for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> COMPUTER SCIENCE (Total: 2063 journals)
    - ANIMATION AND SIMULATION (31 journals)
    - ARTIFICIAL INTELLIGENCE (101 journals)
    - AUTOMATION AND ROBOTICS (105 journals)
    - COMPUTER ARCHITECTURE (10 journals)
    - COMPUTER ENGINEERING (11 journals)
    - COMPUTER GAMES (16 journals)
    - COMPUTER PROGRAMMING (26 journals)
    - COMPUTER SCIENCE (1196 journals)
    - COMPUTER SECURITY (46 journals)
    - DATA BASE MANAGEMENT (14 journals)
    - DATA MINING (35 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (29 journals)
    - IMAGE AND VIDEO PROCESSING (39 journals)
    - INFORMATION SYSTEMS (110 journals)
    - INTERNET (93 journals)
    - SOCIAL WEB (51 journals)
    - SOFTWARE (33 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1196 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 20)
Abakós     Open Access   (Followers: 4)
ACM Computing Surveys     Hybrid Journal   (Followers: 27)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 8)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 12)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 15)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 5)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 12)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 17)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 15)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 5)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 4)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 19)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 8)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 29)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 2)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 28)
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 7)
Advances in Artificial Intelligence     Open Access   (Followers: 15)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19)
Advances in Computer Engineering     Open Access   (Followers: 4)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 51)
Advances in Engineering Software     Hybrid Journal   (Followers: 27)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 13)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 21)
Advances in Human-Computer Interaction     Open Access   (Followers: 20)
Advances in Materials Sciences     Open Access   (Followers: 14)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 6)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 44)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 5)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 9)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
AI EDAM     Hybrid Journal  
Air, Soil & Water Research     Open Access   (Followers: 11)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 5)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 1)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 12)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 11)
Applied Computer Systems     Open Access   (Followers: 2)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 10)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Applied System Innovation     Open Access  
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 143)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 7)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 7)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access   (Followers: 1)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 4)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 11)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Big Data and Cognitive Computing     Open Access   (Followers: 2)
Biodiversity Information Science and Standards     Open Access  
Bioinformatics     Hybrid Journal   (Followers: 295)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 21)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 37)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 48)
British Journal of Educational Technology     Hybrid Journal   (Followers: 137)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 15)
Capturing Intelligence     Full-text available via subscription  
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cell Communication and Signaling     Open Access   (Followers: 2)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 14)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 15)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Communication Methods and Measures     Hybrid Journal   (Followers: 12)
Communication Theory     Hybrid Journal   (Followers: 21)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Computational Physics     Full-text available via subscription   (Followers: 2)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 52)
Communications of the Association for Information Systems     Open Access   (Followers: 16)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 9)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 16)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 5)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 14)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 30)
Computer     Full-text available via subscription   (Followers: 95)
Computer Aided Surgery     Open Access   (Followers: 6)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Communications     Hybrid Journal   (Followers: 16)
Computer Journal     Hybrid Journal   (Followers: 9)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 23)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 12)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 2)
Computer Music Journal     Hybrid Journal   (Followers: 19)
Computer Physics Communications     Hybrid Journal   (Followers: 7)

        1 2 3 4 5 6 | Last

Journal Cover
Archive of Applied Mechanics
Journal Prestige (SJR): 0.79
Citation Impact (citeScore): 2
