for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENVIRONMENTAL STUDIES (Total: 755 journals)
    - ENVIRONMENTAL STUDIES (682 journals)
    - POLLUTION (22 journals)
    - WASTE MANAGEMENT (10 journals)


The end of the list has been reached or no journals were found for your choice.
Journal Cover Theoretical Ecology
  [SJR: 1.255]   [H-I: 19]   [8 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-1746 - ISSN (Online) 1874-1738
   Published by Springer-Verlag Homepage  [2336 journals]
  • Bimodal trait distributions with large variances question the reliability
           of trait-based aggregate models
    • Authors: Renato Mendes Coutinho; Toni Klauschies; Ursula Gaedke
      Abstract: Abstract Functionally diverse communities can adjust their species composition to altered environmental conditions, which may influence food web dynamics. Trait-based aggregate models cope with this complexity by ignoring details about species identities and focusing on their functional characteristics (traits). They describe the temporal changes of the aggregate properties of entire communities, including their total biomasses, mean trait values, and trait variances. The applicability of aggregate models depends on the validity of their underlying assumptions that trait distributions are normal and exhibit small variances. We investigated to what extent this can be expected to work by comparing an innovative model that accounts for the full trait distributions of predator and prey communities to a corresponding aggregate model. We used a food web structure with well-established trade-offs among traits promoting mutual adjustments between prey edibility and predator selectivity in response to selection. We altered the shape of the trade-offs to compare the outcome of the two models under different selection regimes, leading to trait distributions increasingly deviating from normality. Their biomass and trait dynamics agreed very well for stabilizing selection and reasonably well for directional selection, under which different trait values are favored at different times. However, for disruptive selection, the results of the aggregate model strongly deviated from the full trait distribution model that showed bimodal trait distributions with large variances. Hence, the outcome of aggregate models is reliable under ideal conditions but has to be questioned when confronted with more complex selection regimes and trait distributions, which are commonly observed in nature.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0297-9
  • The effects of predation on seasonally migrating populations
    • Authors: John G. Donohue; Petri T. Piiroinen
      Abstract: Abstract Interspecific interactions may occur for just a brief period each year before the populations involved become spatially separated. For instance, the range of a migrating population may overlap with that of a population of predators for a single season. In this work, we outline a framework for examining how this kind of ‘transient’ predation influences the dynamics of the prey population. A time-dependent switching system is used to partition the annual cycle into distinct segments. We then consider the effect of a single predatory interaction during a particular season, with the associated predators characterised as either generalists or specialists. We show that generalist predation potentially can allow multiple stable limit cycles to exist. Predation by specialists may cause prey abundance to oscillate over long time periods. This is shown to be a consequence of over-exploitation of newborn prey individuals. The habitat-based formulation extends naturally to the study of interannual variation in environmental conditions. We illustrate how such changes may cause migrant populations to undergo sudden changes in numbers that are not readily reversible.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0304-1
  • The content and availability of information affects the evolution of
           social-information gathering strategies
    • Authors: Eleanor Redstart Brush; Naomi Ehrich Leonard; Simon A. Levin
      Abstract: Abstract Social animals can gather information by observing the other members of their groups. Strategies for gathering this type of social information have many components. In particular, an animal can vary the number of other animals it observes. European starlings (Sturnus vulgaris) in flight pay attention to a number of neighbors that allows the flock to reach consensus quickly and robustly. The birds may do this because being in such a flock confers benefits on its members, or the birds may use the strategy that is individually beneficial without regard for the flock’s structure. To understand when individual-level optimization results in a group-level optimum, we develop a model of animals gathering social information about environmental cues, where the cue can be about either predators or resources, and we analyze two processes through which the number of neighbors changes over time. We then identify the number of neighbors the birds use when the two dynamics reach equilibrium. First, we find that the equilibrium number of neighbors is much lower when the birds are learning about the presence of resources rather than predators. Second, when the information is about the presence of predators, we find that the equilibrium number of neighbors increases as the information becomes more widespread. Third, we find that an optimization process converges on strategies that allow the flock to reach consensus when the information is about the presence of abundant resources, but not when it is about the presence of scarce resources or predators.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0301-4
  • Trait selection during food web assembly: the roles of interactions and
    • Authors: Isabelle Gounand; Sonia Kéfi; Nicolas Mouquet; Dominique Gravel
      Abstract: Abstract Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature. We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0299-7
  • Species richness in a model with resource gradient
