for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENVIRONMENTAL STUDIES (Total: 825 journals)
    - ENVIRONMENTAL STUDIES (754 journals)
    - POLLUTION (23 journals)
    - WASTE MANAGEMENT (9 journals)


The end of the list has been reached or no journals were found for your choice.
Journal Cover Theoretical Ecology
  [SJR: 1.456]   [H-I: 13]   [9 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-1746 - ISSN (Online) 1874-1738
   Published by Springer-Verlag Homepage  [2281 journals]
  • Heterogeneity in patch quality buffers metapopulations from pathogen
    • Abstract: Abstract Many wildlife species persist on a network of ephemerally occupied habitat patches connected by dispersal. Provisioning of food and other resources for conservation management or recreation is frequently used to improve local habitat quality and attract wildlife. Resource improvement can also facilitate local pathogen transmission, but the landscape-level consequences of provisioning for pathogen spread and habitat occupancy are poorly understood. Here, we develop a simple metapopulation model to investigate how heterogeneity in patch quality resulting from resource improvement influences long-term metapopulation occupancy in the presence of a virulent pathogen. We derive expressions for equilibrium host–pathogen outcomes in terms of provisioning effects on individual patches (through decreased patch extinction rates) and at the landscape level (the fraction of high-quality, provisioned patches), and highlight two cases of practical concern. First, if occupancy in the unprovisioned metapopulation is sufficiently low, a local maximum in occupancy occurs for mixtures of high- and low-quality patches, such that further increasing the number of high-quality patches both lowers occupancy and allows pathogen invasion. Second, if the pathogen persists in the unprovisioned metapopulation, further provisioning can result in all patches becoming infected and in a global minimum in occupancy. This work highlights the need for more empirical research on landscape-level impacts of local resource provisioning on pathogen dynamics.
      PubDate: 2016-06-01
  • The “edge effect” phenomenon: deriving population abundance
           patterns from individual animal movement decisions
    • Abstract: Abstract Edge effects have been observed in a vast spectrum of animal populations. They occur where two conjoining habitats interact to create ecological phenomena that are not present in either habitat separately. On the individual-level, an edge effect is a change in behavioral tendency on or near the edge. On the population-level, it is a pattern of population abundance near an edge that cannot be explained in terms of either habitat in isolation. That these two levels of description exist suggests there ought to be a mathematical link between them. Here, we make inroads into providing such a link, deriving analytic expressions describing oft-observed population abundance patterns from a model of movement decisions near edges. Depending on the model parameters, we can see positive, negative, or transitional edge effects emerge. Importantly, the distance over which animals make their decisions to move between habitats turns out to be a key factor in quantifying the magnitude of certain observed edge effects.
      PubDate: 2016-06-01
  • Spatially heterogeneous pressure raises risk of catastrophic shifts
    • Abstract: Abstract Ecosystems may exhibit catastrophic shifts, i.e. abrupt and irreversible responses of ecosystem functions and services to continuous changes in external conditions. The search for early warning signs of approaching shifts has so far mainly been conducted on theoretical models assuming spatially-homogeneous external pressures (e.g. climatic). Here, we investigate how a spatially explicit pressure may affect ecosystems’ risk of catastrophic shifts and the associated spatial early-warning signs. As a case study, we studied a dryland vegetation model assuming ‘associational resistance’, i.e. the mutual reduction of local grazing impact by neighboring plants sharing the investment in defensive traits. Consequently, grazing pressure depends on the local density of plants and is thus spatially-explicit. We focus on the distribution of vegetation patch sizes, which can be assessed using remote sensing and are candidate early warning signs of catastrophic shifts in drylands. We found that spatially explicit grazing affected both the resilience and the spatial patterns of the landscape. Grazing impact became self-enhancing in more fragmented landscapes, disrupted patch growth and put apparently ‘healthy’ drylands under high risks of catastrophic shifts. Our study highlights that a spatially explicit pressure may affect the nature of the spatial pattern observed and thereby change the interpretation of the early warning signs. This may generalize to other ecosystems exhibiting self-organized spatial patterns, where a spatially-explicit pressure may interfere with pattern formation.
