for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENVIRONMENTAL STUDIES (Total: 766 journals)
    - ENVIRONMENTAL STUDIES (691 journals)
    - POLLUTION (23 journals)
    - TOXICOLOGY AND ENVIRONMENTAL SAFETY (41 journals)
    - WASTE MANAGEMENT (11 journals)

ENVIRONMENTAL STUDIES (691 journals)

The end of the list has been reached or no journals were found for your choice.
Journal Cover Theoretical Ecology
  [SJR: 1.255]   [H-I: 19]   [8 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-1746 - ISSN (Online) 1874-1738
   Published by Springer-Verlag Homepage  [2335 journals]
  • Erratum to: The content and availability of information affects the
           evolution of social-information gathering strategies
    • Authors: Eleanor Redstart Brush; Naomi Ehrich Leonard; Simon A. Levin
      PubDate: 2017-02-10
      DOI: 10.1007/s12080-017-0330-7
       
  • Erratum to: A slow-fast dynamic decomposition links neutral and
           non-neutral coexistence in interacting multi-strain pathogens
    • Authors: Erida Gjini; Sten Madec
      PubDate: 2017-02-07
      DOI: 10.1007/s12080-017-0331-6
       
  • Positive and negative density-dependence and boom-bust dynamics in
           enemy-victim populations: a mountain pine beetle case study
    • Authors: D. W. Goodsman; B. J. Cooke; M. A. Lewis
      Abstract: Abstract Negative density-dependent population regulation in exploitative species is well studied. Positive density-dependence can arise if exploiters must cooperate to obtain access to well-defended resources. Most studies, however, focus on the first type of density-dependence at the expense of the other. Using a parasitoid-host model, we explored how positive density-dependence driven by host defenses in combination with negative density-dependence due to competition for resources impact transient population dynamics. Inspired by interactions between the mountain pine beetle and its pine hosts, we formulated a model of enemy-victim interactions in discrete-time in which the victim is capable of deadly self-defense against exploitation. We fitted the model to data and then analyzed its non-equilibrium dynamics to determine what conditions promote boom-bust dynamics. When present together, strong Allee effects and overcompensating competition for resources among exploiters can cause their populations to irrupt and then crash even though many exploitable resources remain. Accelerating population irruptions followed by precipitous collapse occur for realistic parameter values of our model of mountain pine beetle dynamics. Insect dynamics are often dominated by sudden irruptions and collapses on short time scales. Population crashes in exploitative species often happen enigmatically even when exploitable resources are not depleted. Herein, we argue that strong Allee effects in combination with overcompensation provide a plausible explanation for these boom-bust dynamics in some species.
      PubDate: 2017-02-01
      DOI: 10.1007/s12080-017-0327-2
       
  • Effects of long-range taxis and population pressure on the range expansion
           of invasive species in heterogeneous environments
    • Authors: Kohkichi Kawasaki; Nanako Shigesada; Mamiko Iinuma
      Abstract: Abstract We consider a new model for biological invasions in periodic patchy environments, in which long-range taxis and population pressure are incorporated in the framework of reaction-diffusion-advection equations. We assume that long-range taxis is induced by a weighted integral of stimuli within a certain sensing range. Population pressure is incorporated in the diffusion coefficient that linearly increases with population density. We first analyze the model in the absence of population pressure and demonstrate how the sensing length of long-range taxis influences the range expansion pattern of invasive species and its rate of spread. The effects of population pressure are examined for both homogeneous and periodic patchy environments. For the homogeneous environment, an exact and explicit traveling wave solution and the spreading speed are obtained. For the periodic patchy environment, we find numerically that a population starting from any localized distribution evolves to a traveling periodic wave if the null solution of the RDA equation is locally unstable, and that the traveling wave speed significantly increases with increasing population pressure. Furthermore, the population pressure and taxis intensity synergistically enhance the spreading speed when they are increased together.
      PubDate: 2017-02-01
      DOI: 10.1007/s12080-017-0328-1
       
  • Compensation masks trophic cascades in complex food webs
    • Authors: Ashkaan K. Fahimipour; Kurt E. Anderson; Richard J. Williams
      Abstract: Abstract Ecological networks, or food webs, describe the feeding relationships between interacting species within an ecosystem. Understanding how the complexity of these networks influences their response to changing top-down control is a central challenge in ecology. Here, we provide a model-based investigation of trophic cascades — an oft-studied ecological phenomenon that occurs when changes in the biomass of top predators indirectly effect changes in the biomass of primary producers — in complex food webs that are representative of the structure of real ecosystems. Our results reveal that strong cascades occur primarily in low richness and weakly connected food webs, a result in agreement with some prior predictions. The primary mechanism underlying weak or absent cascades was a strong compensatory response; in most webs, predators induced large population level cascades that were masked by changes in the opposite direction by other species in the same trophic guild. Thus, the search for a general theory of trophic cascades in food webs should focus on uncovering features of real ecosystems that promote biomass compensation within functional guilds or trophic levels.
      PubDate: 2017-01-17
      DOI: 10.1007/s12080-016-0326-8
       
