for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENVIRONMENTAL STUDIES (Total: 767 journals)
    - ENVIRONMENTAL STUDIES (693 journals)
    - POLLUTION (22 journals)
    - TOXICOLOGY AND ENVIRONMENTAL SAFETY (41 journals)
    - WASTE MANAGEMENT (11 journals)

ENVIRONMENTAL STUDIES (693 journals)

The end of the list has been reached or no journals were found for your choice.
Journal Cover Theoretical Ecology
  [SJR: 1.255]   [H-I: 19]   [9 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1874-1746 - ISSN (Online) 1874-1738
   Published by Springer-Verlag Homepage  [2340 journals]
  • Optimization methods to solve adaptive management problems
    • Authors: Iadine Chadès; Sam Nicol; Tracy M. Rout; Martin Péron; Yann Dujardin; Jean-Baptiste Pichancourt; Alan Hastings; Cindy E. Hauser
      Pages: 1 - 20
      Abstract: Abstract Determining the best management actions is challenging when critical information is missing. However, urgency and limited resources require that decisions must be made despite this uncertainty. The best practice method for managing uncertain systems is adaptive management, or learning by doing. Adaptive management problems can be solved optimally using decision-theoretic methods; the challenge for these methods is to represent current and future knowledge using easy-to-optimize representations. Significant methodological advances have been made since the seminal adaptive management work was published in the 1980s, but despite recent advances, guidance for implementing these approaches has been piecemeal and study-specific. There is a need to collate and summarize new work. Here, we classify methods and update the literature with the latest optimal or near-optimal approaches for solving adaptive management problems. We review three mathematical concepts required to solve adaptive management problems: Markov decision processes, sufficient statistics, and Bayes’ theorem. We provide a decision tree to determine whether adaptive management is appropriate and then group adaptive management approaches based on whether they learn only from the past (passive) or anticipate future learning (active). We discuss the assumptions made when using existing models and provide solution algorithms for each approach. Finally, we propose new areas of development that could inspire future research. For a long time, limited by the efficiency of the solution methods, recent techniques to efficiently solve partially observable decision problems now allow us to solve more realistic adaptive management problems such as imperfect detection and non-stationarity in systems.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0313-0
      Issue No: Vol. 10, No. 1 (2017)
       
  • Downstream flow and upstream movement determine the value of a stream
           reach for potadromous fish populations
    • Authors: Yasmine Samia; Frithjof Lutscher
      Pages: 21 - 34
      Abstract: Abstract Given that human activities often have negative impacts on biological populations, a common question is to find the location of greatest positive or least negative impact. Local habitat suitability is frequently used to evaluate viability of fish populations in river networks. Upper stream reaches are often undervalued, in particular when they are not navigable or do not contain commercially interesting fish. Since water flow transports certain local conditions downstream and individuals navigate river networks upstream and downstream, impacts of local perturbations can manifest elsewhere in the system, and overall effects of disturbances should be assessed on a network level. We study a model for a potadromous fish population in a system of connected stream reaches. We consider different geometries to evaluate how downstream transport and individual movement interact to determine the location of greatest and least impact of a single or two concurrent disturbances. Our results show how upper stream reaches can be highly significant for population persistence if downstream transport of abiotic conditions or upstream movement of individuals is strong.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0306-z
      Issue No: Vol. 10, No. 1 (2017)
       