      PubDate: 2016-06-01
  • The migration game in habitat network: the case of tuna
    • Abstract: Abstract Long-distance migration is a widespread process evolved independently in several animal groups in terrestrial and marine ecosystems. Many factors contribute to the migration process and of primary importance are intra-specific competition and seasonality in the resource distribution. Adaptive migration in direction of increasing fitness should lead to the ideal free distribution (IFD) which is the evolutionary stable strategy of the habitat selection game. We introduce a migration game which focuses on migrating dynamics leading to the IFD for age-structured populations and in time varying habitats, where dispersal is costly. The model predicts migration dynamics between these habitats and the corresponding population distribution. When applied to Atlantic bluefin tunas, it predicts their migration routes and their seasonal distribution. The largest biomass is located in the spawning areas which have also the largest diversity in the age-structure. Distant feeding areas are occupied on a seasonal base and often by larger individuals, in agreement with empirical observations. Moreover, we show that only a selected number of migratory routes emerge as those effectively used by tunas.
      PubDate: 2016-06-01
  • Autochthonous or allochthonous resources determine the characteristic
           population dynamics of ecosystem engineers and their impacts
    • Abstract: Abstract Ecosystem engineering, or the modification of physical environments by organisms, can influence trophic interactions and thus food web dynamics. Although existing theory exclusively considers engineers using autochthonous resources, many empirical studies show that they often depend on allochthonous resources. By developing a simple mathematical model involving an ecosystem engineer that modifies the physical environment through its activities, its resource, and physical environment modified by the engineer, we compare the effects of autochthonous and allochthonous resources on the dynamics and stability of community with ecosystem engineers. To represent a variety of real situations, we consider engineers that alter either resource productivity, engineer feeding rate on the resource, or engineer mortality, and incorporate time-lagged responses of the physical environment. Our model shows that the effects of ecosystem engineering on community dynamics depend greatly on resource types. When the engineer consumes autochthonous resources, the community can exhibit oscillatory dynamics if the engineered environment affects engineer’s feeding rate or mortality. These cyclic behaviors are, however, stabilized by a slowly responding physical environment. When allochthonous resources are supplied as donor-controlled, on the other hand, the engineer population is unlikely to oscillate but instead can undergo unbounded growth if the engineered environment affects resource productivity or engineer mortality. This finding suggests that ecosystem engineers utilizing allochthonous resources may be more likely to reach high abundance and cause strong impacts on ecosystems. Our results highlight that community-based, compounding effects of trophic and physical biotic interactions of ecosystem engineers depend crucially on whether the engineers utilize autochthonous or allochthonous resources.
      PubDate: 2016-06-01
  • Many weak interactions and few strong; food-web feasibility depends on the
           combination of the strength of species’ interactions and their
           correct arrangement
    • Abstract: Abstract Ecological communities consist of generalists who interact with proportionally many species, and specialists who interact with proportionally few. The strength of these interactions also varies, with communities typically exhibiting a few strong links embedded within many weak links. Historically, it has been argued that generalists should interact more weakly with their partners than specialists and, since weak interactions are thought to increase community stability, that this pattern increases the stability of diverse communities. Here, we studied model-generated predator-prey communities to explicitly investigate the validity of this argument. In feasible communities—those which were both locally stable and all species had positive biomass—we indeed found that species with many predators or prey are affected by them more weakly than species with few. This relationship, however, is only part of the story. While species with many predators (or prey) tend to be only weakly affected by each of them, these many weak interactions are balanced by a few strong interactions with prey (or predators). These few strong interactions are large enough that, when the effect of predator and prey interactions are combined, it seems that species with many interactions actually interact more strongly than species with few interactions. Though past research has tended to focus on either the arrangement of species interactions or the strength of those interactions, we show here that the two are in fact inextricably linked. This observation has implications for both the realistic design of theoretical models, and the conservation of ecological communities, especially those in which the strength and arrangement of species’ interactions are impacted by biodiversity-loss disturbances such as habitat alteration.
      PubDate: 2016-06-01
  • Erratum to: Sensitivity analysis of continuous-time models for ecological
           and evolutionary theories
    • PubDate: 2016-06-01
  • How Levins’ dynamics emerges from a Ricker metapopulation model
    • Abstract: Abstract Understanding the dynamics of metapopulations close to extinction is of vital importance for management. Levins-like models, in which local patches are treated as either occupied or empty, have been used extensively to explore the extinction dynamics of metapopulations, but they ignore the important role of local population dynamics. In this paper, we consider a stochastic metapopulation model where local populations follow a stochastic, density-dependent dynamics (the Ricker model), and use this framework to investigate the behaviour of the metapopulation on the brink of extinction. We determine under which circumstances the metapopulation follows a time evolution consistent with Levins’ dynamics. We derive analytical expressions for the colonisation and extinction rates (c and e) in Levins-type models in terms of reproduction, survival and dispersal parameters of the local populations, providing an avenue to parameterising Levins-like models from the type of information on local demography that is available for a number of species. To facilitate applying our results, we provide a numerical algorithm for computing c and e.