Number of Followers: 5  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0939-1533 - ISSN (Online) 1432-0681
Published by Springer-Verlag Homepage  [2351 journals]
  • Stress concentration around a rectangular cuboid hole in a
           three-dimensional elastic body under tension loading
    • Authors: Yi Yang; Yufeng Cheng; Weidong Zhu
      Pages: 1229 - 1241
      Abstract: Stress concentration caused by holes can be investigated by numerical and analytical methods. Current analytical methods can only solve two-dimensional problems. This paper proposes an analytical study on a three-dimensional stress concentration problem that involves a rectangular cuboid hole in a three-dimensional elastic body under tension loading. Based on the finite element method and U-transformation method, the problem can be expressed as a set of uncoupled equations with cyclic periodicity. Displacements of the three-dimensional elastic body are derived in analytical form to study stress distribution in it. Numerical simulation is conducted using ABAQUS to verify the analytical solution. Stress concentration factors in cases of uniaxial, biaxial, and triaxial tensions and the effect of the side ratio of the hole on them are discussed.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1369-7
      Issue No: Vol. 88, No. 8 (2018)
  • Dynamic study of viscoelastic rotor: a comparative study using analytical
           and finite element model considering higher-order system
    • Authors: H. Roy; S. Chandraker
      Pages: 1243 - 1261
      Abstract: In the past, many researchers developed rotor models using either lump system or finite element approach, where material damping played a crucial role in dynamic behaviour. Such damping in any rotating structure triggers instability at the supercritical range. In most of the literatures, material damping has been incorporated either by frequency-independent hysteretic damping or frequency-dependent viscous damping, but these models are insufficient to estimate the dynamic characteristics of the system. The motivation for using general viscoelastic model arises from a need to capture the influence of both types of damping. Such type of modelling is done through operator-based constitutive relationship. The numerator and denominator of material modulus are a polynomial of differential time operator, and polynomial coefficients are known as a viscoelastic parameter. The operator-based constitutive relationship is further utilized to bring down higher-order equations of motion by using two different techniques, i.e. (a) analytical approach and (b) finite element approach.The shaft damping is tackled in such a manner that the dissipation effects can be considered through all coordinates. The significance of both approaches is explained with the help of stability and response analysis at various disc positions.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1370-1
      Issue No: Vol. 88, No. 8 (2018)
  • Complete vibrational bandgap in thin elastic metamaterial plates with
           periodically slot-embedded local resonators
    • Authors: Jia-Hao He; Hsin-Haou Huang
      Pages: 1263 - 1274
      Abstract: This paper presents a metamaterial plate (metaplate) consisting of a periodic array of holes on a homogeneous thin plate with slot-embedded resonators. The study numerically proves that the proposed model can generate a complete vibrational bandgap in the low-frequency range. A simplified analytical model was proposed for feasibly and accurately capturing the dispersion behavior and first bandgap characteristics in the low-frequency range, which can be used for initial design and bandgap study of the metaplate. A realistic and practical unit metaplate was subsequently designed to verify the analytical model through finite element simulations. The metaplate not only generated a complete vibrational bandgap but also exhibited excellent agreement in both analytical and finite element models for predicting the bandgap characteristics. This study facilitates the design of opening and tuning bandgaps for potential applications such as low-frequency vibration isolation and stress wave mitigation.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1371-0
      Issue No: Vol. 88, No. 8 (2018)
  • Longitudinal impact into viscoelastic media
    • Authors: George A. Gazonas; Raymond A. Wildman; David A. Hopkins; Michael J. Scheidler
      Pages: 1275 - 1304
      Abstract: We consider several one-dimensional impact problems involving finite or semi-infinite, linear elastic flyers that collide with and adhere to a finite stationary linear viscoelastic target backed by a semi-infinite linear elastic half-space. The impact generates a shock wave in the target which undergoes multiple reflections from the target boundaries. Laplace transforms with respect to time, together with impact boundary conditions derived in our previous work, are used to derive explicit closed-form solutions for the stress and particle velocity in the Laplace transform domain at any point in the target. For several stress relaxation functions of the Wiechert (Prony series) type, a modified Dubner–Abate–Crump algorithm is used to numerically invert those solutions to the time domain. These solutions are compared with numerical solutions obtained using both a finite-difference method and the commercial finite element code, COMSOL Multiphysics. The final value theorem for Laplace transforms is used to derive new explicit analytical expressions for the long-time asymptotes of the stress and velocity in viscoelastic targets; these results are useful for the verification of viscoelastic impact simulations taken to long observation times.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1372-z
      Issue No: Vol. 88, No. 8 (2018)
  • Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with
