for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENVIRONMENTAL STUDIES (Total: 751 journals)
    - ENVIRONMENTAL STUDIES (678 journals)
    - POLLUTION (22 journals)
    - TOXICOLOGY AND ENVIRONMENTAL SAFETY (41 journals)
    - WASTE MANAGEMENT (10 journals)

ENVIRONMENTAL STUDIES (678 journals)            First | 1 2 3 4     

Showing 601 - 378 of 378 Journals sorted alphabetically
Scientific Journal of Environmental Sciences     Open Access   (Followers: 1)
Sepsis     Hybrid Journal  
Smart Grid and Renewable Energy     Open Access   (Followers: 8)
Social and Environmental Accountability Journal     Hybrid Journal   (Followers: 2)
Soil and Sediment Contamination: An International Journal     Hybrid Journal   (Followers: 3)
Soil and Tillage Research     Hybrid Journal   (Followers: 6)
SourceOCDE Environnement et developpement durable     Full-text available via subscription   (Followers: 1)
SourceOECD Environment & Sustainable Development     Full-text available via subscription  
South Pacific Journal of Natural and Applied Sciences     Hybrid Journal  
Southern Forests : a Journal of Forest Science     Hybrid Journal   (Followers: 6)
Stochastic Environmental Research and Risk Assessment     Hybrid Journal   (Followers: 4)
Strategic Behavior and the Environment     Full-text available via subscription  
Strategic Planning for Energy and the Environment     Hybrid Journal   (Followers: 4)
Studies in Conservation     Hybrid Journal   (Followers: 11)
Studies in Environmental Science     Full-text available via subscription   (Followers: 6)
Sustainability     Open Access   (Followers: 18)
Sustainability in Environment     Open Access  
Sustainability of Water Quality and Ecology     Hybrid Journal   (Followers: 2)
Sustainable Cities and Society     Hybrid Journal   (Followers: 25)
Sustainable Development     Hybrid Journal   (Followers: 16)
Sustainable Development Law & Policy     Open Access   (Followers: 6)
Sustainable Development Strategy and Practise     Open Access  
Sustainable Environment Research     Open Access  
Sustainable Technologies, Systems & Policies     Open Access   (Followers: 9)
TECHNE - Journal of Technology for Architecture and Environment     Open Access   (Followers: 5)
Tecnogestión     Open Access  
Territorio della Ricerca su Insediamenti e Ambiente. Rivista internazionale di cultura urbanistica     Open Access  
The Historic Environment : Policy & Practice     Hybrid Journal   (Followers: 4)
The International Journal on Media Management     Hybrid Journal   (Followers: 4)
Theoretical Ecology     Hybrid Journal   (Followers: 9)
Theoretical Ecology Series     Full-text available via subscription   (Followers: 1)
Toxicologic Pathology     Hybrid Journal   (Followers: 16)
Toxicological & Environmental Chemistry     Hybrid Journal   (Followers: 4)
Toxicological Sciences     Hybrid Journal   (Followers: 11)
Toxicology     Hybrid Journal   (Followers: 16)
Toxicology and Applied Pharmacology     Hybrid Journal   (Followers: 17)
Toxicology and Industrial Health     Hybrid Journal   (Followers: 7)
Toxicology in Vitro     Hybrid Journal   (Followers: 12)
Toxicology Letters     Hybrid Journal   (Followers: 12)
Toxicology Mechanisms and Methods     Hybrid Journal   (Followers: 10)
Toxicon     Hybrid Journal   (Followers: 3)
Toxin Reviews     Hybrid Journal   (Followers: 1)
Trace Metals and other Contaminants in the Environment     Full-text available via subscription   (Followers: 2)
Trace Metals in the Environment     Full-text available via subscription   (Followers: 2)
Transportation Research Part D: Transport and Environment     Hybrid Journal   (Followers: 27)
Transylvanian Review of Systematical and Ecological Research     Open Access  
Trends in Ecology & Evolution     Full-text available via subscription   (Followers: 168)
Trends in Environmental Analytical Chemistry     Hybrid Journal   (Followers: 2)
Trends in Pharmacological Sciences     Full-text available via subscription   (Followers: 25)
Turkish Journal of Engineering and Environmental Sciences     Open Access   (Followers: 1)
UCLA Journal of Environmental Law and Policy     Open Access   (Followers: 5)
UD y la Geomática     Open Access  
Universidad y Ciencia     Open Access   (Followers: 1)
Urban Studies     Hybrid Journal   (Followers: 48)
Veredas do Direito : Direito Ambiental e Desenvolvimento Sustentável     Open Access  
VertigO - la revue électronique en sciences de l’environnement     Open Access   (Followers: 3)
Villanova Environmental Law Journal     Open Access  
Waste Management & Research     Hybrid Journal   (Followers: 10)
Water Environment Research     Full-text available via subscription   (Followers: 37)
Water International     Hybrid Journal   (Followers: 12)
Water, Air, & Soil Pollution     Hybrid Journal   (Followers: 22)
Water, Air, & Soil Pollution : Focus     Hybrid Journal   (Followers: 9)
Waterlines     Full-text available via subscription   (Followers: 2)
Weather and Forecasting     Full-text available via subscription   (Followers: 15)
Weather, Climate, and Society     Full-text available via subscription   (Followers: 9)
Web Ecology     Open Access   (Followers: 6)
Wetlands     Hybrid Journal   (Followers: 24)
Wilderness & Environmental Medicine     Hybrid Journal   (Followers: 3)
Wildlife Australia     Full-text available via subscription   (Followers: 2)
Wiley Interdisciplinary Reviews - Climate Change     Hybrid Journal   (Followers: 17)
Wiley Interdisciplinary Reviews : Energy and Environment     Hybrid Journal   (Followers: 4)
William & Mary Environmental Law and Policy Review     Open Access   (Followers: 2)
World Environment     Open Access   (Followers: 1)
World Journal of Entrepreneurship, Management and Sustainable Development     Hybrid Journal   (Followers: 4)
World Journal of Environmental Engineering     Open Access   (Followers: 2)
World Journal of Environmental Research     Open Access   (Followers: 1)
Worldviews: Global Religions, Culture, and Ecology     Hybrid Journal   (Followers: 8)
Zoology and Ecology     Hybrid Journal   (Followers: 4)
气候与环境研究     Full-text available via subscription   (Followers: 1)

