for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> COMPUTER SCIENCE (Total: 2134 journals)
    - ANIMATION AND SIMULATION (31 journals)
    - ARTIFICIAL INTELLIGENCE (105 journals)
    - AUTOMATION AND ROBOTICS (106 journals)
    - COMPUTER ARCHITECTURE (10 journals)
    - COMPUTER ENGINEERING (11 journals)
    - COMPUTER GAMES (22 journals)
    - COMPUTER PROGRAMMING (26 journals)
    - COMPUTER SCIENCE (1241 journals)
    - COMPUTER SECURITY (50 journals)
    - DATA BASE MANAGEMENT (13 journals)
    - DATA MINING (38 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (31 journals)
    - IMAGE AND VIDEO PROCESSING (40 journals)
    - INFORMATION SYSTEMS (106 journals)
    - INTERNET (97 journals)
    - SOCIAL WEB (53 journals)
    - SOFTWARE (34 journals)
    - THEORY OF COMPUTING (9 journals)

COMPUTER SCIENCE (1241 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 25)
Abakós     Open Access   (Followers: 4)
ACM Computing Surveys     Hybrid Journal   (Followers: 31)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 9)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 17)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 15)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 5)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 9)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 12)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 16)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 8)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 6)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 20)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 8)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 5)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Hybrid Journal   (Followers: 35)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 2)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Advanced Engineering Materials     Hybrid Journal   (Followers: 29)
Advanced Science Letters     Full-text available via subscription   (Followers: 11)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 9)
Advances in Artificial Intelligence     Open Access   (Followers: 15)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 6)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19)
Advances in Computer Engineering     Open Access   (Followers: 4)
Advances in Computer Science : an International Journal     Open Access   (Followers: 16)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 58)
Advances in Engineering Software     Hybrid Journal   (Followers: 29)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 17)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 23)
Advances in Human-Computer Interaction     Open Access   (Followers: 21)
Advances in Materials Science     Open Access   (Followers: 15)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 52)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 6)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 9)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
AI EDAM     Hybrid Journal   (Followers: 2)
Air, Soil & Water Research     Open Access   (Followers: 14)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 7)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 6)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Data Science     Hybrid Journal   (Followers: 12)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 4)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annals of West University of Timisoara - Mathematics and Computer Science     Open Access  
Annual Reviews in Control     Hybrid Journal   (Followers: 8)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 1)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 12)
Applied Categorical Structures     Hybrid Journal   (Followers: 4)
Applied Clinical Informatics     Hybrid Journal   (Followers: 3)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 14)
Applied Computer Systems     Open Access   (Followers: 2)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 12)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 17)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 7)
Applied System Innovation     Open Access  
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 6)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 156)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 6)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 8)
Artifact     Open Access   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 7)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access   (Followers: 1)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 6)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 13)
Automation in Construction     Hybrid Journal   (Followers: 8)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Balkan Journal of Electrical and Computer Engineering     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 51)
Big Data and Cognitive Computing     Open Access   (Followers: 4)
Biodiversity Information Science and Standards     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 342)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 19)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 36)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 49)
British Journal of Educational Technology     Hybrid Journal   (Followers: 173)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Bulletin of Social Informatics Theory and Application     Open Access  
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 15)
Capturing Intelligence     Full-text available via subscription  
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cell Communication and Signaling     Open Access   (Followers: 2)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access   (Followers: 4)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 8)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Hybrid Journal   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 15)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Clinical eHealth     Open Access  