  • Effects of aboveground herbivory on plants with long-term belowground
           biomass storage
    • Authors: Shyam M Thomas; Karen C Abbott; Kirk A Moloney
      Pages: 35 - 50
      Abstract: Abstract Plant tolerance to herbivory is contingent on multiple traits and adaptive mechanisms, which makes it a complex response with ecological implications. In plants with long-term belowground storage, allocation of biomass to inaccessible parts belowground in response to folivory is a well-recognized tolerance mechanism. In temperate regions, spring growth from buried rootstock is common among winter deciduous plants and is often followed by regrowth after defoliation, both of which draws resources from the stored reserves. We developed a mathematical model to analyze this tolerance response in a winter deciduous plant with long-term belowground biomass when it is defoliated by a specialist insect folivore. The model explores how three closely associated traits—(1) belowground biomass allocation to roots, (2) spring utilization of stored reserves, and (3) post-defoliation regrowth capacity—modulate the persistence and dynamics of the plant and herbivore populations. Model results show that allocation to belowground storage is not only a critical component of tolerance but also influences the herbivore population dynamics in ways that depend on how and when plant biomass is allocated and used. Low belowground biomass allocation and high storage utilization combined with poor photosynthetic growth caused extirpation of the plant population by the defoliating insects. Stable coexistence of the plant at low biomass along with its specialist insect required a moderate amount of post-herbivory belowground allocation. High values of belowground biomass allocation, storage utilization, and photosynthetic growth resulted in sustained cycles of the herbivore and plant populations. Interestingly, utilization of stored reserves had conflicting influence on above and belowground biomass, and strongly affected herbivore population dynamics. Our model thus highlights the complexity of tolerance response when it involves multiple traits and mechanisms as evinced by winter deciduous plants. We close by discussing the implications of our findings for the contributions of defoliating insects to biocontrol programs.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0307-y
      Issue No: Vol. 10, No. 1 (2017)
       
  • Ecological rescue of host-microbial systems under environmental change
    • Authors: Pradeep Pillai; Tarik C. Gouhier; Steven V. Vollmer
      Pages: 51 - 63
      Abstract: Abstract Beneficial mutations can promote persistence via evolutionary rescue in species experiencing environmental change. However, in long-lived organisms, the pace of evolution is often too slow relative to that of environmental change for evolutionary rescue to occur. Using a spatially implicit metacommunity model, we demonstrate how interactions between slow-growing hosts and their fast-growing microbiomes can promote persistence under rapid environmental change. We show that microbial mutualists can rescue their hosts by allowing them to persist under deteriorating environmental conditions. This form of mutualist-mediated ecological rescue can be jeopardized by competitively dominant microbial cheaters, which can destabilize host population dynamics and promote the risk of stochastic extinction. However, when microbial diversity is high, (meta)community-level interactions among multiple microbial species can buffer the disruptive effect of cheaters and give rise to a more potent form of ecological rescue mediated by the entire microbiome that promotes the abundance, stability, and persistence of the host in the face of environmental change. Our results address two critical problems associated with the viability of rescue in macroorganisms: the temporal mismatch between rapid environmental change and slow organismal response and the potential disruption of rescue by microbial cheaters.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0310-3
      Issue No: Vol. 10, No. 1 (2017)
       
  • Time to extinction in deteriorating environments
    • Authors: Katherine Zarada; John M. Drake
      Pages: 65 - 71
      Abstract: Abstract Habitat degradation and destruction are the predominant drivers of population extinction, but there is little theory to guide the analysis of population viability in deteriorating environments. To address this gap, we investigated extinction times in time-varying, demographically stochastic versions of the logistic model for population dynamics. A property of these models is the “extinction delay,” a quantitative measure of the time lag in extinction created by species-specific extinction debt. For completeness, three models were constructed to represent the different demographic routes by which deterioration may affect population dynamics. Numerical analysis for two notional life histories indicated that the demographic response to environmental deterioration had a large effect on extinction delay, but a third analysis showed that the trajectory of the decline in carrying capacity ultimately characterized its magnitude. A concave decline in carrying capacity produced a large extinction delay while a small delay occurred with a convex decline. Furthermore, our results explore the non-monotonicity of extinction debt with respect to the speed of deterioration. A peak is present at low levels of deterioration, and the height of the peak and the asymptote of delay are affected by both life history parameterizations and the rate of change of the carrying capacity. The results suggest that population viability analyses must consider not only environmental deterioration, but also the effects of deterioration on the trajectory of the decline in carrying capacity.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0311-2
      Issue No: Vol. 10, No. 1 (2017)
       