  First | 1 2 3 4     

Journal Cover Journal of Applied Volcanology
  [8 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2191-5040
   Published by SpringerOpen Homepage  [188 journals]
  • TephraProb: a Matlab package for probabilistic hazard assessments of
           tephra fallout

    • Abstract: Abstract TephraProb is a toolbox of Matlab functions designed to produce scenario–based probabilistic hazard assessments for ground tephra accumulation based on the Tephra2 model. The toolbox includes a series of graphical user interfaces that collect, analyze and pre–process input data, create distributions of eruption source parameters based on a wide range of probabilistic eruption scenarios, run Tephra2 using the generated input scenarios and provide results as exceedence probability maps, probabilistic isomass maps and hazard curves. We illustrate the functionality of TephraProb using the 2011 eruption of Cordón Caulle volcano (Chile) and selected eruptions of La Fossa volcano (Vulcano Island, Italy). The range of eruption styles captured by these two events highlights the potential of TephraProb as an operative tool when rapid hazard assessments are required during volcanic crises.
      PubDate: 2016-08-24
       
  • Application of tephra volume models to ejecta volumes from subsurface
           explosion experiments

    • Abstract: Abstract Deposit volume is a critical factor for reconstructing an explosive eruption. Volume estimate models typically used for large Plinian deposits have been adapted and improved repeatedly over the last few decades. Less work has been done to refine a method for estimating the volume from smaller deposits produced by discrete phreatic and phreatomagmatic explosions. The characterization of the volume and distribution of deposits is required to quantify the physical hazards presented by different explosion types and develop appropriate models of future eruptions. Six classic tephra volume models were assessed using a dataset from subsurface explosion experiments. The models typically did a poor job modelling the volume of proximal deposits as a component of total deposit volume of discrete explosion deposits. Models reproduced medial and distal deposit volumes with greater success, particularly the Exponential model and a more recent Linear Regression model. It is therefore recommended, when possible, to use digital elevation models produced from GPS or laser-based methods to characterize proximal deposits separately and to use tephra volume estimates for medial and distal deposits. Additionally, this dataset enabled the comparison of ejecta volumes with crater diameters and highlighted that this relationship only holds for simple crater scenarios without any lateral vent migration, collapse or erosion of the crater under study. The assessment and improvement of these methods are required to ensure accurate deposit volumes as they serve as one of the most important inputs to hazard assessments and numerical models.
      PubDate: 2016-04-11
       