Cluster Computing     Hybrid Journal   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Communication Methods and Measures     Hybrid Journal   (Followers: 14)
Communication Theory     Hybrid Journal   (Followers: 25)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Computational Physics     Full-text available via subscription   (Followers: 2)
Communications in Information Science and Management Engineering     Open Access   (Followers: 4)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 4)
Communications of the ACM     Full-text available via subscription   (Followers: 52)
Communications of the Association for Information Systems     Open Access   (Followers: 16)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Composite Materials Series     Full-text available via subscription   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 3)
Computational and Mathematical Biophysics     Open Access   (Followers: 1)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access   (Followers: 1)
Computational Ecology and Software     Open Access   (Followers: 10)
Computational Economics     Hybrid Journal   (Followers: 10)
Computational Geosciences     Hybrid Journal   (Followers: 18)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 9)
Computational Mechanics     Hybrid Journal   (Followers: 5)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 8)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access   (Followers: 1)
Computational Statistics     Hybrid Journal   (Followers: 15)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 36)
Computer     Full-text available via subscription   (Followers: 106)
Computer Aided Surgery     Open Access   (Followers: 6)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Communications     Hybrid Journal   (Followers: 16)

        1 2 3 4 5 6 7 | Last

Similar Journals
Journal Cover
Biomedical Engineering, IEEE Reviews in
Journal Prestige (SJR): 1.616
Citation Impact (citeScore): 7
Number of Followers: 19  
  Full-text available via subscription Subscription journal
ISSN (Print) 1937-3333
Published by IEEE Homepage  [191 journals]
  • IEEE Transactions on Robotics
    • Abstract: Presents a listing of the editorial board, board of governors, current staff, committee members, and/or society editors for this issue of the publication.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • IEEE Reviews in Biomedical Engineering (R-BME)
    • Abstract: Presents a listing of the editorial board, board of governors, current staff, committee members, and/or society editors for this issue of the publication.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Editorial: 5G-Based mHealth Bringing Healthcare Convergence to Reality
    • Authors: Yuan-Ting Zhang;Emma Pickwell-Macpherson;
      Pages: 2 - 3
      Abstract: Discusses the benefits of mobile health(mHealth) technologies. These technologies empower patients to be more involved in their own care, give healthcare consumers greater access to providers, and vice versa, and allow for better personalized, precise, pervasive, and preventive medicine, in more effective and less costlyways.At the cutting edge of health engineering, the field of emerging mHealth promises a new era of highly individualized treatment of disease and preventive medicine, bringing the health convergence to reality.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Dementia Care Frameworks and Assistive Technologies for Their
           Implementation: A Review
    • Authors: Lefteris Koumakis;Charikleia Chatzaki;Eleni Kazantzaki;Evangelia Maniadi;Manolis Tsiknakis;
      Pages: 4 - 18
      Abstract: In this review, we focus on the various integrated care models that have been applied for the management of dementia patients. We explore the different types of assistive technologies (mobile, wearable, and home-based systems) for dementia care, with a special emphasis on technologies that involve or target the informal caregiver as end user. In an attempt to reveal the needs for information sharing, communication, and collaboration between people with dementia and caregivers involved in the effective and integrated management of the disease, we analyze the trends in research and development to date, we seek to understand and reflect upon the state of the art in assistive technologies for dementia, and we highlight domains that appear underexplored, in order to guide future research. We also explore the cost effectiveness of such technologies and integrated care models for the management of dementia patients and comment on current limitations and future trends and directions. Findings indicate the urgent need and the current lack of a comprehensive and cost-effective solution that will incorporate information system technologies for the provision of integrated care services to dementia patients and their informal caregivers.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Neuroimaging and Machine Learning for Dementia Diagnosis: Recent
           Advancements and Future Prospects
    • Authors: Md Rishad Ahmed;Yuan Zhang;Zhiquan Feng;Benny Lo;Omer T. Inan;Hongen Liao;
      Pages: 19 - 33