  • Approximation of a physiologically structured population model with
           seasonal reproduction by a stage-structured biomass model
    • Authors: Floor H. Soudijn; André M. de Roos
      Pages: 73 - 90
      Abstract: Abstract Seasonal reproduction causes, due to the periodic inflow of young small individuals in the population, seasonal fluctuations in population size distributions. Seasonal reproduction furthermore implies that the energetic body condition of reproducing individuals varies over time. Through these mechanisms, seasonal reproduction likely affects population and community dynamics. While seasonal reproduction is often incorporated in population models using discrete time equations, these are not suitable for size-structured populations in which individuals grow continuously between reproductive events. Size-structured population models that consider seasonal reproduction, an explicit growing season and individual-level energetic processes exist in the form of physiologically structured population models. However, modeling large species ensembles with these models is virtually impossible. In this study, we therefore develop a simpler model framework by approximating a cohort-based size-structured population model with seasonal reproduction to a stage-structured biomass model of four ODEs. The model translates individual-level assumptions about food ingestion, bioenergetics, growth, investment in reproduction, storage of reproductive energy, and seasonal reproduction in stage-based processes at the population level. Numerical analysis of the two models shows similar values for the average biomass of juveniles, adults, and resource unless large-amplitude cycles with a single cohort dominating the population occur. The model framework can be extended by adding species or multiple juvenile and/or adult stages. This opens up possibilities to investigate population dynamics of interacting species while incorporating ontogenetic development and complex life histories in combination with seasonal reproduction.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0309-9
      Issue No: Vol. 10, No. 1 (2017)
       
  • Evolutionary stability of coexistence due to the storage effect in a
           two-season model
    • Authors: Elizabeth T. Miller; Christopher A. Klausmeier
      Pages: 91 - 103
      Abstract: Abstract The question of species coexistence has been central to ecology since its founding. Ever-present environmental variation may be one answer to that question. Previous models have demonstrated that species can exploit this variation to coexist with competitors by having different environmental responses (the storage effect). When traits governing species’ environmental response can evolve, however, coexistence is not assured. In this study, we use a continuous time, two-season model to determine the evolutionary outcome of competing species evolving in their seasonal performance trait. We extend the competitive exclusion principle to show that the storage effect can allow no more than N species to coexist on N discrete seasons with no relative nonlinearity. We find a broad region of parameter space where coexistence is evolutionarily stable. The size of this region depends on the period of fluctuations relative to the individual lifespan. Relatively long period fluctuations yield a large coexistence region, but as the period decreases, the region narrows and disappears asymptotically. Finally, we cast our adaptive dynamics technique in terms of Chesson’s concept of equalizing and stabilizing mechanisms to demonstrate that the breakdown in coexistence at short periods is due to loss of the stabilizing covariance between the environment and competition.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0314-z
      Issue No: Vol. 10, No. 1 (2017)
       
  • Optimal resource allocation model for excessive flower production in a
           pollinating seed-predator mutualism
    • Authors: Hideo Ezoe
      Pages: 105 - 115
      Abstract: Abstract Many plants produce excessive flowers and several hypotheses have been proposed for adaptive significances of this behavior. Here, I develop a simple resource allocation model for plants in a mutualism with pollinating seed-predators to examine a novel hypothesis that excessive flower production can be favored to “dilute” seed predation by the pollinators. Pollinators visit flowers to deposit pollen and oviposit on them, and their offspring feed on a portion of the seeds, leaving the remainder intact. Further pollinator visits increase seed mortality by over-oviposition. Excessive flower production is favored if it decreases pollinator-visit frequency per flower, while it incurs decrease in seed production because of the resource trade-off. I examine three plant strategies: (1) no abortion, the plant allocates resource to all pollinated flowers to mature; (2) selective abortion, the plant aborts flowers depending on how many times they were visited by pollinators; and (3) random abortion, the plant indiscriminately aborts a fraction of pollinated flowers irrespective of how many times they were visited. I show that the random abortion strategy can perform much more effectively than the no-abortion strategy when the amount of resource is small, the production cost per flower is low, and the pollinator density is high, although the selective abortion strategy is always the best. This “predator dilution” effect has not been considered with regard to previous excessive flower production hypotheses.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0316-x
      Issue No: Vol. 10, No. 1 (2017)
       