  • Effects of strength and timing of harvest on seasonal population models:
           stability switches and catastrophic shifts
    • Authors: Eduardo Liz
      Abstract: Abstract Population abundance of many species is controlled by a combination of density-dependent processes during different periods of the annual cycle. In the context of population exploitation or conservation programs, sequential density dependence has the potential to dramatically change population responses to harvesting. Looking for a better understanding of the potential effects of harvesting on the dynamics of seasonal populations, we carry out a theoretical analysis of a discrete model for a semelparous population with an annual cycle involving three discrete density-dependent events: breeding, natural mortality, and harvesting. Our study reveals how the interplay between the model parameters determines the importance of harvest timing on stability and population abundance, especially when two nontrivial stable equilibria coexist. We address the possibility for compensatory mortality and report different forms of the hydra effect, including non-smooth ones due to catastrophic shifts. These drastic switches may include hysteresis, which has important implications for conservation goals. Regarding variability, we show that increasing the harvesting effort may either stabilize or destabilize the population, and these effects strongly depend on harvest timing and natural mortality rates. Our results also emphasize the importance of sampling populations after every discrete event occurs during one cycle. Indeed, though the dynamics are not affected by census timing, the model shows that changes in population abundance in response to changes in harvesting pressure are substantially different depending on when population is sampled. Thus, a manager would receive different (and sometimes contradictory) messages depending on census time, which could lead to managing mistakes.
      PubDate: 2016-12-15
      DOI: 10.1007/s12080-016-0325-9
       
  • Effects of strength and timing of harvest on seasonal population models:
           stability switches and catastrophic shifts
    • Authors: Eduardo Liz
      Abstract: Abstract Population abundance of many species is controlled by a combination of density-dependent processes during different periods of the annual cycle. In the context of population exploitation or conservation programs, sequential density dependence has the potential to dramatically change population responses to harvesting. Looking for a better understanding of the potential effects of harvesting on the dynamics of seasonal populations, we carry out a theoretical analysis of a discrete model for a semelparous population with an annual cycle involving three discrete density-dependent events: breeding, natural mortality, and harvesting. Our study reveals how the interplay between the model parameters determines the importance of harvest timing on stability and population abundance, especially when two nontrivial stable equilibria coexist. We address the possibility for compensatory mortality and report different forms of the hydra effect, including non-smooth ones due to catastrophic shifts. These drastic switches may include hysteresis, which has important implications for conservation goals. Regarding variability, we show that increasing the harvesting effort may either stabilize or destabilize the population, and these effects strongly depend on harvest timing and natural mortality rates. Our results also emphasize the importance of sampling populations after every discrete event occurs during one cycle. Indeed, though the dynamics are not affected by census timing, the model shows that changes in population abundance in response to changes in harvesting pressure are substantially different depending on when population is sampled. Thus, a manager would receive different (and sometimes contradictory) messages depending on census time, which could lead to managing mistakes.
      PubDate: 2016-12-15
      DOI: 10.1007/s12080-016-0325-9
       
  • Single species dynamics under climate change
    • Authors: Mauricio Tejo; Sebastián Niklitschek-Soto; Cristin Vásquez; Pablo A. Marquet
      Abstract: Abstract We propose a general mathematical model describing the growth and dispersal of a single species living in a 1-D spatially discrete array of habitat patches affected by a sustained and directional change in climate. Our model accounts for two important characteristics of the climate change phenomenon: (1) Scale dependency: different species may perceive the change in the environment as occurring at different rates because they perceive the environment at different scales, and (2) measure dependency: different species measure the environment differently in the sense that they may be sensible to or cue in on different aspects of it (e.g., maximum temperature, minimum temperature, accumulated temperature) which is associated with their physiological, ecological, and life history attributes, which renders some characteristics of the environment more biologically relevant than others. We show that the deterioration in the quality of habitable patches as a consequence of climate change drives the species to extinction when dispersal is not possible; otherwise, we proof and provide a numerical example that, depending on the velocity of climate change, the scale at which a species measures it, and the particular attribute of the environment that is more biologically relevant to the species under analysis, there is always a migration strategy that allows the persistence of the species such that it tracks its niche conditions through space, thus shifting its geographic range. Our mathematical analysis provides a general framework to analyze species’ responses to climate change as a relational property of a given species in interaction with a change in climate. In particular, we can analyze the persistence of species by taking into account the ways in which they measure and filter the environment. Indeed, one of our main conclusions is that there is not a single climate change but many, as it depends on the interaction between a particular species and climate. Thus, the problem is more complex than assumed by analytically tractable models of species responses to climate change.
      PubDate: 2016-12-14
      DOI: 10.1007/s12080-016-0321-0
       