    • Authors: Michel Droz; Andrzej Pękalski
      Abstract: Abstract In order to study the dependence of the species richness on heterogeneity of the habitat, we introduce an extended model of annual plants which combines the features of the island model and of gradient heterogeneity resources. First, we consider a native population of plants living on a square lattice of linear size L. After equilibration of this native population, seeds of several different species j = 2, ... , k of annual plants invade the system; they compete among themselves and the native ones. The system is exposed to a one-dimensional water gradient, and each species is characterised by a tolerance to a surplus of water, τ(j). We study the influences of the properties of the gradient of the resource (GR) on the species richness (SR) present in the system. We have shown that the relation between GR and SR is not straightforward and that several cases could be distinguished: For a large class of control parameters, SR increases linearly with GR. However, when the values of the control parameters are such as to create wide inhabitable regions, the relation between SR and GR ceases to have a monotonic character. We have also demonstrated that the average species richness as a function of the resource availability has a hump shape. Our results can be simply explained within our model and are in agreement with several previous field and theoretical works.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0298-8
  • Evolutionary food web models: effects of an additional resource
    • Authors: Daniel Ritterskamp; Christoph Feenders; Daniel Bearup; Bernd Blasius
      Abstract: Abstract Many empirical food webs contain multiple resources, which can lead to the emergence of sub-communities—partitions—in a food web that are weakly connected with each other. These partitions interact and affect the complete food web. However, the fact that food webs can contain multiple resources is often neglected when describing food web assembly theoretically, by considering only a single resource. We present an allometric, evolutionary food web model and include two resources of different sizes. Simulations show that an additional resource can lead to the emergence of partitions, i.e. groups of species that specialise on different resources. For certain arrangements of these partitions, the interactions between them alter the food web properties. First, these interactions increase the variety of emerging network structures, since hierarchical bodysize relationships are weakened. Therefore, they could play an important role in explaining the variety of food web structures that is observed in empirical data. Second, interacting partitions can destabilise the population dynamics by introducing indirect interactions with a certain strength between predator and prey species, leading to biomass oscillations and evolutionary intermittence.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0305-0
  • Vaccine-driven evolution of parasite virulence and immune evasion in
           age-structured population: the case of pertussis
    • Authors: Veronika Bernhauerová
      Abstract: Abstract Despite enormous success of mass immunization programs in reducing incidence of infectious diseases, vaccine-escape strains have emerged perhaps as a consequence of strong selection pressures exerted on parasites by vaccines. Pertussis presents a well-documented example. As a childhood infection, it exhibits age-specific transmission biased to children. Assuming different transmission rates between children and adults, I study, by means of an age-structured epidemic model, evolutionary dynamics of parasite virulence in a vaccinated population. I find that the age-structure does not affect the evolutionary dynamics of parasite virulence. Also, based on empirical data reporting antigenic divergence with vaccine strains and mutations in virulence-associated genes in pertussis populations, I allow for parallel occurrence of mutations in parasite virulence and associated immune evasion. I conclude that this simultaneous adaptation of both traits may substantially alter the evolutionary course of the parasite. In particular, higher values of virulence are favoured once the parasite is able to evade the transmission-blocking vaccine-induced immunity. On the other hand, lower values of virulence are selected for once the parasite evolves the ability to evade the virulence-blocking vaccine-induced immunity. I emphasize the importance of multi-trait evolution to assess the direction of parasite adaptation more accurately.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0300-5
  • The duality of stability: towards a stochastic theory of species
    • Authors: Gabriel Gellner; Kevin S. McCann; Alan Hastings
      Abstract: Abstract Understanding the dynamics of ecological systems using stability concepts has been a key driver in ecological research from the inception of the field. Despite the tremendous effort put into this area, progress has been limited due to the bewildering number of metrics used to describe ecological stability. Here, we seek to resolve some of the confusion by unfolding the dynamics of a simple consumer-resource interaction module. In what follows, we first review common dynamical metrics of stability (CV, eigenvalues). We argue using the classical type II consumer-resource model as an example where the empirical stability metric, CV, hides two different, but important, aspects of stability: (i) stability due to mean population density processes and (ii) stability due to population density variance processes. We then employ a simple stochastic consumer-resource framework in order to elucidate (i) when we expect these two different aspects of stability to arise in ecological systems and, importantly, highlight (ii) the fact that these two different aspects of stability respond differentially, but predictably, to changes in fundamental parameters that govern biomass flux and loss in any consumer-resource interaction (e.g., attack rates, carrying capacity, mortality).