  • Effects of plant evolution on nutrient cycling couple aboveground and
           belowground processes
    • Authors: Nicolas Loeuille; Tiphaine Le Mao; Sébastien Barot
      Pages: 117 - 127
      Abstract: Abstract Plant strategies for nutrient acquisition and recycling are key components of ecosystem functioning. How the evolution of such strategies modifies ecosystem functioning and services is still not well understood. In the present work, we aim at understanding how the evolution of different phenotypic traits link aboveground and belowground processes, thereby affecting the functioning of the ecosystem at different scales and in different realms. Using a simple model, we follow the dynamics of a limiting nutrient inside an ecosystem. Considering trade-offs between aboveground and belowground functional traits, we study the effects of the evolution of such strategies on ecosystem properties (amount of mineral nutrient, total plant biomass, dead organic matter, and primary productivity) and whether such properties are maximized. Our results show that when evolution leads to a stable outcome, it minimizes the quantity of nutrient available (following Tilman’s R* rule). We also show that considering the evolution of aboveground and belowground functional traits simultaneously, total plant biomass and primary productivity are not necessarily maximized through evolution. The coupling of aboveground and belowground processes through evolution may largely diminish predicted standing biomass and productivity (extinction may even occur) and impact the evolutionary resilience (i.e., the return time to previous phenotypic states) of the ecosystem in the face of external disturbances. We show that changes in plant biomass and their effects on evolutionary change can be understood by accounting for the links between nutrient uptake and mineralization, and for indirect effects of nutrient uptake on the amount of detritus in the system.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0315-y
      Issue No: Vol. 10, No. 1 (2017)
       
  • A slow-fast dynamic decomposition links neutral and non-neutral
           coexistence in interacting multi-strain pathogens
    • Authors: Erida Gjini; Sten Madec
      Pages: 129 - 141
      Abstract: Abstract Understanding the dynamics of multi-type microbial ecosystems remains a challenge, despite advancing molecular technologies for diversity resolution within and between hosts. Analytical progress becomes difficult when modelling realistic levels of community richness, relying on computationally-intensive simulations and detailed parametrisation. Simplification of dynamics in polymorphic pathogen systems is possible using aggregation methods and the slow-fast dynamics approach. Here, we develop one new such framework, tailored to the epidemiology of an endemic multi-strain pathogen. We apply Goldstone’s idea of slow dynamics resulting from spontaneously broken symmetries to study direct interactions in co-colonization, ranging from competition to facilitation between strains. The slow-fast dynamics approach interpolates between a neutral and non-neutral model for multi-strain coexistence, and quantifies the asymmetries that are important for the maintenance and stabilisation of diversity.
      PubDate: 2017-03-01
      DOI: 10.1007/s12080-016-0320-1
      Issue No: Vol. 10, No. 1 (2017)
       