      Abstract: Dementia, a chronic and progressive cognitive declination of brain function caused by disease or impairment, is becoming more prevalent due to the aging population. A major challenge in dementia is achieving accurate and timely diagnosis. In recent years, neuroimaging with computer-aided algorithms have made remarkable advances in addressing this challenge. The success of these approaches is mostly attributed to the application of machine learning techniques for neuroimaging. In this review paper, we present a comprehensive survey of automated diagnostic approaches for dementia using medical image analysis and machine learning algorithms published in the recent years. Based on the rigorous review of the existing works, we have found that, while most of the studies focused on Alzheimer's disease, recent research has demonstrated reasonable performance in the identification of other types of dementia remains a major challenge. Multimodal imaging analysis deep learning approaches have shown promising results in the diagnosis of these other types of dementia. The main contributions of this review paper are as follows. 1) Based on the detailed analysis of the existing literature, this paper discusses neuroimaging procedures for dementia diagnosis. 2) It systematically explains the most recent machine learning techniques and, in particular, deep learning approaches for early detection of dementia.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based
           Enhancement for Chronic Disease Care
    • Authors: Geng Yang;Gaoyang Pang;Zhibo Pang;Ying Gu;Matti Mäntysalo;Huayong Yang;
      Pages: 34 - 71
      Abstract: Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Maximizing Data Transmission Rate for Implantable Devices Over a Single
           Inductive Link: Methodological Review
    • Authors: Aref Trigui;Sami Hached;Ahmed Chiheb Ammari;Yvon Savaria;Mohamad Sawan;
      Pages: 72 - 87
      Abstract: Due to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being developed. According to many business forecast firms, the IMD market is expected to grow and they are subject to much research aiming to overcome the numerous challenges of their development. One of these challenges consists of designing a wireless power and data transmission system that has high power efficiency, high data rates, low power consumption, and high robustness against noise. This is in addition to minimal design and implementation complexity. This manuscript concerns a comprehensive survey of the latest techniques used to power up and communicate between an external base station and an IMD. Patient safety considerations related to biological, physical, electromagnetic, and electromagnetic interference concerns for wireless IMDs are also explored. The simultaneous powering and data communication techniques using a single inductive link for both power transfer and bidirectional data communication, including the various data modulation/demodulation techniques, are also reviewed. This review will hopefully contribute to the persistent efforts to implement compact reliable IMDs while lowering their cost and upsurging their benefits.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • A Review of Implant Communication Technology in WBAN: Progress and
    • Authors: Assefa K. Teshome;Behailu Kibret;Daniel T. H. Lai;
      Pages: 88 - 99
      Abstract: Over the past six decades, there has been tremendous progress made in the field of medical implant communications. A comprehensive review of the progress, current state of the art, and future direction is presented in this paper. Implanted medical devices (IMDs) are designed mainly for the purpose of diagnostic, therapeutic, and assistive applications in heathcare, active living, and sports technology. The primary target of IMDs' design revolves around reliable communications, sustainable power sources, and a high degree of miniaturization while maintaining biocompatibility to surrounding tissues adhering to the human safety limits set by appropriate guidelines. The role of the Internet of Things and intelligent data analysis in implant device networks as future research is presented in this paper. Finally, in addition to reviewing the state of the art, a novel intuitive lower bound on implant size is presented.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • The Promise of Mobile Technologies for the Health Care System in the
           Developing World: A Systematic Review
    • Authors: Grigorios Karageorgos;Ioannis Andreadis;Konstantinos Psychas;George Mourkousis;Asimina Kiourti;Gianluca Lazzi;Konstantina S. Nikita;
      Pages: 100 - 122
      Abstract: Evolution of mobile technologies and their rapid penetration into people's daily lives, especially in the developing countries, have highlighted mobile health, or m-health, as a promising solution to improve health outcomes. Several studies have been conducted that characterize the impact of m-health solutions in resource-limited settings and assess their potential to improve health care. The aim of this review is twofold: 1) to present an overview of the background and significance of m-health and 2) to summarize and discuss the existing evidence for the effectiveness of m-health in the developing world. A systematic search in the literature was performed in Pubmed, Scopus, as well as reference lists, and a broad sample of 98 relevant articles was identified, which were then categorized into five wider m-health categories. Although statistically significant conclusions cannot be drawn since the majority of studies relied on small-scale trials and limited assessment of long-term effects, this review provides a systematic and extensive analysis of the advantages, disadvantages, and challenges of m-health in developing countries in an attempt to determine future research directions of m-health interventions.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Review of Computational Techniques for Performance Evaluation of RF
           Localization Inside the Human Body
    • Authors: Umair Khan;Sergey N. Makarov;Yunxing Ye;Ruijun Fu;Pranay Swar;Kaveh Pahlavan;
      Pages: 123 - 137