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0303-2
  • Effects of diffusion on total biomass in heterogeneous continuous and
           discrete-patch systems
    • Authors: D. L. DeAngelis; Wei-Ming Ni; Bo Zhang
      Abstract: Abstract Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0302-3
  • Coevolutionary dynamics in one-to-many mutualistic systems
    • Authors: Hideo Ezoe
      Abstract: Abstract “One-to-many” mutualisms are often observed in nature. In this type of mutualism, each host individual can interact with many symbionts, whereas each individual symbiont can interact with only one host individual. Partner choice by the host is a potentially critical mechanism for maintaining such systems; however, its long-term effects on the coevolution between the hosts and symbionts have not been completely explored. In this study, I developed a simple mathematical model to describe the coevolutionary dynamics between hosts and symbionts in a one-to-many mutualism. I assumed that each host chooses a constant number of symbionts from a potential symbiont population, a fraction of which are chosen through preferential choice on the basis of the cooperativeness of the symbionts and the rest are chosen randomly. Using numerical calculations, I found that mutualism is maintained when the preferential choice is not very costly and the mutation rate of symbionts is large. I also found that symbionts that receive benefits from hosts without a return (cheater symbionts) and hosts that do not engage in preferential partner choice (indiscriminator hosts) can coexist with mutualist symbionts and discriminator hosts, respectively. The parameter domain of pure mutualism, i.e., free from cheater symbionts and indiscriminator hosts, can be narrower than the whole domain where the mutualism persists.
      PubDate: 2016-12-01
      DOI: 10.1007/s12080-016-0296-x
  • Interspecific interactions and range limits: contrasts among interaction
    • Authors: William Godsoe; Nathaniel J. Holland; Chris Cosner; Bruce E. Kendall; Angela Brett; Jill Jankowski; Robert D. Holt
      Abstract: Abstract There is a great deal of interest in the effects of biotic interactions on geographic distributions. Nature contains many different types of biotic interactions (notably mutualism, commensalism, predation, amensalism, and competition), and it is difficult to compare the effects of multiple interaction types on species’ distributions. To resolve this problem, we analyze a general, flexible model of pairwise biotic interactions that can describe all interaction types. In the absence of strong positive feedback, a species’ ability to be present depends on its ability to increase in numbers when it is rare and the species it is interacting with is at equilibrium. This insight leads to counterintuitive conclusions. Notably, we often predict the same range limit when the focal species experiences competition, predation, or amensalism. Similarly, we often predict the same range margin or when the species experiences mutualism, commensalism, or benefits from prey. In the presence of strong positive density-dependent feedback, different species interactions produce different range limits in our model. In all cases, the abiotic environment can indirectly influence the impact of biotic interactions on range limits. We illustrate the implications of this observation by analyzing a stress gradient where biotic interactions are harmful in benign environments but beneficial in stressful environments. Our results emphasize the need to consider the effects of all biotic interactions on species’ range limits and provide a systematic comparison of when biotic interactions affect distributions.
      PubDate: 2016-11-29
      DOI: 10.1007/s12080-016-0319-7
  • A slow-fast dynamic decomposition links neutral and non-neutral
           coexistence in interacting multi-strain pathogens
    • Authors: Erida Gjini; Sten Madec
      Abstract: Abstract Understanding the dynamics of multi-type microbial ecosystems remains a challenge, despite advancing molecular technologies for diversity resolution within and between hosts. Analytical progress becomes difficult when modelling realistic levels of community richness, relying on computationally-intensive simulations and detailed parametrisation. Simplification of dynamics in polymorphic pathogen systems is possible using aggregation methods and the slow-fast dynamics approach. Here, we develop one new such framework, tailored to the epidemiology of an endemic multi-strain pathogen. We apply Goldstone’s idea of slow dynamics resulting from spontaneously broken symmetries to study direct interactions in co-colonization, ranging from competition to facilitation between strains. The slow-fast dynamics approach interpolates between a neutral and non-neutral model for multi-strain coexistence, and quantifies the asymmetries that are important for the maintenance and stabilisation of diversity.