  • Mapping and measuring lava volumes from 2002 to 2009 at El Reventador
           Volcano, Ecuador, from field measurements and satellite remote sensing

    • Abstract: Abstract Estimates of lava volume, and thus effusion rate, are critical for assessing volcanic hazard and are a priority for volcano observatories with responsibility for monitoring. The choice of specific methods used to approximate lava volume depends on both volcanological and practical considerations; in particular, whether field measurements are possible and how often they can be repeated. Volcán El Reventador (Ecuador) is inaccessible, and field measurements can only be made infrequently at a few locations in its caldera. We present both planimetric field and topographic satellite radar-based measurements of lava flow thicknesses and volumes for activity at El Reventador between 2002 and 2009. Lava volumes estimates range from 75 ± 24 × 106 m3 (based on field measurements of flow thickness) to 90 ± 37 × 106 m3 (from satellite radar retrieval of flow thickness), corresponding to time-averaged effusion rates of 9 ± 4 m3/s and 7 ± 2 m3/s, respectively. Detailed flow mapping from aerial imagery demonstrate that lava effusion rate was at its peak at the start of each eruption phase and decreased over time. Measurements of lava thickness made from a small set of Synthetic Aperture Radar (SAR) interferograms allowed the retrieval of the shape of the compound lava flow field and show that in 2009 it was subsiding by up to 6 cm/year. Satellite radar measurements thus have the potential to be a valuable supplement to ground-based monitoring at El Reventador and other inaccessible volcanoes.
      PubDate: 2016-04-04
       
  • Impacts to agriculture and critical infrastructure in Argentina after
           ashfall from the 2011 eruption of the Cordón Caulle volcanic complex: an
           assessment of published damage and function thresholds

    • Abstract: Abstract The 2011 Cordón Caulle (Chile) was a large silicic eruption that dispersed ashfall over 75,000 km2 of land in Central Argentina, affecting large parts of the Neuquén, Río Negro, and Chubut provinces, including the urban areas of Villa la Angostura, Bariloche and Jacobacci. These regions all received damage and disruption to critical infrastructure and agriculture due to the ashfall. We describe these impacts and classify them according to published damage/disruption states (DDS). DDS for infrastructure and agriculture were also assigned to each area using the tephra thickness thresholds suggested by previous studies reported in the volcanological literature. The objective of this study was to evaluate whether the impacts were as expected based on the DDS suggested thresholds, and to determine whether other factors, apart from ashfall thickness, played a part. DDS thresholds based on tephra thickness were a good predictor of the impacts that occurred in the semi-arid steppe area around Jacobacci. This was unexpected as the more severe impacts were related to the challenging environmental conditions (low precipitation levels, high levels of wind erosion) and the daily wind remobilisation of ash that occurred, rather than the ashfall thicknesses received. The temperate region, including Villa la Angostura and Bariloche, performed better than the DDS assigned by ashfall thickness suggested. Despite deposits as thick as 300 mm, full recovery occurred within months of the ashfall event. The DDS scales need to incorporate a wider range of system characteristics, and environmental and vulnerability factors, as we propose here.
      PubDate: 2016-03-24
       
  • Automated tracking of lava lake level using thermal images at Kīlauea
           Volcano, Hawai’i

    • Abstract: Abstract Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.
      PubDate: 2016-03-16
       
  • Effects of eruption source parameter variation and meteorological dataset
           on tephra fallout hazard assessment: example from Vesuvius (Italy)