      PubDate: 2016-06-01
  • Viewing tropical forest succession as a three-dimensional dynamical system
    • Abstract: Abstract As tropical forests are complex systems, they tend to be modelled either roughly via scaling relationships or in a detailed manner as high-dimensional systems with many variables. We propose an approach which lies between the two whereby succession in a tropical forest is viewed as a trajectory in the configuration space of a dynamical system with just three dependent variables, namely, the mean leaf-area index (LAI) and its standard deviation (SD) or coefficient of variation along a transect, and the mean diameter at breast height (DBH) of trees above the 90th percentile of the distribution of tree DBHs near the transect. Four stages in this forest succession are identified: (I) naturally afforesting grassland: the initial stage with scattered trees in grassland; (II) very young forest: mostly covered by trees with a few remaining gaps; (III) young smooth forest: almost complete cover by trees of mostly similar age resulting in a low SD; and (IV) old growth or mature forest: the attracting region in configuration space characterized by fluctuating SD from tree deaths and regrowth. High-resolution LAI measurements and other field data from Khao Yai National Park, Thailand show how the system passes through these stages in configuration space, as do simple considerations and a crude cellular automaton model.
      PubDate: 2016-06-01
  • Dealing with stochastic environmental variation in space and time: bet
           hedging by generalist, specialist, and diversified strategies
    • Abstract: Abstract Building on previous work, we derive an optimization model for a two-state stochastic environment and evaluate the fitnesses of five reproductive strategies across generations. To do this, we characterize spatiotemporal variation and define grain (=patch) size as the scale of fitness autocorrelation. Fitness functions of environmental condition are Gaussian. The strategies include two specialists on each of the environmental conditions; two generalists that each fare equally well under both conditions, but one (a conservative bet hedger) optimizes the shape of the fitness function; and a diversified bet hedger producing an optimal mix of the two specialists within individual broods. When the environment is primarily in one of the two states, the specialist on that state achieves the highest fitness. In the more interesting situation where the two environments are equally prevalent in the long term, with low-moderate environmental variation, a generalist strategy (that copes with both states well) does best. Higher variation favors diversified bet hedgers, or surprisingly, specialists, depending mainly on whether spatial or temporal variation predominates. These strategies reduce variance in fitness and optimize the distribution of offspring among patches differently: specialists by spreading offspring among many independently varying patches, while diversified bet hedgers put all offspring into a few patches or a single patch. We distinguish features consistent with strategies like diversified bet hedgers that spread risk in time from features linked to strategies like specialists that spread risk in space. Finally, we present testable hypotheses arising from this study and suggest directions for future work.
      PubDate: 2016-06-01
  • An updated perspective on the role of environmental autocorrelation in
           animal populations
    • Abstract: Abstract Ecological theory predicts that the presence of temporal autocorrelation in environments can considerably affect population extinction risk. However, empirical estimates of autocorrelation values in animal populations have not decoupled intrinsic growth and density feedback processes from environmental autocorrelation. In this study, we first discuss how the autocorrelation present in environmental covariates can be reduced through nonlinear interactions or by interactions with multiple limiting resources. We then estimated the degree of environmental autocorrelation present in the Global Population Dynamics Database using a robust, model-based approach. Our empirical results indicate that time series of animal populations are affected by low levels of environmental autocorrelation, a result consistent with predictions from our theoretical models. Claims supporting the importance of autocorrelated environments have been largely based on indirect empirical measures and theoretical models seldom anchored in realistic assumptions. It is likely that a more nuanced understanding of the effects of autocorrelated environments is necessary to reconcile our conclusions with previous theory. We anticipate that our findings and other recent results will lead to improvements in understanding how to incorporate fluctuating environments into population risk assessments.