      PubDate: 2016-11-29
      DOI: 10.1007/s12080-016-0320-1
  • Effective competition determines the global stability of model ecosystems
    • Authors: Antonio Ferrera; Alberto Pascual-García; Ugo Bastolla
      Abstract: Abstract We investigate the stability of Lotka-Volterra (LV) models constituted by two groups of species such as plants and animals in terms of the intragroup effective competition matrix, which allows separating the equilibrium equations of the two groups. In matrix analysis, the effective competition matrix represents the Schur complement of the species interaction matrix. It has been previously shown that the main eigenvalue of this effective competition matrix strongly influences the structural stability of the model ecosystem. Here, we show that the spectral properties of the effective competition matrix also strongly influence the dynamical stability of the model ecosystem. In particular, a necessary condition for diagonal stability of the full system, which guarantees global stability, is that the effective competition matrix is diagonally stable, which means that intergroup interactions must be weaker than intra-group competition in appropriate units. For mutualistic or competitive interactions, diagonal stability of the effective competition is a sufficient condition for global stability if the inter-group interactions are suitably correlated, in the sense that the biomass that each species provides to (removes from) the other group must be proportional to the biomass that it receives from (is removed by) it. For a non-LV mutualistic system with saturating interactions, we show that the diagonal stability of the corresponding LV system close to the fixed point is a sufficient condition for global stability.
      PubDate: 2016-11-28
      DOI: 10.1007/s12080-016-0322-z
  • Maintaining cooperation in social-ecological systems:
    • Authors: Andrew R. Tilman; James R. Watson; Simon Levin
      Abstract: Abstract Natural resources are vulnerable to over-exploitation in the absence of effective management. However, norms, enforced by social ostracism, can promote cooperation and increase stock biomass in common-pool resource systems. Unfortunately, the long-term sustainable use of a resource is not assured even if cooperation, maintained by ostracism and aimed at optimizing resource use, exists. Here, using the example of fisheries, we show that for a cooperative to be maintained by ostracism over time, it often must act inefficiently, choosing a ‘second-best’ strategy where the resource is over-harvested to some degree. Those cooperatives that aim for maximum sustainable profit, the “first-best” harvest strategy, are more vulnerable to invasion by independent harvesters, leading to larger declines in the fish population. In contrast, second-best strategies emphasize the resistance to invasion by independent harvesters over maximizing yield or profit. Ultimately, this leads to greater long-run payoffs to the resource users as well as higher resource stock levels. This highlights the value of pragmatism in the design of cooperative institutions for managing natural resources.
      PubDate: 2016-11-26
      DOI: 10.1007/s12080-016-0318-8
  • Effects of plant evolution on nutrient cycling couple aboveground and
           belowground processes
    • Authors: Nicolas Loeuille; Tiphaine Le Mao; Sébastien Barot
      Abstract: Abstract Plant strategies for nutrient acquisition and recycling are key components of ecosystem functioning. How the evolution of such strategies modifies ecosystem functioning and services is still not well understood. In the present work, we aim at understanding how the evolution of different phenotypic traits link aboveground and belowground processes, thereby affecting the functioning of the ecosystem at different scales and in different realms. Using a simple model, we follow the dynamics of a limiting nutrient inside an ecosystem. Considering trade-offs between aboveground and belowground functional traits, we study the effects of the evolution of such strategies on ecosystem properties (amount of mineral nutrient, total plant biomass, dead organic matter, and primary productivity) and whether such properties are maximized. Our results show that when evolution leads to a stable outcome, it minimizes the quantity of nutrient available (following Tilman’s R* rule). We also show that considering the evolution of aboveground and belowground functional traits simultaneously, total plant biomass and primary productivity are not necessarily maximized through evolution. The coupling of aboveground and belowground processes through evolution may largely diminish predicted standing biomass and productivity (extinction may even occur) and impact the evolutionary resilience (i.e., the return time to previous phenotypic states) of the ecosystem in the face of external disturbances. We show that changes in plant biomass and their effects on evolutionary change can be understood by accounting for the links between nutrient uptake and mineralization, and for indirect effects of nutrient uptake on the amount of detritus in the system.
      PubDate: 2016-10-30
      DOI: 10.1007/s12080-016-0315-y
  • Evolutionary stability of coexistence due to the storage effect in a
           two-season model
    • Authors: Elizabeth T. Miller; Christopher A. Klausmeier
      Abstract: Abstract The question of species coexistence has been central to ecology since its founding. Ever-present environmental variation may be one answer to that question. Previous models have demonstrated that species can exploit this variation to coexist with competitors by having different environmental responses (the storage effect). When traits governing species’ environmental response can evolve, however, coexistence is not assured. In this study, we use a continuous time, two-season model to determine the evolutionary outcome of competing species evolving in their seasonal performance trait. We extend the competitive exclusion principle to show that the storage effect can allow no more than N species to coexist on N discrete seasons with no relative nonlinearity. We find a broad region of parameter space where coexistence is evolutionarily stable. The size of this region depends on the period of fluctuations relative to the individual lifespan. Relatively long period fluctuations yield a large coexistence region, but as the period decreases, the region narrows and disappears asymptotically. Finally, we cast our adaptive dynamics technique in terms of Chesson’s concept of equalizing and stabilizing mechanisms to demonstrate that the breakdown in coexistence at short periods is due to loss of the stabilizing covariance between the environment and competition.