  • Chaotic attractor in two-prey one-predator system originates from
           interplay of limit cycles
    • Authors: Fanny Groll; Hartmut Arndt; Alexander Altland
      Abstract: Abstract We investigate the appearance of chaos in a microbial 3-species model motivated by a potentially chaotic real world system (as characterized by positive Lyapunov exponents (Becks et al., Nature 435, 2005). This is the first quantitative model that simulates characteristic population dynamics in the system. A striking feature of the experiment was three consecutive regimes of limit cycles, chaotic dynamics and a fixed point. Our model reproduces this pattern. Numerical simulations of the system reveal the presence of a chaotic attractor in the intermediate parameter window between two regimes of periodic coexistence (stable limit cycles). In particular, this intermediate structure can be explained by competition between the two distinct periodic dynamics. It provides the basis for stable coexistence of all three species: environmental perturbations may result in huge fluctuations in species abundances, however, the system at large tolerates those perturbations in the sense that the population abundances quickly fall back onto the chaotic attractor manifold and the system remains. This mechanism explains how chaos helps the system to persist and stabilize against migration. In discrete populations, fluctuations can push the system towards extinction of one or more species. The chaotic attractor protects the system and extinction times scale exponentially with system size in the same way as with limit cycles or in a stable situation.
      PubDate: 2016-12-13
      DOI: 10.1007/s12080-016-0317-9
       
  • An individual-based model of chaparral vegetation response to frequent
           wildfires
    • Authors: Timothy A. Lucas; Reanna A. Doña; Wancen Jiang; Garrett C. Johns; Dayna J. Mann; Cassandra Seubert; Noah B. C. Webster; Charlotte H. Willens; Stephen D. Davis
      Abstract: Abstract The Santa Monica Mountains are home to many species of chaparral shrubs that provide vegetative cover and whose deep roots contribute to the stability of the steep slopes. Recently, native chaparral have been threatened by an unprecedented drought and frequent wildfires in Southern California. Besides the damage from the wildfires themselves, there is the potential for subsequent structural losses due to erosion and landslides. In this paper, we develop a mathematical model that predicts the impact of drought and frequent wildfires on chaparral plant community structure. We begin by classifying chaparral into two life history types based on their response to wildfires. Nonsprouters are completely killed by a fire, but their seeds germinate in response to fire cues. Facultative sprouters survive by resprouting but also rely on seed germination for post-fire recovery. The individual-based model presented here simulates the growth, seed dispersal, and resprouting behavior of individual shrubs across two life history types as they compete for space and resources in a rectangular domain. The model also incorporates varying annual rainfall and fire frequency as well as the competition between plants for scarce resources. The parameters were fit using seedling and resprout survivorship data as well as point quarter sampling data from 1986 to 2014 at a biological preserve within the natural landscape of the Malibu campus of Pepperdine University. The simulations from our model reproduce the change in plant community structure at our study site which includes the local extinction of the nonsprouter Ceanothus megacarpus due to shortened fire return intervals. Our simulations predict that a combination of extreme drought and frequent wildfires will drastically reduce the overall density of chaparral, increasing the likelihood of invasion by highly flammable exotic grasses. The simulations further predict that the majority of surviving shrubs will be facultative sprouting species such as Malosma laurina.
      PubDate: 2016-12-13
      DOI: 10.1007/s12080-016-0324-x
       
  • Dissecting the role of transitivity and intransitivity on coexistence in
           competing species networks
    • Authors: Julio M. Alcántara; Manuel Pulgar; Pedro J. Rey
      Abstract: Abstract It is well established that intransitively assembled interaction networks can support the coexistence of competing species, while transitively assembled (hierarchical) networks are prone to species loss through competitive exclusion. However, as the number of species grows, the complexity of ecological interaction networks grows disproportionately, and species can get involved simultaneously in transitive and intransitive groups of interactions. In such complex networks, the effects of intransitivity on species persistence are not straightforward. Dissecting networks into intransitive/transitive components can help us to understand the complex role that intransitivity may play in supporting species diversity. We show through simulations that those species participating in the largest group of intransitive interactions (the core of the network) have high probabilities of persisting in the long term. However, participation in a group of intransitive interactions other than the core does not always improve persistence. Likewise, participating in transitive interactions does not always decrease persistence because certain species (the satellites) transitively linked to the core have also a high persistence probability. Therefore, when networks contain transitive and intransitive structures, as it can be expected in real ecological networks, the existence of a large intransitive core of species can have a disproportionate positive effect on species richness.
      PubDate: 2016-12-09
      DOI: 10.1007/s12080-016-0323-y
       