    • Authors: Chuanzong Sun; Yushu Chen; Lei Hou
      Pages: 1305 - 1324
      Abstract: In this paper, the nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact are investigated. A novel framework is proposed, in which the sophisticated geometrical structure is considered by finite solid element method and efficient model order reduction is applied to the model. The validity and efficiency of the reduced-order model are verified through critical speed and eigen problems. Its stable and unstable solutions are calculated by means of the assembly technique and the multiple harmonic balance method combined with the alternating frequency/time domain technique (MHB–AFT). The accurate frequency amplitudes are obtained accordingly for each harmonic component. The stabilities of the solutions are checked by the Floquet theory. Through the numerical computations, some complex nonlinear phenomena, such as combined frequency vibration, hysteresis, and resonant peak shifting, are discovered when the rub-impact occurs. The results also show that the control parameters of mass eccentricity, rub-impact stiffness, and rotational speed ratio make significant but different influences on the dynamical characteristics of the system. Therefore, a key innovation of this paper is the marriage of a hybrid modeling method—accurate modeling technique combined with model order reduction and solution method—highly efficient semi-analytic method of MHB–AFT. The proposed framework is benefit for parametric study and provides a better understanding of the nonlinear dynamical behaviors of the real complicated dual-rotor aero-engine with rub-impact.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1373-y
      Issue No: Vol. 88, No. 8 (2018)
  • A time-domain system identification numerical procedure for obtaining
           linear dynamical models of multibody mechanical systems
    • Authors: Carmine M. Pappalardo; Domenico Guida
      Pages: 1325 - 1347
      Abstract: This paper is focused on the development of a numerical procedure for solving the system identification problem of linear dynamical models that mathematically describe multibody mechanical systems. To this end, an input–output representation of the time evolution of a general mechanical system based on a sequence of matrices referred to as Markov parameters is employed. The set of Markov parameters incorporate the state-space matrices that allow for describing the dynamic behavior of a general mechanical system considering the assumption of structural linearity. The system Markov parameters are defined by means of a discretization process applied to the analytical description of a mechanical system, and therefore, they are difficult to obtain directly from observable measurements. However, a state observer can be introduced in order to define a set of observer Markov parameters that can be readily recovered from input–output experimental data. The observer Markov parameters obtained by using a least-square approach allow for computing in a recursive manner the system Markov parameters as well as another discrete sequence of matrices referred to as observer gain Markov parameters. Subsequently, the system and observer gain Markov parameters identified from observable input–output data are used for constructing a sequence of generalized Hankel matrices from which a state-space model of the mechanical system of interest can be extracted. This fundamental step of the identification procedure is performed in the algorithm elaborated in this work employing a numerical procedure which relies on the use of the Moore–Penrose pseudoinverse matrix obtained by means of the singular value decomposition. In the paper, the principal analytical and numerical aspects of the proposed identification algorithm are described in detail. Furthermore, a numerical example based on a simple vehicle model is discussed in order to verify by means of numerical experiments the effectiveness of the identification procedure developed in this work.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1374-x
      Issue No: Vol. 88, No. 8 (2018)
  • Vibration performance of a vertical conveyor system under two simultaneous
    • Authors: H. S. Bauomy; A. T. EL-Sayed
      Pages: 1349 - 1368
      Abstract: This study focused on the vibration behavior of a modified vertical conveyor system. The calculated system is exhibited by 2-degree-of-freedom counting quadratic and cubic nonlinearities among both external and parametric forces. Technique of multiple scales connected to gain approximate solutions and study stability of measured structure. All resonances from mathematical solution are extracted. The performance of the system is measured by means of Runge–Kutta fourth-order process (e.g., ode45 in MATLAB). Moreover, two simultaneous resonance cases of this system have been studied analytically and numerically. Stability of acquired numerical solution discovered via frequency response equations. Influences contained by important coefficients scheduled frequency response curves of the considered structure are studied inside numerical results. Methodical results obtained in this work agreed well through the numerical outcome. The description outcome is matched up to available recently published articles.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1375-9
      Issue No: Vol. 88, No. 8 (2018)
  • Symbolic linearization and vibration analysis of constrained multibody
    • Authors: Nguyen Van Khang; Nguyen Sy Nam; Nguyen Van Quyen
      Pages: 1369 - 1384
      Abstract: A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1376-8
      Issue No: Vol. 88, No. 8 (2018)
  • Pochhammer–Chree waves: polarization of the axially symmetric modes
    • Authors: Alla V. Ilyashenko; Sergey V. Kuznetsov
      Pages: 1385 - 1394