    • Abstract: Abstract In this study, using the tephra dispersal model HAZMAP, we investigate the effect of using different meteorological datasets and eruption source parameters on tephra fallout hazard assessment for a sub-Plinian eruption of Vesuvius, which is considered as a reference case for hazard assessment analysis. We analyze the effect of using different meteorological data, from: i) radio-sounding carried out at the meteorological station of Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and at Pratica di Mare (Rome, Italy) between 1995 and 2013; ii) meteorological models of the National Oceanic and Atmospheric Administration (NOAA), and of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, we consider the effects of perturbing reference eruptive source parameters. In particular, we vary the total mass, the total grain-size distribution, the column height, and the effective atmospheric diffusion coefficient to evaluate how these parameters affect the hazard probability maps. Moreover, the effect of the seasonal variation of the wind field and the effect of the rain on the deposit loading are considered. Results show that the parameter that mostly affects hazard maps is, as expected, the total erupted mass; furthermore, keeping constant the erupted mass, the most important control on hazard is due to the particle terminal settling velocity distribution which is a function of the total grain-size distribution, particle density and shape. Within the considered range variations, the hazard depends less on the use of different meteorological datasets, column height and effective diffusion coefficient.
      PubDate: 2016-03-08
       
  • Probabilistic Volcanic Ash Hazard Analysis (PVAHA) II: assessment of the
           Asia-Pacific region using VAPAH

    • Abstract: Abstract Volcanic ash is an increasingly common, long-range hazard, impacting on our globalised society. The Asia-Pacific region is rapidly developing as a major contributor to the global population and economy and is home to one-quarter of the world’s active volcanoes. Here we present a regional-scale volcanic ash hazard assessment for the Asia-Pacific using a newly developed framework for Probabilistic Volcanic Ash Hazard Analysis (PVAHA). This PVAHA was undertaken using the Volcanic Ash Probabilistic Assessment of Hazard (VAPAH) algorithm. The VAPAH algorithm considered a magnitude-frequency distribution of eruptions and associated volcanic ash load attenuation relationships for the Asia-Pacific, and integrated across all possible events to arrive at an annual exceedance probability for sites of interest. The Asia-Pacific region was divided into six sub-regions (e.g. Indonesia, Philippines and Southeast Asia, Melanesia/Australia, Japan/Taiwan, New Zealand/Samoa/Tonga/Fiji and Russia/China/Mongolia/Korea) characterised by 276 source volcanoes each with individual magnitude-frequency relationships. Sites for analysis within the Asia-Pacific region were limited to land-based locations at 1-km grid spacing, within 500 km of a volcanic source. The Indonesian sub-region exhibited the greatest volcanic ash hazard in the region at the 100-year timeframe, with additional sources (in Japan, the Philippines, Papua New Guinea, Kamchatka - Russia and New Zealand) along plate boundaries manifesting a high degree of hazard at the 10,000-year timeframe. Disaggregation of the volcanic ash hazard for individual sites of interest provided insight into the primary causal factors for volcanic ash hazard at capital cities in Papua New Guinea, the Philippines and Japan. This PVAHA indicated that volcanic ash hazard for Port Moresby was relatively low at all timeframes. In contrast to this, Jakarta, Manila and Tokyo are characterised by high degrees hazard at all timeframes. The greatest hazard was associated with Tokyo and the PVAHA was able to quantify that the large number of sources impacting on this location was the causal factor contributing to the hazard. This evidence-based approach provides important insights for decision makers responsible for strategic planning and can assist with prioritising regions of interest for more detailed volcanic ash hazard modelling and local scale planning.
      PubDate: 2016-02-18
       
  • Probabilistic Volcanic Ash Hazard Analysis (PVAHA) I: development of the
           VAPAH tool for emulating multi-scale volcanic ash fall analysis

    • Abstract: Abstract Significant advances have been made in recent years in probabilistic analysis of geological hazards. Analyses of this kind are concerned with producing estimates of the probability of occurrence of a hazard at a site given the location, magnitude, and frequency of hazardous events around that site; in particular Probabilistic Seismic Hazard Analysis (PSHA). PSHA is a method for assessing and expressing the probability of earthquake hazard for a site of interest, at multiple spatial scales, in terms of probability of exceeding certain ground motion intensities. Probabilistic methods for multi-scale volcanic ash hazard assessment are less developed. The modelling framework presented here, Probabilistic Volcanic Ash Hazard Analysis (PVAHA), adapts the seismologically based PSHA technique for volcanic ash. PVAHA considers a magnitude-frequency distribution of eruptions and associated volcanic ash load attenuation relationships and integrates across all possible events to arrive at an annual exceedance probability for each site across a region of interest. The development and implementation of the Volcanic Ash Probabilistic Assessment tool for Hazard (VAPAH), as a mechanism for facilitating multi-scale PVAHA, is also introduced. VAPAH outputs are aggregated to generate maps that visualise the expected volcanic ash hazard for sites across a region at timeframes of interest and disaggregated to determine the causal factors which dominate volcanic ash hazard at individual sites. VAPAH can be used to identify priority areas for more detailed PVAHA or local scale ash dispersal modelling that can be used to inform disaster risk reduction efforts.
      PubDate: 2016-01-27
       
