for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 1962 journals)
    - CHEMICAL ENGINEERING (151 journals)
    - CIVIL ENGINEERING (149 journals)
    - ELECTRICAL ENGINEERING (82 journals)
    - ENGINEERING (1119 journals)
    - HYDRAULIC ENGINEERING (45 journals)
    - INDUSTRIAL ENGINEERING (52 journals)
    - MECHANICAL ENGINEERING (74 journals)

ENGINEERING (1119 journals)            First | 2 3 4 5 6 7 8 9 | Last

International Journal of Intelligent Engineering Informatics     Hybrid Journal  
International Journal of Intelligent Systems and Applications in Engineering     Open Access   (Followers: 1)
International Journal of Lifecycle Performance Engineering     Hybrid Journal  
International Journal of Machine Tools and Manufacture     Hybrid Journal   (Followers: 4)
International Journal of Manufacturing Research     Hybrid Journal   (Followers: 7)
International Journal of Manufacturing Technology and Management     Hybrid Journal   (Followers: 9)
International Journal of Materials and Product Technology     Hybrid Journal   (Followers: 4)
International Journal of Mathematical Education in Science and Technology     Hybrid Journal   (Followers: 6)
International Journal of Mathematics in Operational Research     Hybrid Journal   (Followers: 1)
International Journal of Medical Engineering and Informatics     Hybrid Journal   (Followers: 5)
International Journal of Micro Air Vehicles     Full-text available via subscription   (Followers: 3)
International Journal of Microwave and Wireless Technologies     Hybrid Journal   (Followers: 1)
International Journal of Microwave Science and Technology     Open Access   (Followers: 2)
International Journal of Mobile Network Design and Innovation     Hybrid Journal   (Followers: 3)
International Journal of Multiphase Flow     Hybrid Journal   (Followers: 2)
International Journal of Nanomanufacturing     Hybrid Journal   (Followers: 1)
International Journal of Nanoscience     Hybrid Journal   (Followers: 1)
International Journal of Nanotechnology     Hybrid Journal   (Followers: 4)
International Journal of Navigation and Observation     Open Access   (Followers: 5)
International Journal of Network Management     Hybrid Journal  
International Journal of Nonlinear Sciences and Numerical Simulation     Full-text available via subscription   (Followers: 1)
International Journal of Numerical Methods for Heat & Fluid Flow     Hybrid Journal   (Followers: 7)
International Journal of Optics     Open Access   (Followers: 1)
International Journal of Organisational Design and Engineering     Hybrid Journal   (Followers: 8)
International Journal of Pattern Recognition and Artificial Intelligence     Hybrid Journal   (Followers: 6)
International Journal of Pavement Engineering     Hybrid Journal   (Followers: 2)
International Journal of Physical Modelling in Geotechnics     Hybrid Journal   (Followers: 3)
International Journal of Plasticity     Hybrid Journal   (Followers: 6)
International Journal of Plastics Technology     Hybrid Journal  
International Journal of Polymer Analysis and Characterization     Hybrid Journal   (Followers: 3)
International Journal of Polymer Science     Open Access   (Followers: 16)
International Journal of Precision Engineering and Manufacturing     Hybrid Journal   (Followers: 7)
International Journal of Precision Technology     Hybrid Journal  
International Journal of Pressure Vessels and Piping     Hybrid Journal   (Followers: 2)
International Journal of Production Economics     Hybrid Journal   (Followers: 10)
International Journal of Quality and Innovation     Hybrid Journal   (Followers: 2)
International Journal of Quality Engineering and Technology     Hybrid Journal   (Followers: 2)
International Journal of Quantum Information     Hybrid Journal  
International Journal of Rapid Manufacturing     Hybrid Journal   (Followers: 3)
International Journal of Reliability, Quality and Safety Engineering     Hybrid Journal   (Followers: 4)
International Journal of Renewable Energy Technology     Hybrid Journal   (Followers: 7)
International Journal of Robust and Nonlinear Control     Hybrid Journal   (Followers: 2)
International Journal of Science Engineering and Advance Technology     Open Access  
International Journal of Sediment Research     Full-text available via subscription   (Followers: 1)
International Journal of Self-Propagating High-Temperature Synthesis     Hybrid Journal   (Followers: 2)
International Journal of Signal and Imaging Systems Engineering     Hybrid Journal  
International Journal of Six Sigma and Competitive Advantage     Hybrid Journal  
International Journal of Social Robotics     Hybrid Journal   (Followers: 1)