      Abstract: The exact solutions of the linear Pochhammer–Chree equation for propagating harmonic waves in a cylindrical rod are analyzed. Spectral analysis of the matrix dispersion equation for longitudinal axially symmetric modes is performed. Analytical expressions for displacement fields are obtained. Variation of wave polarization on the free surface due to variation of Poisson’s ratio and circular frequency is analyzed. It is observed that at the phase speed coinciding with the bulk shear speed ( \(c_2\) ) all the components of the displacement field vanish, meaning that no longitudinal axisymmetric Pochhammer–Chree wave can propagate at \(c_2\) phase speed.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1377-7
      Issue No: Vol. 88, No. 8 (2018)
  • Numerical and experimental analysis of the vibroacoustic behavior of an
           electric window-lift gear motor
    • Authors: Emmanuel Rigaud; Pierre-Henri Cornuault; Benoît Bazin; Emmanuel Grandais-Menant
      Pages: 1395 - 1410
      Abstract: This paper focuses on the numerical analysis of the vibroacoustic behavior of an electric window-lift gear motor for automotive vehicle which consists of a DC motor and a worm gear. A dynamic modeling of the gear motor is proposed. The excitation sources correspond to radial electromagnetic forces applied to steel stator, electromagnetic input torque fluctuation, rotor mechanical imbalance, worm gear static transmission error and mesh stiffness fluctuations and gear wheel eccentricity. Parametric equations of motion are solved using an iterative spectral method. It allows the computing of the vibroacoustic response of the system, taking account of the interaction between the mesh stiffness fluctuation and the other excitations. The simulation results are validated from comparison with experimental vibroacoustic measurements performed with a specific test bench. Spectrograms of the dynamic response show components corresponding to the harmonics of the excitation spectra, as well as lateral components arising around the mesh frequency and the input torque fluctuation frequency. This spectral enrichment is generated by the interaction between the mesh stiffness fluctuation and the other excitations. The lateral components contribute little to the overall level of the vibroacoustic response, but they may have a significant impact on the quality of noise radiated directly by the gear motor or indirectly by its supporting structure. Finally, the weights of the different excitation sources to the spatial-average mean-square velocity of the radiating surface and the equivalent global dynamic force transmitted to the supporting structure are compared.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1378-6
      Issue No: Vol. 88, No. 8 (2018)
  • On the parametric and external resonances of rectangular plates on an
           elastic foundation traversed by sequential masses
    • Authors: Ehsan Torkan; Mostafa Pirmoradian; Mohammad Hashemian
      Pages: 1411 - 1428
      Abstract: Elastodynamic behavior analysis of structures under moving loads is of great interest in most engineering fields. In this study, dynamic instability due to parametric and external resonances of simply supported thin rectangular plates on an elastic foundation under successive moving masses is investigated as a linear time-periodic problem. Effects of all components of moving mass inertia are considered in the analysis. The governing partial differential equation of motion is transformed to a set of ordinary differential equations using the Galerkin method. A comprehensive study of resonance conditions is carried out for two cases: (1) the masses move on a rectilinear path parallel to the longitudinal edges of the plate, and (2) a sequence of moving masses along the diagonal of the plate. Homotopy perturbation method (HPM) is employed as a semi-analytical method to obtain stable and unstable zones in a parameters space in additions to external resonance curves. In order to validate the HPM results, Floquet theory is applied to the state-space equations. A good agreement between two methods is observed. The results of this study are useful for the design of road pavements resting on foundation soil, slab-type bridges, airport pavements, and decks of ships on which aircrafts land.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1379-5
      Issue No: Vol. 88, No. 8 (2018)
  • Response sensitivity analysis of laminated composite shells based on
           higher-order shear deformation theory
    • Authors: Sandipan Nath Thakur; Chaitali Ray; Subrata Chakraborty
      Pages: 1429 - 1459
      Abstract: Laminated composite shells are widely used as structural components in important aerospace, marine, automobile engineering structures. Thus, appropriate evaluation of sensitivities of responses like deflection, frequency, buckling etc. due to changes in design variables is of great importance for efficient and safe design of such structures. The present paper deals with a comprehensive sensitivity analysis of laminated composite shells using \({C}^{0 }\) finite element with more accurate theoretical model based on higher-order shear deformation theory (HSDT). The sensitivity analysis of deflection and natural frequency with respect to important design parameters such as material parameters, angle of fiber orientation, radius of curvature, density of materials and external load is presented. Furthermore, sensitivity-based importance factor for each parameter is obtained so that the most important parameters affecting the shell responses can be readily identified. The response sensitivities obtained by the proposed formulation are compared with those obtained by the finite difference procedure. An extensive parametric study has been carried out considering different variables to understand the performance of laminated shell.