      Abstract: Location estimation within the human body by means of wireless signals is becoming popular for a variety of purposes, including wireless endoscopy using camera pills. The precision of wireless ranging in any medium is contingent upon the methodology employed. Two of the most popular wireless tracking methods are received signal strength (RSS) and time of arrival (TOA). The scope of this study is an assessment of the precision of TOA- and RSS-based ranging in the proximity of anthropomorphic tissue by means of simulation software designed to mimic signal transmission in the human body environment. Software simulations of wireless signals traveling within a human body are exceptionally challenging and require extensive computational resources. We created a rudimentary, MATLAB script using the finite-difference time-domain (FDTD) method to simulate the signal transmission inside and outside a human body and correlated the simulation outcomes of this script with the high-end commercial finite-element method (FEM) tool, ANSYS HFSS. First, we demonstrated that the FDTD modeling produces similar outcomes. Next, we employed the script to emulate the RSS and TOA of the wide bandwidth radio transmission within the human body for wireless ranging and estimated the accuracy of each technology. The precision of both methods was also evaluated with the Cramer-Rao lower bound (CRLB), which is frequently used to estimate the ranging methodologies and the effect of human tissue and its motion.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Toward Standardizing the Classification of Robotic Gait Rehabilitation
    • Authors: Salheddine Ayad;Mohammed Ayad;Abdelkader Megueni;Erika G. Spaich;Lotte N. S. Andreasen Struijk;
      Pages: 138 - 153
      Abstract: With the existence of numerous rehabilitation systems, classification and comparison becomes difficult, especially due to the many factors involved. Moreover, most current reviews are descriptive and do not provide systematic methods for the visual comparison of systems. This review proposes a method for classifying systems and representing them graphically to easily visualize various characteristics of the different systems at the same time. This method could be an introduction for standardizing the evaluation of gait rehabilitation systems. It evaluates four main modules (body weight support, reciprocal stepping mechanism, pelvis mechanism, and environment module) of 27 different gait systems based on a set of characteristics. The combination of these modular evaluations provides a description of the system “in the space of rehabilitation.” The evaluation of each robotic module, based on specific characteristics, showed diverse tendencies. While there is an augmented interest in developing more sophisticated reciprocal stepping mechanisms, few researchers are dedicated to enhance the properties of pelvis mechanisms.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • A Novel FES Strategy for Poststroke Rehabilitation Based on the Natural
           Organization of Neuromuscular Control
    • Authors: Vincent C. K. Cheung;Chuanxin M. Niu;Si Li;Qing Xie;Ning Lan;
      Pages: 154 - 167
      Abstract: The past decades have witnessed remarkable progress in neural technologies such as functional electrical stimulation (FES) and their applications in neurorehabilitation and neuromodulation. These advances are powered by new neuroscientific understandings of the organization and compositionality of neuromuscular control illuminating how muscle groups may be activated together as discrete units known as muscle synergies. These parallel developments have promoted novel approaches to clinical rehabilitation for neurological disorders that are insurmountable to current treatments. One such breakthrough is the evolution of FES as a therapeutic tool in poststroke rehabilitation with an interventional strategy particularly inspired by the concept that muscles in humans may be purposefully coordinated through neuromotor modules represented as muscle synergies. This paper will review recent advances in multichannel FES technology, its potential applications in poststroke rehabilitation, new findings that support the neurological basis of the muscle synergies for generating natural motor tasks, and the application of the muscle-synergy concept in poststroke assessment and rehabilitation of motor impairment. Finally, we will recommend future directions of development in relation to assistive FES and synergy-driven adaptive training for poststroke rehabilitation.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Deep Learning in Cardiology
    • Authors: Paschalis Bizopoulos;Dimitrios Koutsouris;
      Pages: 168 - 193
      Abstract: The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction, and intervention. Deep learning is a representation learning method that consists of layers that transform data nonlinearly, thus, revealing hierarchical relationships and structures. In this review, we survey deep learning application papers that use structured data, and signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Learning for Personalized Medicine: A Comprehensive Review From a Deep
           Learning Perspective
    • Authors: Sushen Zhang;Seyed Mojtaba Hosseini Bamakan;Qiang Qu;Sha Li;
      Pages: 194 - 208