      PubDate: 2016-10-26
      DOI: 10.1007/s12080-016-0314-z
  • Optimal resource allocation model for excessive flower production in a
           pollinating seed-predator mutualism
    • Authors: Hideo Ezoe
      Abstract: Abstract Many plants produce excessive flowers and several hypotheses have been proposed for adaptive significances of this behavior. Here, I develop a simple resource allocation model for plants in a mutualism with pollinating seed-predators to examine a novel hypothesis that excessive flower production can be favored to “dilute” seed predation by the pollinators. Pollinators visit flowers to deposit pollen and oviposit on them, and their offspring feed on a portion of the seeds, leaving the remainder intact. Further pollinator visits increase seed mortality by over-oviposition. Excessive flower production is favored if it decreases pollinator-visit frequency per flower, while it incurs decrease in seed production because of the resource trade-off. I examine three plant strategies: (1) no abortion, the plant allocates resource to all pollinated flowers to mature; (2) selective abortion, the plant aborts flowers depending on how many times they were visited by pollinators; and (3) random abortion, the plant indiscriminately aborts a fraction of pollinated flowers irrespective of how many times they were visited. I show that the random abortion strategy can perform much more effectively than the no-abortion strategy when the amount of resource is small, the production cost per flower is low, and the pollinator density is high, although the selective abortion strategy is always the best. This “predator dilution” effect has not been considered with regard to previous excessive flower production hypotheses.
      PubDate: 2016-10-26
      DOI: 10.1007/s12080-016-0316-x
  • Optimization methods to solve adaptive management problems
    • Authors: Iadine Chadès; Sam Nicol; Tracy M. Rout; Martin Péron; Yann Dujardin; Jean-Baptiste Pichancourt; Alan Hastings; Cindy E. Hauser
      Abstract: Abstract Determining the best management actions is challenging when critical information is missing. However, urgency and limited resources require that decisions must be made despite this uncertainty. The best practice method for managing uncertain systems is adaptive management, or learning by doing. Adaptive management problems can be solved optimally using decision-theoretic methods; the challenge for these methods is to represent current and future knowledge using easy-to-optimize representations. Significant methodological advances have been made since the seminal adaptive management work was published in the 1980s, but despite recent advances, guidance for implementing these approaches has been piecemeal and study-specific. There is a need to collate and summarize new work. Here, we classify methods and update the literature with the latest optimal or near-optimal approaches for solving adaptive management problems. We review three mathematical concepts required to solve adaptive management problems: Markov decision processes, sufficient statistics, and Bayes’ theorem. We provide a decision tree to determine whether adaptive management is appropriate and then group adaptive management approaches based on whether they learn only from the past (passive) or anticipate future learning (active). We discuss the assumptions made when using existing models and provide solution algorithms for each approach. Finally, we propose new areas of development that could inspire future research. For a long time, limited by the efficiency of the solution methods, recent techniques to efficiently solve partially observable decision problems now allow us to solve more realistic adaptive management problems such as imperfect detection and non-stationarity in systems.
      PubDate: 2016-10-24
      DOI: 10.1007/s12080-016-0313-0
  • Paradoxical effects and interactions in food webs: a commentary on Nilsson
           and McCann (2016)
    • Authors: Peter A. Abrams
      Abstract: Abstract Counter-intuitive responses of population density to changes in parameter values were used by Nilsson and McCann (Theor Ecol 9:59–71, 2016, Theoretical Ecology) to argue for the superiority of a recently proposed measure of interaction strength. They argued that one of these responses (decreasing consumer density in response to increasing per capita resource attack rate) is rarely or never discussed and is distinct from responses to consumer mortality. In fact, there is a long history of work on responses to altered attack rates, and they are linked to responses to mortality because the latter very often produce coupled changes in attack rate. This earlier literature does not support a qualitative difference between the impacts of these two types of parameter change and does not clearly support the desirability of any particular measure of interaction strength.
      PubDate: 2016-08-27
      DOI: 10.1007/s12080-016-0312-1
  • Erratum to: Role of trade-off between sexual and vertical routes for
           evolution of pathogen transmission
    • Authors: Veronika Bernhauerová; Luděk Berec
      PubDate: 2016-07-28
      DOI: 10.1007/s12080-016-0308-x
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016