  • Influence of volcanic tephra on photovoltaic (PV)-modules: an experimental
           study with application to the 2010 Eyjafjallajökull eruption, Iceland

    • Abstract: Abstract Large volcanic eruptions may lead to significant tephra dispersion, crossing borders and affecting distant and industrial societies in various ways. While the effects of volcanic ash clouds on the aviation industry have been recognized, damaging effects on the photovoltaic energy sector are poorly investigated. Here we describe the influence of volcanic tephra deposition on photovoltaic (PV) modules that we experimentally analyzed and evaluated. A systematic set of experiments was conducted under controlled conditions using an artificial light source and measuring the electrical power generated from the PV-modules with the aim to determine the dependency of the amount of tephra covering a module and its subsequent loss in power production (measured in voltage and current) as well as the influence of the tephra grain size. We find that a mass of fine tephra has a stronger influence on the PV-modules power generation than the same mass of coarser particles. An application to the fine-grained 2010 Eyjafjallajökull eruption in Iceland and the resulting ash-cloud reveals that the power produced by PV-modules in continental Europe might have been affected significantly. Deposits were thick enough to cause complete failures of PV-modules up to a distance of about 300 km downwind. Although this distance is largely over the ocean in this particular case, our results imply that similar and larger eruptions of other volcanoes elsewhere might harm commercial or private energy production at distances of hundreds to thousands of kilometers from the volcano. Given that volcanic eruptions are frequent and the fact that the PV-industry is growing rapidly, negative impacts are expected in the future, requiring close tephra dispersion monitoring and PV-maintenance strategies.
      PubDate: 2016-01-11
       
  • Gaet’ale- a reactivated thermal spring and potential tourist hazard in
           the Asale salt flats, Danakil Depression, Ethiopia

    • Abstract: Abstract This paper serves to document a thermal spring, called Gaet’ale, that was reactivated in 2005, during the majorseismo-volcanic crisis in the Danakil Depression of the Afar region of northern Ethiopia. Many dead birds surrounding the spring attest to deadly gas emanations (almost certainly CO2) coming from this spring, reminiscent of those from other volcanic lakes, and the Pamukkale springs in Turkey. Gae’tale currently features among the tourist attractions of the Dallol region of the northern Afar, but it may pose a potentially dangerous, and even deadly, hazard for tourists and their guides. Some suggestions are made to help mitigate the risks, and to allow for sustainable geotourism in this environmentally sensitive region. These include ensuring that tour operators in the area are made aware of the hazards, and are communicating these to their tourist clients (who should also be aware of these hazards through websites, tour guidebooks and open-access scientific journals), and avoiding the areas closest to the lake, and periodic testing, with lit flames, for the presence of excess CO2 in the area, with plans for quick and safe evacuation if needed. Guidelines for proper conduct are given for geotourists who are planning to visit the region, to ensure their health and safety in the vicinity of the thermal springs.
      PubDate: 2016-01-05
       
  • Sensitivity to volcanic field boundary

    • Abstract: Abstract Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and hazard analyses.
      PubDate: 2015-12-15
       
  • Erratum to: Fearing the knock on the door: critical security studies
           insights into limited cooperation with disaster management regimes