  • Lifetime reproductive output: individual stochasticity, variance, and
           sensitivity analysis
    • Authors: Silke F. van Daalen; Hal Caswell
      Abstract: Abstract Lifetime reproductive output (LRO) determines per-generation growth rates, establishes criteria for population growth or decline, and is an important component of fitness. Empirical measurements of LRO reveal high variance among individuals. This variance may result from genuine heterogeneity in individual properties, or from individual stochasticity, the outcome of probabilistic demographic events during the life cycle. To evaluate the extent of individual stochasticity requires the calculation of the statistics of LRO from a demographic model. Mean LRO is routinely calculated (as the net reproductive rate), but the calculation of variances has only recently received attention. Here, we present a complete, exact, analytical, closed-form solution for all the moments of LRO, for age- and stage-classified populations. Previous studies have relied on simulation, iterative solutions, or closed-form analytical solutions that capture only part of the sources of variance. We also present the sensitivity and elasticity of all of the statistics of LRO to parameters defining survival, stage transitions, and (st)age-specific fertility. Selection can operate on variance in LRO only if the variance results from genetic heterogeneity. The potential opportunity for selection is quantified by Crow’s index \(\mathcal {I}\) , the ratio of the variance to the square of the mean. But variance due to individual stochasticity is only an apparent opportunity for selection. In a comparison of a range of age-classified models for human populations, we find that proportional increases in mortality have very small effects on the mean and variance of LRO, but large positive effects on \(\mathcal {I}\) . Proportional increases in fertility increase both the mean and variance of LRO, but reduce \(\mathcal {I}\) . For a size-classified tree population, the elasticity of both mean and variance of LRO to stage-specific mortality are negative; the elasticities to stage-specific fertility are positive.
      PubDate: 2017-04-17
      DOI: 10.1007/s12080-017-0335-2
       
  • The dynamical implications of human behaviour on a social-ecological
           harvesting model
    • Authors: Carling Bieg; Kevin S. McCann; John M. Fryxell
      Abstract: Abstract The dynamic aspects of human harvesting behaviour are often overlooked in resource management, such that models often neglect the complexities of dynamic human effort. Some researchers have recognized this, and a recent push has been made to understand how human behaviour and ecological systems interact through dynamic social-ecological systems. Here, we use a recent example of a social-ecological dynamical systems model to investigate the relationship between harvesting behaviour and the dynamics and stability of a harvested resource, and search for general rules in how relatively simple human behaviours can either stabilize or destabilize resource dynamics and yield. Our results suggest that weak to moderate behavioural and effort responses tend to stabilize dynamics by decreasing return times to equilibria or reducing the magnitude of cycles; however, relatively strong human impacts can readily lead to human-driven cycles, chaos, long transients and alternate states. Importantly, we further show that human-driven cycles are characteristically different from typical resource-driven cycles and, therefore, may be differentiated in real ecosystems. Given the potentially dramatic implications of harvesting on resource dynamics, it becomes critical to better understand how human behaviour determines harvesting effort through dynamic social-ecological systems.
      PubDate: 2017-03-21
      DOI: 10.1007/s12080-017-0334-3
       
  • Neutral hybridization can overcome a strong Allee effect by improving
           pollination quality
    • Authors: Juliette Bouhours; Mohsen B. Mesgaran; Roger D. Cousens; Mark A. Lewis
      Abstract: Abstract Small populations of plant species can be susceptible to demographic Allee effects mainly due to pollen limitation. Although sympatry with a common, co-flowering species may somewhat alleviate the problem of pollinator visitation (pollination quantity), the interspecific pollen transfer, IPT, (pollination quality) may remain a barrier to reproduction in small populations such as new introductions. However, if the two species are crosscompatible, our hypothesis is that neutral hybridization can help the small founding population overcome the Allee effect by improving the quality of pollination. We tested this hypothesis by using a novel modelling approach based on the theory of kinetic reactions wherein pollinators act as enzymes to catalyse the reaction between the two substrates: pollen and unselfed ovule. Using a single locus, two-allele genetic model, we developed a generic model that allows for hybridization between the invading and the native genotypes. Analysing the stability properties of the trivial equilibria in hybridization model as compared with the single genotype invasion model, we found that hybridization can either remove or reduce the Allee effect by making an otherwise stable trivial equilibrium unstable. Our study suggests that hybridization can be neutral but still be the key driver of a successful invasion by mediating pollen limitation. Conservation programmes should therefore account for this cryptic role that hybridization could play in plant invasions.
      PubDate: 2017-03-09
      DOI: 10.1007/s12080-017-0333-4
       