      PubDate: 2018-08-01
      DOI: 10.1007/s00419-018-1380-z
      Issue No: Vol. 88, No. 8 (2018)
  • An implicit representation of phase interface motion with internal
    • Authors: Antonios I. Arvanitakis
      Abstract: Internal variables in continuous media with a microstructure of multiple phases spatially distributed within its volume are discussed in this paper. However, in our analysis phase transition boundaries are represented implicitly under the use of the level-set formulation. Each level-set function representing an interface corresponds to an internal variable of state. Employing the general thermodynamic theory of internal variables within the framework of canonical thermomechanics, we derive the evolution equations for the level-set functions describing the motion of the interfaces inside a material. Finally, the concept of two internal variables and both dissipative and non-dissipative cases is discussed.
      PubDate: 2018-07-12
      DOI: 10.1007/s00419-018-1424-4
  • The effect of longitudinal cracks on buckling loads of columns
    • Authors: Simon Schnabl; Igor Planinc
      Abstract: This paper focuses on development of a new mathematical model and its analytical solution for the buckling analysis of elastic longitudinally cracked columns with finite axial adhesion between the cracked sections. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated for different crack lengths and various degrees of the contact adhesion. It is shown that the critical buckling loads can be greatly affected by the crack length and degree of the connection between the cracked sections. Finally, the presented results can be used as a benchmark solution.
      PubDate: 2018-07-12
      DOI: 10.1007/s00419-018-1426-2
  • Non-uniform plastic deformations of crystals undergoing anti-plane
           constrained shear
    • Authors: K. C. Le; Y. Piao
      Abstract: The present paper studies non-uniform plastic deformations of crystals undergoing anti-plane constrained shear. The asymptotically exact energy density of crystals containing a moderately large density of excess dislocations is found by the averaging procedure. This energy density is extrapolated to the cases of extremely small or large dislocation densities. Taking into account the configurational temperature and the density of redundant dislocations, we develop the thermodynamic dislocation theory for non-uniform plastic deformations and use it to predict stress–strain curves and dislocation densities.
      PubDate: 2018-07-10
      DOI: 10.1007/s00419-018-1425-3
  • On measuring the dynamic elastic modulus for metallic materials using
           stress wave loading techniques
    • Authors: Yinggang Miao; Bing Du; Muhammad Zakir Sheikh
      Abstract: Metallic materials are mostly rate dependent in mechanical behavior, but their elastic modulus under high strain rate is hard to measure accurately. In this paper, two methodologies are proposed based on stress wave theory in hope of accurate measurement for metallic materials, for example Ti6Al4V alloy. One is based on the one-dimension stress wave propagation in a long Ti6Al4V bar, and the elastic modulus under a high strain rate is obtained from the calculated stress wave speed. The other technique is to utilize the integrated Hopkinson pressure bar made of Ti6Al4V material. The obtained elastic moduli from these methods are compared and analyzed, and the results are consistent with each other. The numerical simulations with cylindrical and dogbone-shaped specimens are conducted to show the influence of bar indentation on measurement accuracy. An alternative method is introduced based on the vertical split Hopkinson pressure bar, which can extend the integrated Hopkinson pressure bar method for most metallic materials with small bulk. The verification experiments are also conducted. Finally, the limiting strain rate is estimated for potential measurement problems.