      PubDate: 2016-06-01
  • Species richness in a model with resource gradient
    • Abstract: Abstract In order to study the dependence of the species richness on heterogeneity of the habitat, we introduce an extended model of annual plants which combines the features of the island model and of gradient heterogeneity resources. First, we consider a native population of plants living on a square lattice of linear size L. After equilibration of this native population, seeds of several different species j = 2, ... , k of annual plants invade the system; they compete among themselves and the native ones. The system is exposed to a one-dimensional water gradient, and each species is characterised by a tolerance to a surplus of water, τ(j). We study the influences of the properties of the gradient of the resource (GR) on the species richness (SR) present in the system. We have shown that the relation between GR and SR is not straightforward and that several cases could be distinguished: For a large class of control parameters, SR increases linearly with GR. However, when the values of the control parameters are such as to create wide inhabitable regions, the relation between SR and GR ceases to have a monotonic character. We have also demonstrated that the average species richness as a function of the resource availability has a hump shape. Our results can be simply explained within our model and are in agreement with several previous field and theoretical works.
      PubDate: 2016-05-06
  • Vaccine-driven evolution of parasite virulence and immune evasion in
           age-structured population: the case of pertussis
    • Abstract: Abstract Despite enormous success of mass immunization programs in reducing incidence of infectious diseases, vaccine-escape strains have emerged perhaps as a consequence of strong selection pressures exerted on parasites by vaccines. Pertussis presents a well-documented example. As a childhood infection, it exhibits age-specific transmission biased to children. Assuming different transmission rates between children and adults, I study, by means of an age-structured epidemic model, evolutionary dynamics of parasite virulence in a vaccinated population. I find that the age-structure does not affect the evolutionary dynamics of parasite virulence. Also, based on empirical data reporting antigenic divergence with vaccine strains and mutations in virulence-associated genes in pertussis populations, I allow for parallel occurrence of mutations in parasite virulence and associated immune evasion. I conclude that this simultaneous adaptation of both traits may substantially alter the evolutionary course of the parasite. In particular, higher values of virulence are favoured once the parasite is able to evade the transmission-blocking vaccine-induced immunity. On the other hand, lower values of virulence are selected for once the parasite evolves the ability to evade the virulence-blocking vaccine-induced immunity. I emphasize the importance of multi-trait evolution to assess the direction of parasite adaptation more accurately.
      PubDate: 2016-04-25
  • Trait selection during food web assembly: the roles of interactions and
    • Abstract: Abstract Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature. We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.
      PubDate: 2016-04-11
  • Bimodal trait distributions with large variances question the reliability
           of trait-based aggregate models
    • Abstract: Abstract Functionally diverse communities can adjust their species composition to altered environmental conditions, which may influence food web dynamics. Trait-based aggregate models cope with this complexity by ignoring details about species identities and focusing on their functional characteristics (traits). They describe the temporal changes of the aggregate properties of entire communities, including their total biomasses, mean trait values, and trait variances. The applicability of aggregate models depends on the validity of their underlying assumptions that trait distributions are normal and exhibit small variances. We investigated to what extent this can be expected to work by comparing an innovative model that accounts for the full trait distributions of predator and prey communities to a corresponding aggregate model. We used a food web structure with well-established trade-offs among traits promoting mutual adjustments between prey edibility and predator selectivity in response to selection. We altered the shape of the trade-offs to compare the outcome of the two models under different selection regimes, leading to trait distributions increasingly deviating from normality. Their biomass and trait dynamics agreed very well for stabilizing selection and reasonably well for directional selection, under which different trait values are favored at different times. However, for disruptive selection, the results of the aggregate model strongly deviated from the full trait distribution model that showed bimodal trait distributions with large variances. Hence, the outcome of aggregate models is reliable under ideal conditions but has to be questioned when confronted with more complex selection regimes and trait distributions, which are commonly observed in nature.
      PubDate: 2016-03-18
  • The effects of space and diversity of interaction types on the stability
           of complex ecological networks
    • Abstract: Abstract The relationship between structure and stability in ecological networks and the effect of spatial dynamics on natural communities have both been major foci of ecological research for decades. Network research has traditionally focused on a single interaction type at a time (e.g. food webs, mutualistic networks). Networks comprising different types of interactions have recently started to be empirically characterized. Patterns observed in these networks and their implications for stability demand for further theoretical investigations. Here, we employed a spatially explicit model to disentangle the effects of mutualism/antagonism ratios in food web dynamics and stability. We found that increasing levels of plant-animal mutualistic interactions generally resulted in more stable communities. More importantly, increasing the proportion of mutualistic vs. antagonistic interactions at the base of the food web affects different aspects of ecological stability in different directions, although never negatively. Stability is either not influenced by increasing mutualism—for the cases of population stability and species’ spatial distributions—or is positively influenced by it—for spatial aggregation of species. Additionally, we observe that the relative increase of mutualistic relationships decreases the strength of biotic interactions in general within the ecological network. Our work highlights the importance of considering several dimensions of stability simultaneously to understand the dynamics of communities comprising multiple interaction types.