  • Multi-scale methods predict invasion speeds in variable landscapes
    • Authors: Jacob P. Duncan; Rachel N. Rozum; James A. Powell; Karin M. Kettenring
      Abstract: Abstract Spread rates of invasive plant species depend heavily on variable seed/seedling survivorships over various habitat types as well as on variability in seed dispersal induced by rapid transport of propagules in open areas and slow transport in vegetated areas. The ability to capture spatial variability in seed survivorship and dispersal is crucial to accurately predict the rate of spread of plants in real world landscapes. However, current analytic methods for predicting spread rates are not suited for arbitrary, spatially heterogeneous systems. Here, we analyze invasion rates of the invasive plant Phragmites australis (common reed) over variable wetland landscapes. Phragmites is one of the most pervasive perennial grasses, outcompeting native vegetation, providing poor wildlife habitat, and proving difficult to eradicate across its invasive range in North America. Phragmites spreads sexually via seeds and asexually via underground (rhizomes) and aboveground (stolons) stems. We construct a structured integrodifference equation model of the Phragmites life cycle capturing variable seed survivorship in a seed bank, sexual and asexual recruitment into a juvenile age class, and differential competition among all classes with adults. The demographic model is coupled with a homogenized ecological diffusion/settling seed dispersal model that allows for seed deposition that varies with habitat type. The dispersal kernel we develop does not require local normalization and can be implemented efficiently using standard computational techniques. The model generates a traveling wave of isolated patches, establishing only in suitable habitats. We use the method of multiple scales to predict invasion speed as a solvability condition at large scales and test the predictions numerically. Accurate predictions are generated for a wide range of landscape parameters, indicating that invasion speeds can be understood in landscapes of arbitrary structure using this approach.
      PubDate: 2017-02-27
      DOI: 10.1007/s12080-017-0329-0
       
  • Barnacles vs bullies: modelling biocontrol of the invasive European green
           crab using a castrating barnacle parasite
    • Authors: Andrew W. Bateman; Andreas Buttenschön; Kelley D. Erickson; Nathan G. Marculis
      Abstract: Abstract Invasive species raise concern around the globe, and much empirical and theoretical research effort has been devoted to their management. Integrodifference equations are theoretical tools that have been used to understand the spatiotemporal process of a species invasion, with the potential to yield insight into the possible biological control measures. We develop a system of integrodifference equations to explore the potential release of a castrating barnacle parasite Sacculina carcini to control spread and abundance of an invasive species, Carcinus maenas, the European green crab. We find that the parasite does not completely eradicate the green crab population, but has the potential to reduce its density. Our model suggests that the crab population is likely to outrun the spread of the parasite, causing two waves of invasion travelling at different speeds. By performing a sensitivity analysis, we investigate the effects of the demographic parameters on the speed of invasion. To conclude, we discuss the predicted outcomes for the European green crab, and other non-target hosts, of using the castrating barnacle as a biocontrol agent.
      PubDate: 2017-02-22
      DOI: 10.1007/s12080-017-0332-5
       
  • Erratum to: The content and availability of information affects the
           evolution of social-information gathering strategies
    • Authors: Eleanor Redstart Brush; Naomi Ehrich Leonard; Simon A. Levin
      PubDate: 2017-02-10
      DOI: 10.1007/s12080-017-0330-7
       
  • Erratum to: A slow-fast dynamic decomposition links neutral and
           non-neutral coexistence in interacting multi-strain pathogens
    • Authors: Erida Gjini; Sten Madec
      PubDate: 2017-02-07
      DOI: 10.1007/s12080-017-0331-6
       
