In order to make the proposed approach more applicable, the sufficient controller and observer design conditions are formulated in terms of linear matrix inequalities (LMIs) which can be solved by convex optimization techniques. In addition, to further remove the effect of the noise on the information recovery, a moving average filter is utilized. Finally, to show the effectiveness and advantages of the proposed approach, the hyperchaotic Lorenz system is considered and the signal is analyzed at the transmitter and receiver sides. Then, the results obtained show the superiority and effectiveness of the proposed method compared with those of the existing approaches.
       
  • Pricing and hedging vulnerable option with funding costs and collateral
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Xingyu Han We explore the valuation and hedging strategies of a European vulnerable option with funding costs and collateralization for local volatility models. It is found that, in the absence of arbitrage opportunities, the option price must lie within a no-arbitrage band. The boundaries of no-arbitrage band are computed as solutions to backward stochastic differential equations (BSDEs in short) of replicating strategy and offsetting strategy. Under some conditions, we obtain the closed-form representations of the no-arbitrage band for local volatility models. In particular, the fully explicit expressions of the no-arbitrage band for Black–Scholes model and the constant elasticity of variance (CEV) model with time-dependent parameters are derived. Furthermore, we provide a strategy for the option holder by using the risky bond issued by the option writer to hedge the remaining potential losses. By virtue of numerical simulation, the impact of the default risk, funding costs and collateral can be observed visually.
       
  • Analysis of flight conflicts in the Chinese air route network
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Mingyuan Zhang, Boyuan Liang, Sheng Wang, Matjaž Perc, Wenbo Du, Xianbin Cao The increase in economic exchange, brought about by globalization and leaps of progress in science and engineering, has led to a sharp increase in air traffic density. As a consequence, airspace has become increasingly crowded, and limitations in airspace capacity have become a major concern for the future development of air travel and transportation. In this paper, we adopt methods of network science to analyze flight conflicts in the Chinese air route network. We show that air conflicts are distributed heterogeneously along the waypoints of the Chinese air route network. In particular, the frequency of flight conflicts follows an exponential distribution. The time-space investigation of flight conflicts shows that they are concentrated at specific regions of the Chinese air route network and at specific time periods of the day. Our work offers fascinating insights into one of the world's largest and most busiest air route networks, and it helps us mitigate flight conflicts and improve air traffic safety.
       
  • Mean first-passage time in a delayed tristable system driven by correlated
           multiplicative and additive white noises
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Pengfei Xu, Yanfei Jin This paper investigates the mean first-passage times (MFPTs) of a delayed tristable system driven by correlated multiplicative and additive noises. The results suggest that the correlation between the multiplicative and additive noises can induce symmetry-breaking in the delayed tristable system. The noise-induced dynamics, such as the noise enhanced stability (NES) and the resonant activation (RA), can be observed with considering the combined influences of correlated noises and intermediate stable state. The time delay plays an important role in the MFPTs. For example, with respect to the middle well, the increase of time delay results in the weakening of the stability of the two lateral wells; thus, all the MFPTs are decreased notably. Moreover, a law of MFPTs is established for three different potential wells. That is, the MFPT T(s1 → s3) (between the left and right wells) is equal to the sum of T(s1 → s2) (from left well to middle one) and T(s2 → s3) (from middle well to right one). However, this change regulation can be first broken with an increase in time delay, and then restored with the increase of correlation between noises.
       
  • Coupled drift shock and soliton in collisional ambiplasma with nonthermal
           effects of electrons and positrons
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Sajad Ali, Mushtaq Ahmad, M. Farooq In the present article coupled drift-ion acoustic mode is investigated in four component collisional, magnetized, and inhomogeneous ambiplasma consisting of positive and negative ions, non-thermal electrons and positrons. Linear dispersion relation for the coupled mode is derived with effect of nothermality and particle concentration. In the presence of weak dispersion and dissipation a KdV-Burger equation is derived in nonlinear regime, for coupled acoustic-drift shock and soliton. Using Tanh-method the solution for double layers in the system is derived. The results are numerically highlighted for ambi plasma at early universe and space plasma. Further more keeping in view the non thermal behavior of ambiplasma in space, a kappa distributed approach is used for these calculations.
       
  • Transportation of nanoparticles investigation as a drug agent to attenuate
           the atherosclerotic lesion under the wall properties impact
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): S. Ijaz, S. Nadeem The present research article is focused to analyze the blood mediated nanoparticle transportation through the atherosclerotic artery. The wall property on the atherosclerotic artery is also assumed to create resemblance with permeability characteristic of the arterial wall thickness. Heat transfer property of the catheter wall as well as the arterial wall is taken into account for the purpose to attenuate the stenotic lesions. To discuss the problem, mathematical model is developed through phase flow approach with hybrid nanofluid phenomena. Arterial pressure in the stenotic artery is also discussed through tapering impacts. Further, flow configurations of hemodynamics are evaluated to discuss the flow of blood through atherosclerotic artery. The outcomes obtained in this analysis are useful in biomedical related application. It is concluded from this mathematical problem through graphical results that the use of Cu–Al2O3/blood is more suitable to reduce the resistance to flow of the atherosclerotic artery when compared to the case of Cu-blood. Moreover, a wall properties impact depicts that hemodynamics of atherosclerotic artery increases.
       