    • PubDate: 2015-12-11
       
  • Using infrasound to constrain ash plume rise

    • Abstract: Abstract Airborne volcanic ash advisories are currently based on analyses of satellite imagery with relatively low temporal resolution, and numerical simulations of atmospheric plume dispersion. These simulations rely on key input parameters such as the maximum height of eruption plumes and the mass eruption rate at the vent, which remain loosely constrained. In this study, we present a proof-of-concept workflow that incorporates the analysis of volcanic infrasound with numerical modelling of volcanic plume rise in a realistic atmosphere. We analyse acoustic infrasound records from two explosions during the 2009 eruption of Mt. Redoubt, USA, that produced plumes reaching heights of 12–14 km. We model the infrasonic radiation at the source under the assumptions of linear acoustic theory and calculate variations in mass ejection velocity at the vent. The estimated eruption velocities serve as the input for numerical models of plume rise. The encouraging results highlight the potential for infrasound measurements to be incorporated into numerical modelling of ash dispersion, and confirm their value for volcano monitoring operations.
      PubDate: 2015-11-19
       
  • Fearing the knock on the door: critical security studies insights into
           limited cooperation with disaster management regimes

    • Abstract: Abstract In seeking to provide for the safety of local communities in the global south, there has been an apparent policy focus on making early warning systems more robust, and improving the operation of disaster management programmes. However, the critical security studies literature has highlighted the ways in which security practices, including those nominally implemented on behalf of local communities can have negative impacts on peoples. Human security literature, in particular, highlights the ways in which the state security apparatus, which is often relied upon to notify and enforce evacuations, may often be perceived as a serious risk to communities. At the same time individuals live within complex security situations where daily threats to peoples’ lives may outweigh geological hazards. Grounded within critical literature on the social construction of risk (Lupton; Beck, Douglas), the ways in which volcanic risk is calculated, communicated, and enacted upon, will be assessed in relation to the local communities’ security dilemmas. Drawing on field work in communities at risk from lahars generated from Cotopaxi in Sangolqui, Ecuador, explores the ways in which competing claims of what constitutes security challenge the operating assumptions in emergency preparedness. In June 2012, 158 primary interviews were undertaken as a part of the EU funded VUELCO project in Ecuador. The findings were analyzed using quantitative and qualitative methodologies, drawing most heavily on interpretive methodologies to argue that the scientific representation of volcanic hazards, and the resultant disaster management strategies, do not account for local context. Indeed, the majority of interviewees indicated a lack of trust in either scientific expertise or government representatives, on questions of security. By incorporating a broader narrative of security beyond a narrow focus on natural hazards, disaster preparedness and communication plans can be more effective.
      PubDate: 2015-10-08
       
  • Implications of legal scrutiny processes (including the L’Aquila trial
           and other recent court cases) for future volcanic risk governance

    • Abstract: Abstract Discourse about the L’Aquila trial in Italy has overlooked the many different roles that laws play within risk governance. For volcanic risk governance, laws not only create the duty holders, beneficiaries and the relationships between them (the stakeholders) and the duties and rights (the stakes) but also dictate the acceptable standards of safety and wellbeing (the ultimate rewards). Within any legal regime, certain court cases will attract a high public profile. They can serve a very helpful role by opening the black box of societal risk management so that robust and candid scrutiny of the past can lead to better management of the future. With such cases, the goal of the competent observer is to advance beyond debate about contested factual details of the past (the noise of what happened) and, by process of induction, to identify wider issues of principle and precedent upon which to make reasoned improvements (the signal to guide what should happen differently in the future and why). The generic characteristics of law-based regulatory regimes are identified because they can be treated as ‘constants’ which do not change, or do so only very slowly over time. Accordingly, these aspects are highly relevant to long-term risk governance. More ephemeral case-specific factual issues often remain contested and, accordingly, receive less attention here. Significant recent court cases, including L’Aquila, are framed by process of deduction within a generalised legal infrastructure in order to identify the root causes of the apparent status quo of risk governance. This forensic approach is vital not only to identify the legal responsibilities of societal risk managers and the managerial risks that they face and their causes but also to consider possible mitigation strategies. We identify the critical issue of managerial risk vulnerability related to ‘standard equivocality’ which is the absence of commonly recognised standards for hazard communications to risk decision makers. This absence may result from the lack of regulation of relevant practices and practitioners. We offer some recommendations to fuel debate not only within those science groups that reacted to the L’Aquila case but also the scientific community as a whole. Finally, we argue that checklists represent a rational and methodical way to develop acceptable practice standards focussed upon the difficult risk mitigation choices that are made by civil protection authorities and at-risk individuals.
      PubDate: 2015-08-19
       