  • Species richness in a model with resource gradient
    • Authors: Michel Droz; Andrzej Pękalski
      Abstract: Abstract In order to study the dependence of the species richness on heterogeneity of the habitat, we introduce an extended model of annual plants which combines the features of the island model and of gradient heterogeneity resources. First, we consider a native population of plants living on a square lattice of linear size L. After equilibration of this native population, seeds of several different species j = 2, ... , k of annual plants invade the system; they compete among themselves and the native ones. The system is exposed to a one-dimensional water gradient, and each species is characterised by a tolerance to a surplus of water, τ(j). We study the influences of the properties of the gradient of the resource (GR) on the species richness (SR) present in the system. We have shown that the relation between GR and SR is not straightforward and that several cases could be distinguished: For a large class of control parameters, SR increases linearly with GR. However, when the values of the control parameters are such as to create wide inhabitable regions, the relation between SR and GR ceases to have a monotonic character. We have also demonstrated that the average species richness as a function of the resource availability has a hump shape. Our results can be simply explained within our model and are in agreement with several previous field and theoretical works.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0298-8
       
  • Trait selection during food web assembly: the roles of interactions and
           temperature
    • Authors: Isabelle Gounand; Sonia Kéfi; Nicolas Mouquet; Dominique Gravel
      Abstract: Abstract Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature. We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0299-7
       
  • The content and availability of information affects the evolution of
           social-information gathering strategies
    • Authors: Eleanor Redstart Brush; Naomi Ehrich Leonard; Simon A. Levin
      Abstract: Abstract Social animals can gather information by observing the other members of their groups. Strategies for gathering this type of social information have many components. In particular, an animal can vary the number of other animals it observes. European starlings (Sturnus vulgaris) in flight pay attention to a number of neighbors that allows the flock to reach consensus quickly and robustly. The birds may do this because being in such a flock confers benefits on its members, or the birds may use the strategy that is individually beneficial without regard for the flock’s structure. To understand when individual-level optimization results in a group-level optimum, we develop a model of animals gathering social information about environmental cues, where the cue can be about either predators or resources, and we analyze two processes through which the number of neighbors changes over time. We then identify the number of neighbors the birds use when the two dynamics reach equilibrium. First, we find that the equilibrium number of neighbors is much lower when the birds are learning about the presence of resources rather than predators. Second, when the information is about the presence of predators, we find that the equilibrium number of neighbors increases as the information becomes more widespread. Third, we find that an optimization process converges on strategies that allow the flock to reach consensus when the information is about the presence of abundant resources, but not when it is about the presence of scarce resources or predators.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0301-4
       
  • The effects of predation on seasonally migrating populations
    • Authors: John G. Donohue; Petri T. Piiroinen
      Abstract: Abstract Interspecific interactions may occur for just a brief period each year before the populations involved become spatially separated. For instance, the range of a migrating population may overlap with that of a population of predators for a single season. In this work, we outline a framework for examining how this kind of ‘transient’ predation influences the dynamics of the prey population. A time-dependent switching system is used to partition the annual cycle into distinct segments. We then consider the effect of a single predatory interaction during a particular season, with the associated predators characterised as either generalists or specialists. We show that generalist predation potentially can allow multiple stable limit cycles to exist. Predation by specialists may cause prey abundance to oscillate over long time periods. This is shown to be a consequence of over-exploitation of newborn prey individuals. The habitat-based formulation extends naturally to the study of interannual variation in environmental conditions. We illustrate how such changes may cause migrant populations to undergo sudden changes in numbers that are not readily reversible.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0304-1
       