  • A new chaotic model for glucose-insulin regulatory system
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Payam Sadeghi Shabestari, Shirin Panahi, Boshra Hatef, Sajad Jafari, Julien C. Sprott For non-invasively investigating the interaction between insulin and glucose, mathematical modeling is very helpful. In this paper, we propose a new model for insulin-glucose regulatory system based on the well-known prey and predator models. The results of previous researches demonstrate that chaos is a common feature in complex biological systems. Our results are in accordance with previous studies and indicate that glucose-insulin regulatory system has various dynamics in different conditions. One interesting feature of this new model is having hidden attractor for some set of parameters. The result of this paper might be helpful for better understanding of regulatory system that contains glucose, insulin, and diseases such as diabetes, hypoglycemia, and hyperinsulinemia.
       
  • Computation of the largest positive Lyapunov exponent using rounding mode
           and recursive least square algorithm
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Márcia L.C. Peixoto, Erivelton G. Nepomuceno, Samir A.M. Martins, Márcio J. Lacerda It has been shown that natural interval extensions (NIE) can be used to calculate the largest positive Lyapunov exponent (LLE). However, the elaboration of NIE are not always possible for some dynamical systems, such as those modelled by simple equations or by Simulink-type blocks. In this paper, we use rounding mode of floating-point numbers to compute the LLE. We have exhibited how to produce two pseudo-orbits by means of different rounding modes; these pseudo-orbits are used to calculate the Lower Bound Error (LBE). The LLE is the slope of the line gotten from the logarithm of the LBE, which is estimated by means of a recursive least square algorithm (RLS). The main contribution of this paper is to develop a procedure to compute the LLE based on the LBE without using the NIE. Additionally, with the aid of RLS the number of required points has been decreased. Eight numerical examples are given to show the effectiveness of the proposed technique.
       
  • A comparative study of fractal dimension calculation methods for rough
           surface profiles
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Zhiying Chen, Yong Liu, Ping Zhou Fractal dimension is the most important parameter for surface characterization. In this paper, four methods used to estimate the fractal dimensions of surface profiles and their applications in machined surfaces are studied. These methods are first evaluated using surface profiles created by Weierstrass–Mandelbrot function from the three aspects of fitting accuracy, calculation accuracy and calculation stability, and then applied to the machined rough surfaces. By comparing the results of the four methods, it is found that none of the methods is particularly prominent in all of the three aspects. However, the three point sinuosity method is found to be relatively the most suitable and reliable method among the four tested methods for extracting fractal dimensions of both generated and measured rough surface profiles.
       
  • On the modeling of the dynamics of electrical hair clippers
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): B. Nana, S.B. Yamgoué, R. Tchitnga, P. Woafo We report the modeling for analysis of electrical clippers with side to side oscillating blade. The mathematical expressions for the study of its electromechanical dynamics are derived from the application of electromagnetics as well as mechanics laws. Numerical and analytical investigations reveal that, for well chosen range of its control parameters the efficiency of such clippers can be significantly improved, while the electrical power consumption is optimized. Chaotic behavior is investigated numerically using bifurcations diagrams. Experimental results match up well the theoretical predictions.
       
  • Stochastic delayed kinetics of foraging colony system under non-Gaussian
           noise
    • Abstract: Publication date: July 2018Source: Chaos, Solitons & Fractals, Volume 112Author(s): Xiaohui Dong, Ming Wang, Guang-Yan Zhong, Fengzao Yang, Weilong Duan, Jiang-Cheng Li, Kezhao Xiong, Chunhua Zeng In this paper, the stochastic kinetics in a time-delayed foraging colony system under non-Gaussian noise were investigated. Using delay Fokker–Planck approach, the stationary probability distribution (SPD), the normalized variance β2, skewness β3 and kurtosis β4 of the state variable are obtained, respectively. The effects of the time delayed feedback and non-Gaussian noise on the SPD are analyzed theoretically. The numerical simulations about the SPD are obtained and in good agreement with the approximate theoretical results. Furthermore, the impacts of the time delayed feedback and non-Gaussian noise on the β2, β3 and β4 are discussed, respectively. It is found that the curves in β2, β3 and β4 exhibit an optimum strength of feedback where β2, β3 and β4 have a maximum. This maximum indicates the large deviations in β2, β3 and β4. From the above findings, it is easy for us to have a further understanding of the roles of the time delayed feedback and non-Gaussian noise in the foraging colonies system.
       
  • Corrigendum to “Stochastic resonance in a time polo-delayed asymmetry
           bistable system driven by multiplicative white noise and additive color
           noise” [Chaos, Solitons and Fractals, 108 (2018) 8–14]
    • Abstract: Publication date: Available online 19 June 2018Source: Chaos, Solitons & FractalsAuthor(s): Peiming Shi, Wenyue Zhang, Danzhen Yuan, Haifeng Xia, Dongying Han, Rongrong Fu
       
  • Retraction notice to “Application of bifurcation theory to current-mode
           controlled parallel-connected DC–DC boost converters with multi
           bifurcation parameters” [Chaos, Solitons & Fractals 33 (2007)
           1135–1156]
    • Abstract: Publication date: Available online 20 June 2011Source: Chaos, Solitons & FractalsAuthor(s): Ammar N. Natsheh, Jamal M. Nazzal
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.224.83.221
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-