  • How many explosive eruptions are missing from the geologic record?
           Analysis of the quaternary record of large magnitude explosive eruptions
           in Japan

    • Abstract: Abstract Large magnitude explosive eruptions in Japan were compiled for the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. Here we use this dataset to investigate the under-recording of Japanese explosive eruptions. We identify under-recording of Volcanic Explosivity Index (VEI) 4–5 eruptions on two timescales. Model fitting and Akaike’s information criterion (AIC and AICc) model selection suggest that these trends can be represented with the double exponential decay model, reflecting geologic processes. The time series of the recording rate of larger eruptions (VEI 6 and 7) show a slowly decreasing trend in comparison to smaller eruptions. These time series can be represented with the single exponential decay model. The percentages of missing eruptions are estimated from the fitted models. Our results show an inverse correlation between VEI and degree of under-reporting suggesting that even larger VEI eruptions are under-recorded in the Quaternary. For example, 89 % of VEI 4 events, 65–66 % of VEI 5 events, 46–49 % of VEI 6 events and 36–39 % of VEI 7 events are missing from the record at 100 ka, 200 ka, 300 ka, and 500 ka, respectively. Comparison of frequencies of Japanese and global eruptions suggests that under-recording of the global database is 7.9–8.7 times larger than in the Japanese dataset. Therefore, under-recording of events must be taken into account in estimating recurrence rates of explosive eruptions using the geologic record.
      PubDate: 2015-07-24
       
  • Rapid emergency assessment of ash and gas hazard for future eruptions at
           Santorini Volcano, Greece

    • Abstract: Abstract Hazard assessments for long-dormant volcanoes, where information is rarely available, typically have to be made rapidly and in the face of considerable uncertainty and often poor information. A conditional (assuming an eruption), scenario-based probabilistic approach to such an assessment is presented here for Santorini volcano (Greece). The rapid assessment was developed and implemented in response to the 2011-2012 unrest crisis in order to inform emergency management and planning. This paper synthesises the results presented to the Greek National Committee and scientific community involved. Two plausible eruptions at Santorini were investigated, using multiple inputs and dispersal models, based on observations of historic eruptions and expert judgement. For ash hazard, a ‘most likely’ eruption scenario was developed, characterised by slow lava extrusion over periods of one to two years with weak but persistent explosions and ash venting up to 3 km. A second ‘largest considered’ sub-Plinian explosive scenario assumed a 12 km high column of 4-h duration. For gas hazard, constant fluxes of 200 and 800 tons/day SO2 were assumed for the duration of the eruption scenarios, noting that there is very little evidence to constrain SO2 flux from Santorini eruptions. Statistical models of likely wind conditions with height and season were developed from decadal reanalysis time series showing that consistent low-altitude winds were rarely maintained for more than a few days. Stochastic models of ash (TEPHRA2, VOL-CALPUFF) and gas (AERMOD) dispersal provided outputs in the form of probability maps and exceedance probability curves for key loading and concentration thresholds at important locations on the island. The results from the rapid assessments presented in this paper confirm that ash and gas hazard is likely to be of concern if an eruption of Santorini occurs. Higher hazard may be expected to the south and east of the volcano, notably at important tourist and transport hubs. Low hazard to the north and northwest suggests that these may be suitable locations for emergency response centres and emergency critical infrastructure. This approach may provide a blueprint for rapid ash and gas assessment for other long-dormant volcanoes and we provide suggestions for refining the methods used.
      PubDate: 2015-05-27
       
  • Ash fall impact on vegetation: a remote sensing approach of the Oldoinyo
           Lengai 2007–08 eruption