International Journal of Software Engineering and Knowledge Engineering     Hybrid Journal   (Followers: 1)
International Journal of Space Science and Engineering     Hybrid Journal   (Followers: 2)
International Journal of Speech Technology     Hybrid Journal   (Followers: 2)
International Journal of Spray and Combustion Dynamics     Full-text available via subscription   (Followers: 5)
International Journal of Surface Engineering and Interdisciplinary Materials Science     Full-text available via subscription   (Followers: 1)
International Journal of Surface Science and Engineering     Hybrid Journal   (Followers: 7)
International Journal of Sustainable Engineering     Hybrid Journal   (Followers: 7)
International Journal of Sustainable Manufacturing     Hybrid Journal   (Followers: 4)
International Journal of Systems Assurance Engineering and Management     Hybrid Journal  
International Journal of Systems, Control and Communications     Hybrid Journal   (Followers: 2)
International Journal of Technology Management and Sustainable Development     Hybrid Journal   (Followers: 1)
International Journal of Technology Policy and Law     Hybrid Journal   (Followers: 4)
International Journal of Telemedicine and Applications     Open Access   (Followers: 2)
International Journal of Thermal Sciences     Hybrid Journal   (Followers: 4)
International Journal of Thermodynamics     Open Access   (Followers: 2)
International Journal of Turbo & Jet-Engines     Full-text available via subscription  
International Journal of Ultra Wideband Communications and Systems     Hybrid Journal  
International Journal of Vehicle Autonomous Systems     Hybrid Journal   (Followers: 1)
International Journal of Vehicle Design     Hybrid Journal   (Followers: 6)
International Journal of Vehicle Information and Communication Systems     Hybrid Journal   (Followers: 2)
International Journal of Vehicle Noise and Vibration     Hybrid Journal   (Followers: 3)
International Journal of Vehicle Safety     Hybrid Journal   (Followers: 4)
International Journal of Vehicular Technology     Open Access   (Followers: 1)
International Journal of Virtual Technology and Multimedia     Hybrid Journal   (Followers: 4)
International Journal of Wavelets, Multiresolution and Information Processing     Hybrid Journal  
International Journal on Artificial Intelligence Tools     Hybrid Journal   (Followers: 4)
International Nano Letters     Open Access   (Followers: 5)
International Review of Applied Sciences and Engineering     Full-text available via subscription  
Inverse Problems in Science and Engineering     Hybrid Journal   (Followers: 2)
Ionics     Hybrid Journal  
IPTEK The Journal for Technology and Science     Open Access  
IRBM News     Full-text available via subscription  
Ironmaking & Steelmaking     Hybrid Journal   (Followers: 2)
Irrigation and Drainage Systems     Hybrid Journal  
ISA Transactions     Full-text available via subscription  
ISRN - International Scholarly Research Notices     Open Access   (Followers: 69)
ISRN Signal Processing     Open Access  
IT Professional     Full-text available via subscription   (Followers: 2)
Journal of Biosensors & Bioelectronics     Open Access   (Followers: 1)
Journal of Advanced Manufacturing Systems     Hybrid Journal   (Followers: 8)
Journal of Aerosol Science     Hybrid Journal   (Followers: 2)
Journal of Aerospace Engineering     Full-text available via subscription   (Followers: 111)
Journal of Alloys and Compounds     Hybrid Journal   (Followers: 6)
Journal of Analytical and Applied Pyrolysis     Hybrid Journal   (Followers: 3)
Journal of Analytical Science & Technology     Open Access   (Followers: 4)
Journal of Analytical Sciences, Methods and Instrumentation     Open Access   (Followers: 1)
Journal of Applied Analysis     Full-text available via subscription  
Journal of Applied and Industrial Sciences     Open Access  
Journal of Applied Logic     Full-text available via subscription  
Journal of Applied Physics     Hybrid Journal   (Followers: 138)
Journal of Applied Probability     Full-text available via subscription   (Followers: 6)
Journal of Applied Research and Technology     Open Access  

  First | 2 3 4 5 6 7 8 9 | Last

Journal of Dynamic Systems, Measurement, and Control
   [9 followers]  Follow    
   Full-text available via subscription Subscription journal
     ISSN (Print) 1528-9028 - ISSN (Online) 0022-0434
     Published by ASME International Homepage  [25 journals]   [SJR: 0.701]   [H-I: 53]
  • Robust Adaptive Tracking Control of Autonomous Underwater
           Vehicle-Manipulator Systems
    • Authors: Santhakumar M; Kim J.