  • Positive and negative density-dependence and boom-bust dynamics in
           enemy-victim populations: a mountain pine beetle case study
    • Authors: D. W. Goodsman; B. J. Cooke; M. A. Lewis
      Abstract: Abstract Negative density-dependent population regulation in exploitative species is well studied. Positive density-dependence can arise if exploiters must cooperate to obtain access to well-defended resources. Most studies, however, focus on the first type of density-dependence at the expense of the other. Using a parasitoid-host model, we explored how positive density-dependence driven by host defenses in combination with negative density-dependence due to competition for resources impact transient population dynamics. Inspired by interactions between the mountain pine beetle and its pine hosts, we formulated a model of enemy-victim interactions in discrete-time in which the victim is capable of deadly self-defense against exploitation. We fitted the model to data and then analyzed its non-equilibrium dynamics to determine what conditions promote boom-bust dynamics. When present together, strong Allee effects and overcompensating competition for resources among exploiters can cause their populations to irrupt and then crash even though many exploitable resources remain. Accelerating population irruptions followed by precipitous collapse occur for realistic parameter values of our model of mountain pine beetle dynamics. Insect dynamics are often dominated by sudden irruptions and collapses on short time scales. Population crashes in exploitative species often happen enigmatically even when exploitable resources are not depleted. Herein, we argue that strong Allee effects in combination with overcompensation provide a plausible explanation for these boom-bust dynamics in some species.
      PubDate: 2017-02-01
      DOI: 10.1007/s12080-017-0327-2
       
  • Effects of long-range taxis and population pressure on the range expansion
           of invasive species in heterogeneous environments
    • Authors: Kohkichi Kawasaki; Nanako Shigesada; Mamiko Iinuma
      Abstract: Abstract We consider a new model for biological invasions in periodic patchy environments, in which long-range taxis and population pressure are incorporated in the framework of reaction-diffusion-advection equations. We assume that long-range taxis is induced by a weighted integral of stimuli within a certain sensing range. Population pressure is incorporated in the diffusion coefficient that linearly increases with population density. We first analyze the model in the absence of population pressure and demonstrate how the sensing length of long-range taxis influences the range expansion pattern of invasive species and its rate of spread. The effects of population pressure are examined for both homogeneous and periodic patchy environments. For the homogeneous environment, an exact and explicit traveling wave solution and the spreading speed are obtained. For the periodic patchy environment, we find numerically that a population starting from any localized distribution evolves to a traveling periodic wave if the null solution of the RDA equation is locally unstable, and that the traveling wave speed significantly increases with increasing population pressure. Furthermore, the population pressure and taxis intensity synergistically enhance the spreading speed when they are increased together.
      PubDate: 2017-02-01
      DOI: 10.1007/s12080-017-0328-1
       
  • Compensation masks trophic cascades in complex food webs
    • Authors: Ashkaan K. Fahimipour; Kurt E. Anderson; Richard J. Williams
      Abstract: Abstract Ecological networks, or food webs, describe the feeding relationships between interacting species within an ecosystem. Understanding how the complexity of these networks influences their response to changing top-down control is a central challenge in ecology. Here, we provide a model-based investigation of trophic cascades — an oft-studied ecological phenomenon that occurs when changes in the biomass of top predators indirectly effect changes in the biomass of primary producers — in complex food webs that are representative of the structure of real ecosystems. Our results reveal that strong cascades occur primarily in low richness and weakly connected food webs, a result in agreement with some prior predictions. The primary mechanism underlying weak or absent cascades was a strong compensatory response; in most webs, predators induced large population level cascades that were masked by changes in the opposite direction by other species in the same trophic guild. Thus, the search for a general theory of trophic cascades in food webs should focus on uncovering features of real ecosystems that promote biomass compensation within functional guilds or trophic levels.
      PubDate: 2017-01-17
      DOI: 10.1007/s12080-016-0326-8
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.145.81.105
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016