    • Abstract: Abstract Impacts from ash fallout on the environment can be widespread and long lasting, even from moderate-size eruptions. Assessing ash impact on vegetation and the indirect impacts for people is often difficult in the field. Here it is assessed how satellite data can help to map vegetation affected by ash and how temporal analysis enables characterization of vegetation recovery rate. The 2007–08 eruption of Oldoinyo Lengai, north Tanzania, is here used as a case study. An 8 year-long (2005–2012) time series of half-monthly average of the Normalized Differential Vegetation Index (NDVI) is constructed at 250 m spatial resolution from the Moderate Resolution Image Spectro-radiometer (MODIS) sensor. Interpolated rainfall data is used to isolate NDVI values departing from the normal seasonal cycles. Month-to-month NDVI comparison, linear temporal trend analysis and Principal Component Analysis enable to identify a 11 × 4 km area over which ash fallout significantly affected the state of the vegetation. After the eruption’s end, time series of various recovery indices highlight a circumferential pattern in vegetation recovery. The estimated recovery time varies from more than 5 years to less than 6 months with increasing distance from the volcano. A non-linear moderate, but statistically significant, relationship is found between the recovery indices and the spatial variation of ash thicknesses measured in the field. Combining field and remote sensing constraints enable to re-assess the volume of the eruption to ~2 × 107 m3. The spatial pattern of the ash-affected area matches with the spatial contrast in the impact experienced by the local communities. The method applied here opens the scope to document impact and intensity of ash fallout in areas where systematic field work is not possible and to support recovery plans for populations affected by ash fallout.
      PubDate: 2015-05-16
       
  • Disaster risk reduction and resettlement efforts at San Vicente
           (Chichontepec) Volcano, El Salvador: toward understanding social and
           geophysical vulnerability

    • Abstract: Abstract Despite a long history of volcanic debris flows on the northern flank of San Vicente Volcano, El Salvador, authorities and communities were ill-prepared for the lahars that occurred on Nov. 7–8, 2009. More than 250 people were killed by lahars resulting from shallow landslides, not to mention millions of dollars (US) in damage to houses, agriculture, and infrastructure. After the disaster, significant aid was invested in the region to reduce risk in future disasters. This case study uses the ethnographic tools of qualitative interviews, participant observation, and review of institutional documents to analyze two particular aspects of disaster risk reduction strategies in the town of Verapaz: 1) relocation of at-risk residents led by the Ministry of Housing and Urban Development, and 2) hazard monitoring and emergency management training programs led by Civil Protection, the University of El Salvador, and NGOs. The relocation effort, while effective at reducing physical vulnerability to debris flows, failed to incorporate livelihood, social networks, and cultural ties to homes in their project design and implementation. Since diverse livelihoods are keys to survival, and tightly-knit social networks help families share responsibilities and withstand shocks during hardships, many families returned to the high-risk area or opted not to relocate. Others have adapted using unanticipated strategies to benefit from the resettlement effort. On the other hand, the emergency management training and education programs valued local input, knowledge, and action, which has helped increase awareness and improved the overall capacity to manage emergencies through wide, local participation. The different approaches used in the two risk reduction initiatives reveal important lessons regarding the importance of community participation. Challenges derive from narrow understandings of vulnerability on the part of disaster risk reduction experts, who neglected to consider and understand kin networks and residence patterns that help maintain diverse livelihoods, as well as ensure safety and security. As demonstrated in the 2011 Tropical Depression 12E, effective public engagement and empowerment helped bridge the knowledge, awareness, and preparedness gaps that existed prior to the 2009 disaster.
      PubDate: 2015-05-09
       
  • Legal framework and scientific responsibilities during volcanic crises:
           the case of the El Hierro eruption (2011–2014)

    • Abstract: Abstract In recent years concerns have been growing in the scientific community over the definition of scientific responsibilities during emergencies, and the legal status of scientists involved in the corresponding decision-making. It is clear that the legal framework is one of the main elements affecting this issue; however, many factors may affect both the specific scientific decision-making and the definition of general scientific responsibilities. The situation will vary depending on the type and scale of emergency, and from place to place, even in the same country. There will be no such thing as a single, ideal solution. In the latest El Hierro volcanic crisis many factors have negatively affected the scientific management and have prevented an adequate definition of scientific responsibility. These factors have been detected and documented by the authors. They include excessive pressure due to human and economic issues, a poor legal framework with identifiable deficiencies, an Emergency Plan in which the Volcanic Activity/Alert Level (VAL), Emergency Response Level (ERL) and Volcanic Traffic Light (VTL) have been too rigidly linked, serious weaknesses in the management and structure of the Scientific Committee (SC), and more. Even though some of these problems have now been detected and certain solutions have already been proposed, the slowness and complexity of the bureaucratic processes are making it difficult to implement solutions.
      PubDate: 2015-05-07
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016