      Abstract: With the recent advancements in analyzing high-volume, complex, and unstructured data, modern learning methods are playing an increasingly critical role in the field of personalized medicine. Personalized medicine (i.e., providing tailored medical treatment to individual patients through the identification of common features, including their genetics, inheritance, and lifestyle) has attracted the attention of many researchers in recent years. This paper provides an overview of the research progress in the application of learning methods, with a focus on deep learning in personalized medicine. In particular, three domains of applications are reviewed: drug development, disease characteristic identification, and therapeutic effect prediction. The main objective of this review is to consider the applied methods in detail and to offer insights into their pros and cons. Although having demonstrated advantages in coping with data complexity and nonlinearity and in recognizing features and associating structural data, the studied learning methods are not a panacea to all medical problems. Hence, we discuss the existing research challenges and clarify future study directions.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Dynamic Handwriting Analysis for the Assessment of Neurodegenerative
           Diseases: A Pattern Recognition Perspective
    • Authors: Donato Impedovo;Giuseppe Pirlo;
      Pages: 209 - 220
      Abstract: Neurodegenerative diseases, for instance Alzheimer's disease (AD) and Parkinson's disease (PD), affect the peripheral nervous system, where nerve cells send messages that control muscles in order to allow movements. Sick neurons cannot control muscles properly. Handwriting involves cognitive planning, coordination, and execution abilities. Significant changes in handwriting performance are a prominent feature of AD and PD. This paper addresses the most relevant results obtained in the field of online (dynamic) analysis of handwritten trials by AD and PD patients. The survey is made from a pattern recognition point of view, so that different phases are described. Data acquisition deals not only with the device, but also with the handwriting task. Feature extraction can deal with function and parameter features. The classification problem is also discussed along with results already obtained. This paper also highlights the most profitable research directions.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Acoustic Methods for Pulmonary Diagnosis
    • Authors: Adam Rao;Emily Huynh;Thomas J. Royston;Aaron Kornblith;Shuvo Roy;
      Pages: 221 - 239
      Abstract: Recent developments in sensor technology and computational analysis methods enable new strategies to measure and interpret lung acoustic signals that originate internally, such as breathing or vocal sounds, or are externally introduced, such as in chest percussion or airway insonification. A better understanding of these sounds has resulted in a new instrumentation that allows for highly accurate as well as portable options for measurement in the hospital, in the clinic, and even at home. This review outlines the instrumentation for acoustic stimulation and measurement of the lungs. We first review the fundamentals of acoustic lung signals and the pathophysiology of the diseases that these signals are used to detect. Then, we focus on different methods of measuring and creating signals that have been used in recent research for pulmonary disease diagnosis. These new methods, combined with signal processing and modeling techniques, lead to a reduction in noise and allow improved feature extraction and signal classification. We conclude by presenting the results of human subject studies taking advantage of both the instrumentation and signal processing tools to accurately diagnose common lung diseases. This paper emphasizes the active areas of research within modern lung acoustics and encourages the standardization of future work in this field.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound
    • Authors: Gary Allwood;Xuhao Du;K. Mary Webberley;Adam Osseiran;Barry James Marshall;
      Pages: 240 - 253
      Abstract: With the invention of the electronic stethoscope and other similar recording and data logging devices, acoustic signal processing concepts and methods can now be applied to bowel sounds. In this paper, the literature pertaining to acoustic signal processing for bowel sound analysis is reviewed and discussed. The paper outlines some of the fundamental approaches and machine learning principles that may be used in bowel sound analysis. The advances in signal processing techniques that have allowed useful information to be obtained from bowel sounds from a historical perspective are provided. The document specifically address the progress in bowel sound analysis, such as improved noise reduction, segmentation, signal enhancement, feature extraction, localization of sounds, and machine learning techniques. We have found that advanced acoustic signal processing incorporating novel machine learning methods and artificial intelligence can lead to better interpretation of acoustic information emanating from the bowel.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Current and Emerging Diagnostic Imaging-Based Techniques for Assessment of
           Osteoporosis and Fracture Risk
    • Authors: Anu Shaju Areeckal;Michel Kocher;Sumam David S.;
      Pages: 254 - 268
      Abstract: Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Review of 2-D/3-D Reconstruction Using Statistical Shape and Intensity
           Models and X-Ray Image Synthesis: Toward a Unified Framework
    • Authors: Cornelius Johannes Frederik Reyneke;Marcel Lüthi;Valérie Burdin;Tania S. Douglas;Thomas Vetter;Tinashe E. M. Mutsvangwa;
      Pages: 269 - 286