  • Bimodal trait distributions with large variances question the reliability
           of trait-based aggregate models
    • Authors: Renato Mendes Coutinho; Toni Klauschies; Ursula Gaedke
      Abstract: Abstract Functionally diverse communities can adjust their species composition to altered environmental conditions, which may influence food web dynamics. Trait-based aggregate models cope with this complexity by ignoring details about species identities and focusing on their functional characteristics (traits). They describe the temporal changes of the aggregate properties of entire communities, including their total biomasses, mean trait values, and trait variances. The applicability of aggregate models depends on the validity of their underlying assumptions that trait distributions are normal and exhibit small variances. We investigated to what extent this can be expected to work by comparing an innovative model that accounts for the full trait distributions of predator and prey communities to a corresponding aggregate model. We used a food web structure with well-established trade-offs among traits promoting mutual adjustments between prey edibility and predator selectivity in response to selection. We altered the shape of the trade-offs to compare the outcome of the two models under different selection regimes, leading to trait distributions increasingly deviating from normality. Their biomass and trait dynamics agreed very well for stabilizing selection and reasonably well for directional selection, under which different trait values are favored at different times. However, for disruptive selection, the results of the aggregate model strongly deviated from the full trait distribution model that showed bimodal trait distributions with large variances. Hence, the outcome of aggregate models is reliable under ideal conditions but has to be questioned when confronted with more complex selection regimes and trait distributions, which are commonly observed in nature.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0297-9
       
  • Evolutionary food web models: effects of an additional resource
    • Authors: Daniel Ritterskamp; Christoph Feenders; Daniel Bearup; Bernd Blasius
      Abstract: Abstract Many empirical food webs contain multiple resources, which can lead to the emergence of sub-communities—partitions—in a food web that are weakly connected with each other. These partitions interact and affect the complete food web. However, the fact that food webs can contain multiple resources is often neglected when describing food web assembly theoretically, by considering only a single resource. We present an allometric, evolutionary food web model and include two resources of different sizes. Simulations show that an additional resource can lead to the emergence of partitions, i.e. groups of species that specialise on different resources. For certain arrangements of these partitions, the interactions between them alter the food web properties. First, these interactions increase the variety of emerging network structures, since hierarchical bodysize relationships are weakened. Therefore, they could play an important role in explaining the variety of food web structures that is observed in empirical data. Second, interacting partitions can destabilise the population dynamics by introducing indirect interactions with a certain strength between predator and prey species, leading to biomass oscillations and evolutionary intermittence.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0305-0
       
  • Coevolutionary dynamics in one-to-many mutualistic systems
    • Authors: Hideo Ezoe
      Abstract: Abstract “One-to-many” mutualisms are often observed in nature. In this type of mutualism, each host individual can interact with many symbionts, whereas each individual symbiont can interact with only one host individual. Partner choice by the host is a potentially critical mechanism for maintaining such systems; however, its long-term effects on the coevolution between the hosts and symbionts have not been completely explored. In this study, I developed a simple mathematical model to describe the coevolutionary dynamics between hosts and symbionts in a one-to-many mutualism. I assumed that each host chooses a constant number of symbionts from a potential symbiont population, a fraction of which are chosen through preferential choice on the basis of the cooperativeness of the symbionts and the rest are chosen randomly. Using numerical calculations, I found that mutualism is maintained when the preferential choice is not very costly and the mutation rate of symbionts is large. I also found that symbionts that receive benefits from hosts without a return (cheater symbionts) and hosts that do not engage in preferential partner choice (indiscriminator hosts) can coexist with mutualist symbionts and discriminator hosts, respectively. The parameter domain of pure mutualism, i.e., free from cheater symbionts and indiscriminator hosts, can be narrower than the whole domain where the mutualism persists.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0296-x
       
  • Effects of diffusion on total biomass in heterogeneous continuous and
           discrete-patch systems
    • Authors: D. L. DeAngelis; Wei-Ming Ni; Bo Zhang
      Abstract: Abstract Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0302-3
       
  • Paradoxical effects and interactions in food webs: a commentary on Nilsson
           and McCann (2016)
    • Authors: Peter A. Abrams
      Abstract: Abstract Counter-intuitive responses of population density to changes in parameter values were used by Nilsson and McCann (Theor Ecol 9:59–71, 2016, Theoretical Ecology) to argue for the superiority of a recently proposed measure of interaction strength. They argued that one of these responses (decreasing consumer density in response to increasing per capita resource attack rate) is rarely or never discussed and is distinct from responses to consumer mortality. In fact, there is a long history of work on responses to altered attack rates, and they are linked to responses to mortality because the latter very often produce coupled changes in attack rate. This earlier literature does not support a qualitative difference between the impacts of these two types of parameter change and does not clearly support the desirability of any particular measure of interaction strength.
      PubDate: 2016-08-27
      DOI: 10.1007/s12080-016-0312-1
       
  • Erratum to: Role of trade-off between sexual and vertical routes for
           evolution of pathogen transmission
    • Authors: Veronika Bernhauerová; Luděk Berec
      PubDate: 2016-07-28
      DOI: 10.1007/s12080-016-0308-x
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.166.14.86
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016