      Abstract: This paper proposes a new tracking controller for autonomous underwater vehicle-manipulator systems (UVMSs) using the concept of model reference adaptive control. It also addresses the detailed modeling and simulation of the dynamic coupling between an autonomous underwater vehicle and manipulator system based on Newton–Euler formulation scheme. The proposed adaptation control algorithm is used to estimate the unknown parameters online and compensate for the rest of the system dynamics. Specifically, the influence of the unknown manipulator mass on the control performance is indirectly captured by means of the adaptive control scheme. The effectiveness and robustness of the proposed control scheme are demonstrated using numerical simulations.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • Modeling and Experimental Validation of the Effective Bulk Modulus of a
           Mixture of Hydraulic Oil and Air
    • Authors: Gholizadeh H; Bitner D, Burton R, et al.
      Abstract: It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air are not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution, and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models, and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • An Indirect Adaptive Velocity Controller for a Novel Steer-by-Wire System
    • Authors: Daher N; Ivantysynova M.
      Abstract: Increased environmental awareness and skyrocketing fuel prices have pressed researchers and engineers to find energy efficient alternatives to traditional approaches. A novel steer-by-wire technology, which is based on pump displacement control actuation, has been proposed by the authors and was shown to improve the fuel efficiency of a wheel loader steering system by 43.5%. Building on this realization, the work in this paper deals with designing an adaptive velocity controller, which takes the form of an indirect self-tuning regulator that has the facility to cope with parametric uncertainties and uncertain nonlinearities associated with hydraulically actuated systems. The indirect self-tuning regulator algorithm is selected given that the uncertain plant parameters are estimated in the process, which is a useful byproduct that gives insight into system properties that will be considered in future investigation. Furthermore, a discrete adaptive control law with low computational cost is required for the application on hand. The designed self-tuning regulator and the estimation algorithm were validated in numerical simulations as well as experimentally on a designated prototype test vehicle, demonstrating the effectiveness of the proposed adaptive scheme in the face of uncertainties. The controller was able to adapt to varying load mass and inertia, which correlate to varying operating conditions that influence the system dynamics. Hence, besides offering improved fuel efficiency, the new steering technology also results in smarter machines.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • Investigation of Local Stability Transitions in the Spectral Delay Space
           and Delay Space
    • Authors: Gao Q; Zalluhoglu U, Olgac N.
      Abstract: The stability boundaries of LTI time-delayed systems with respect to the delays are studied in two different domains: (i) delay space (DS) and (ii) spectral delay space (SDS), which contains pointwise frequency information as well as the delay. SDS is the preferred domain due to its advantageous boundedness properties and simple construct of stability transition boundaries. These transitions at the mentioned boundaries, however, present some conceptual challenges in SDS. This transition property enables us to extract the corresponding local stability variation properties in the DS, while it does not have any implication in the preferred SDS. The novel aspect of the investigation is to introduce a comparison mechanism between these two domains, DS and SDS, from the stability transition perspective. Interestingly, we are able to prove their equivalency, which provides complementary insight to the parametric stability variations.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • Extended Kalman Filter Based In-Cylinder Temperature Estimation for Diesel
           Engines With Thermocouple Lag Compensation
    • Authors: Chen S; Yan F.