      Abstract: Patient-specific three-dimensional (3-D) bone models are useful for a number of clinical applications such as surgery planning, postoperative evaluation, as well as implant and prosthesis design. Two-dimensional-to-3-D (2-D/3-D) reconstruction, also known as model-to-modality or atlas-based 2-D/3-D registration, provides a means of obtaining a 3-D model of a patient's bones from their 2-D radiographs when 3-D imaging modalities are not available. The preferred approach for estimating both shape and density information (that would be present in a patient's computed tomography data) for 2-D/3-D reconstruction makes use of digitally reconstructed radiographs and deformable models in an iterative, non-rigid, intensity-based approach. Based on a large number of state-of-the-art 2-D/3-D bone reconstruction methods, a unified mathematical formulation of the problem is proposed in a common conceptual framework, using unambiguous terminology. In addition, shortcomings, recent adaptations, and persisting challenges are discussed along with insights for future research.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Methods for High-Resolution Electrical Mapping in the Gastrointestinal
    • Authors: Gregory O'Grady;Timothy R. Angeli;Niranchan Paskaranandavadivel;Jonathan C. Erickson;Cameron I. Wells;Armen A. Gharibans;Leo K. Cheng;Peng Du;
      Pages: 287 - 302
      Abstract: Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Cohort Harmonization and Integrative Analysis From a Biomedical
           Engineering Perspective
    • Authors: Konstadina D. Kourou;Vasileios C. Pezoulas;Eleni I. Georga;Themis P. Exarchos;Panayiotis Tsanakas;Manolis Tsiknakis;Theodora Varvarigou;Salvatore De Vita;Athanasios Tzioufas;Dimitrios I. Fotiadis;
      Pages: 303 - 318
      Abstract: In this review, the critical parts and milestones for data harmonization, from the biomedical engineering perspective, are outlined. The need for data sharing between heterogeneous sources paves the way for cohort harmonization; thus, fostering data integration and interdisciplinary research. Unmet needs in chronic diseases, as well as in other diseases, can be addressed based on the integration of patient health records and the sharing of information of the clinical picture and outcome. The stratification of patients, the determination of various clinical and outcome features, and the identification of novel biomarkers for the different phenotypes of the disease characterize the impact of cohort harmonization in patient-centered clinical research and in precision medicine. Subsequently, the establishment of matching techniques and ontologies for the creation of data schemas are also presented. The exploitation of web technologies and data-collection tools supports the opportunities to achieve new levels of integration and interoperability. Ethical and legal issues that arise when sharing and harmonizing individual-level data are discussed in order to evaluate the harmonization potential. Use cases that shape and test the harmonization approach are explicitly analyzed along with their significant results on their research objectives. Finally, future trends and directions are discussed and critically reviewed toward a roadmap in cohort harmonization for clinical medicine.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Technology-Enabled Assessment of Functional Health
    • Authors: Diane J. Cook;Maureen Schmitter-Edgecombe;Linus Jönsson;Anne V. Morant;
      Pages: 319 - 332
      Abstract: The maturation of pervasive computing technologies has dramatically altered the face of healthcare. With the introduction of mobile devices, body area networks, and embedded computing systems, care providers can use continuous, ecologically valid information to overcome geographic and temporal barriers and thus provide more effective and timely health assessments. In this paper, we review recent technological developments that can be harnessed to replicate, enhance, or create methods for assessment of functional performance. Enabling technologies in wearable sensors, ambient sensors, mobile technologies, and virtual reality make it possible to quantify real-time functional performance and changes in cognitive health. These technologies, their uses for functional health assessment, and their challenges for adoption are presented in this paper.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials
           Approach for Enhancing Natural Tissue Function
    • Authors: Wissam Farhat;Anwarul Hasan;Lucian Lucia;Frederic Becquart;Ali Ayoub;Firas Kobeissy;
      Pages: 333 - 351
      Abstract: Stem-cell-based therapy is a promising approach for the treatment of a myriad of diseases and injuries. However, the low rate of cell survival and the uncontrolled differentiation of the injected stem cells currently remain key challenges in advancing stem cell therapeutics. Hydrogels are biomaterials that are potentially highly effective candidates for scaffold systems for stem cells and other molecular encapsulation approaches to target in vivo delivery. Hydrogel-based strategies can potentially address several current challenges in stem cell therapy. We present a concise overview of the recent advances in applications of hydrogels in stem cell therapies, with a focus particularly on the recent advances in the design and approaches for application of hydrogels in tissue engineering. The capability of hydrogels to either enhance the function of the transplanted stem cells by promoting their controlled differentiation or enhance the recruitment of endogenous adult stem cells to the injury site for repair is also reviewed. Finally, the importance of impacts and the desired relationship between the scaffold system and the encapsulated stem cells are discussed.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
  • 2019 Index IEEE Reviews in Biomedical Engineering Vol. 12
    • Pages: 352 - 357
      Abstract: This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author's name. The primary entry includes the co-authors' names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author's name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index.
      PubDate: 2019
      Issue No: Vol. 12 (2019)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-