      PubDate: 2018-07-06
      DOI: 10.1007/s00419-018-1422-6
  • Failure assessment of cracked uni-planar square hollow section T-, Y- and
           K-joints using the new BS 7910:2013+A1:2015
    • Authors: Vipin Sukumara Pillai; Athanasios Kolios; Seng Tjhen Lie
      Abstract: This paper covers the validation of standard safety assessment procedure in the new BS 7910:2013+A1:2015 for cracked uni-planar square hollow section (SHS) T-, Y- and K-joints using the finite element analyses. The procedure is based on the failure assessment diagram (FAD) method. A completely new and robust finite element mesh generator is developed, and it is validated using the full-scale experimental test results. FAD curves are constructed using the elastic J-integral ( \(J_{\mathrm{e}}\) ), the elastic-plastic J-integral ( \(J_{\mathrm{ep}}\) ) and the plastic collapse load ( \(P_{\mathrm{c}}\) ) values calculated using the 3D cracked models of the joints. The results reveal that the standard Option 1 FAD curve of the new BS code is not always safe in assessing the safety and integrity of cracked uni-planar SHS joints. Therefore, a penalty factor of 1.2 for plastic collapse load is recommended to move all the constructed Option 3 FAD curves above the standard Option 1 curve. The new Option 3 FAD curves are found to generate optimal solutions for cracked uni-planar SHS T-, Y- and K-joints.
      PubDate: 2018-07-06
      DOI: 10.1007/s00419-018-1423-5
  • Interface instability of an inelastic normal collision
    • Authors: P. F. Pelz; M. M. G. Kuhr
      Abstract: The interface of two normal colliding media is always unstable. This is true even for both media showing the same density. The common precondition for a Rayleigh–Taylor instability “the lighter medium pushes the heavier” is generalised for the case that two media experience different accelerations in a short period after colliding. The arithmetic average of the accelerations determines the evolution of the wavy interface shape. The theory is applicable for various technologies of impact welding, such as explosion and magnetic pulse welding.
      PubDate: 2018-07-04
      DOI: 10.1007/s00419-018-1420-8
  • Energetic assessment of an embedded aircraft propulsion: an analytic
    • Authors: Peter F. Pelz; Ferdinand-J. Cloos; Jörg Sieber
      Abstract: This paper investigates the energetic advantage of the embedded propulsion compared to a state-of-the-art propulsion of an aircraft. Hereby, the integral method of boundary layer theory together with the potential theory is applied to analyze the boundary layer thickness and the impact of the flow acceleration due to the embedded propulsion. The aircraft body is treated as a flat plate and the engine as a momentum disk. For an embedded propulsion, there is a trade-off of the engine size, since the propulsion efficiency is affected by the boundary layer. On the one hand, the propulsion inlet momentum is noticeably reduced for a small engine size and the viscous friction is reduced due to boundary layer ingestion. On the other hand, a slow jet speed, i.e., a large engine size, increases the propulsion efficiency as known. The outcome of the energetic assessment is the following: the propulsion efficiency is increased and the drag of the aircraft body is reduced by the embedded propulsion compared to a conventional propulsion. The optimized aircraft engine size depending on Reynolds number is given as well as the dimensionless cost function.
      PubDate: 2018-07-02
      DOI: 10.1007/s00419-018-1417-3
  • Mean stress effect in multiaxial fatigue limit criteria
    • Authors: J. Papuga; R. Halama
      Abstract: The paper deals with evaluating the mean stress effect in multiaxial criteria for fatigue limit estimation, with special emphasis on the mean shear stress effect. The usual practice of accepting the mean normal stress effect and neglecting the effect of static torsion is scrutinized. Two methods—two critical plane criteria, PCr (Papuga Criterion) and QCP (Quadratic parameter on the Critical Plane)—are described, and additional local stress parameters representing the mean torsion effect are implemented. The efficiency of the new implementations is evaluated on a large data set of 407 fatigue limits. Additionally, outputs of two other well-known methods—the Crossland method and the Dang Van method—are provided for comparison. The positive outcome of including the mean shear stress effect is evident not only in cases of applied mean torsion load, but also in cases with purely axial loading or with biaxial configurations.
      PubDate: 2018-07-02
      DOI: 10.1007/s00419-018-1421-7
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-