      PubDate: 2016-03-01
  • Patterns in intraspecific interaction strengths and the stability of food
    • Abstract: Abstract A common approach to analyse stability of biological communities is to calculate the interaction strength matrix. Problematic in this approach is defining intraspecific interaction strengths, represented by diagonal elements in the matrix, due to a lack of empirical data for these strengths. Theoretical studies have shown that an overall increase in these strengths enhances stability. However, the way in which the pattern in intraspecific interaction strengths, i.e. the variation in these strengths between species, influences stability has received little attention. We constructed interaction strength matrices for 11 real soil food webs in which four patterns for intraspecific interaction strengths were chosen, based on the ecological literature. These patterns included strengths that were (1) similar for all species, (2) trophic level dependent, (3) biomass dependent, or (4) death rate dependent. These four patterns were analysed for their influence on (1) ranking food webs by their stability and (2) the response in stability to variation of single interspecific interaction strengths. The first analysis showed that ranking the 11 food webs by their stability was not strongly influenced by the choice of diagonal pattern. In contrast, the second analysis showed that the response of food web stability to variation in single interspecific interaction strengths was sensitive to the choice of diagonal pattern. Notably, stability could increase using one pattern and decrease using another. This result asks for deliberate approaches to choose diagonal element values in order to make predictions on how particular species, interactions, or other food web parameters affect food web stability.
      PubDate: 2016-03-01
  • A theory for species co-occurrence in interaction networks
    • Abstract: Abstract The study of species co-occurrences has been central in community ecology since the foundation of the discipline. Co-occurrence data are, nevertheless, a neglected source of information to model species distributions and biogeographers are still debating about the impact of biotic interactions on species distributions across geographical scales. We argue that a theory of species co-occurrence in ecological networks is needed to better inform interpretation of co-occurrence data, to formulate hypotheses for different community assembly mechanisms, and to extend the analysis of species distributions currently focused on the relationship between occurrences and abiotic factors. The main objective of this paper is to provide the first building blocks of a general theory for species co-occurrences. We formalize the problem with definitions of the different probabilities that are studied in the context of co-occurrence analyses. We analyze three species interactions modules and conduct multi-species simulations in order to document five principles influencing the associations between species within an ecological network: (i) direct interactions impact pairwise co-occurrence, (ii) indirect interactions impact pairwise co-occurrence, (iii) pairwise co-occurrence rarely are symmetric, (iv) the strength of an association decreases with the length of the shortest path between two species, and (v) the strength of an association decreases with the number of interactions a species is experiencing. Our analyses reveal the difficulty of the interpretation of species interactions from co-occurrence data. We discuss whether the inference of the structure of interaction networks is feasible from co-occurrence data. We also argue that species distributions models could benefit from incorporating conditional probabilities of interactions within the models as an attempt to take into account the contribution of biotic interactions to shaping individual distributions of species.
      PubDate: 2016-03-01
  • Linking saturation, stability and sustainability in food webs with
           observed equilibrium structure
    • Abstract: Abstract Stability of a dynamic equilibrium in a predator-prey system depends both on the type of functional response and on the point of equilibrium on the response curve. Saturation effects from Holling type II responses are known to destabilise prey populations, while a type III (sigmoid) response curve has been shown to provide stability at lower levels of saturation. These effects have also been shown in multi-trophic model systems. However, stability analyses of observed equilibria in real complex ecosystems have as yet not assumed non-linear functional responses. Here, we evaluate the implications of saturation in observed balanced material-flow structures, for system stability and sustainability. We first make the effects of the non-linear functional responses on the interaction strengths in a food web transparent by expressing the elements of Jacobian ‘community’ matrices for type II and III systems as simple functions of their linear (type I) counterparts. We then determine the stability of the systems and distinguish two critical saturation levels: (1) a level where the system is just as stable as a type I system and (2) a level above which the system cannot be stable unless it is subsidised, separating a stable materially sustainable regime from an unsustainable one. We explain the stabilising and destabilising effects in terms of the feedbacks in the systems. The results shed light on the robustness of observed patterns of interaction strengths in complex food webs and suggest the implausibility of saturation playing a significant role in the equilibrium dynamics of sustainable ecosystems.
      PubDate: 2016-03-01
  • Introduction to the special issue: theory of food webs
    • PubDate: 2016-01-20
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015