      Abstract: The in-cylinder temperature information is critical for auto-ignition combustion control in diesel engines, but difficult to be directly accessed at low cost in production engines. Through investigating the thermodynamics of Tivc, cycle-by-cycle models are proposed in this paper for the estimation of in-cylinder temperature at the crank angle of intake valve closing (IVC), referred to as Tivc. An extended Kalman filter (EKF) based method was devised by utilizing the measurable temperature information from the intake and exhaust manifolds. Due to the fact that measured temperature signals by typical thermocouples have slow responses which can be modeled as first-order lags with varying time-constants, temperature signals need to be reconstructed in transient conditions. In the proposed EKF estimation method, this issue can be effectively addressed by analyzing the measurement errors and properly selecting the noises covariance matrices. The proposed estimation method was validated through a high-fidelity GT-power engine model.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • Minimum Time Kinematic Motions of a Cartesian Mobile Manipulator for a
           Fruit Harvesting Robot
    • Authors: Mann MP; Zion B, Rubinstein D, et al.
      Abstract: This paper describes an analytical procedure to calculate the time-optimal trajectory for a mobile Cartesian manipulator to traverse between any two fruits it picks up it. The goal is to minimize the time required from the retrieval of one fruit to that of the next while adhering to velocity, acceleration, location, and endpoint constraints. This is accomplished using a six stage procedure, based on Bellman's Principle of Optimality and nonsmooth optimization that is completely analytical and requires no numerical computations. The procedure sequentially calculates all relevant parameters, from which side of the mobile platform to place the fruit on to the velocity profile and drop-off point, that yield a minimum time trajectory. In addition, it provides a time window under which the mobile manipulator can traverse from any fruit to any other, which can be used for a globally optimal retrieving sequence algorithm.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • A Systematic Approach for Dynamic Analysis of Vehicles With Eight or More
           Speed Automatic Transmission
    • Authors: Lee S; Zhang Y, Jung D, et al.
      Abstract: In this study, a dynamic model of a vehicle with eight or more speed automatic transmission (A/T) has been developed for the analysis of shift quality and dynamic behavior of the vehicle during shift events. Subsystem models for engine, torque converter, automatic transmission, drivetrain, transmission control unit (TCU), and vehicle are developed and integrated with signal information interface. The subsystems included in the model were carefully selected to improve the accuracy of the model by comparing the simulation results with the test data. The systematic modeling approach based on matrix operation proposed in the study enables calibrating and fine-tuning the transmission control unit for shift quality in a virtual vehicle environment. The model presented in the study is validated with the vehicle test data and the comparison shows very good agreement. This paper presents a generalized modeling methodology for multiratio automatic transmissions that require both direct and indirect shifts. The model developed in the study provides a valuable analytical tool for the calibration and tuning of the transmission control unit by allowing quantitative analysis on the dynamic behavior and the performance metrics of an automatic transmission.
      PubDate: Thu, 12 Jun 2014 00:00:00 GMT
  • Noise Induced Loss of Tracking in Systems With Saturating Actuators and
    • Authors: Eun Y; Hamby ES.
      Abstract: This technical note is devoted to a recently discovered phenomenon that takes place in feedback systems with saturating actuators, proportional-integral (PI) control, and antiwindup. Namely, in such systems, measurement noise induces steady-state error in step tracking, which is incompatible with the standard error coefficients. We quantify this phenomenon using stochastic averaging theory and show that the noise induced loss of tracking occurs only if antiwindup is present. An indicator that predicts this phenomenon is derived, and a rule-of-thumb, based on this indicator, is formulated. An illustration using a digital printing device is provided.
      PubDate: Wed, 28 May 2014 00:00:00 GMT
  • An Adjustable Model Reference Adaptive Control for a Time Delay System
    • Authors: Khoshnood AM.
      Abstract: Current developments in signal processing tools for hardware and software applications have led to employment of these approaches for vibration control in flexible structures. The main challenge of this method is the delay directly generated from the processing in the closed-loop of the vibration control system. This delay causes considerable degradation of the stability of the dynamic system. This study uses the Smith predictor (SP) of common time delay systems to propose an adjustable model reference, where the delay generated from the signal processing block is compensated for vibration control. The vibration control system based on signal processing is applied on a flexible launch vehicle in which the bending vibration modes are modeled as undesirable sinusoidal signals. The results of a numerical simulation of a linear model of the vehicle with the adjustable model reference adaptive system show that the delay in the closed-loop control system is adequately compensated. This approach allows the use of the signal processing tools for vibration analysis and control without substantial delay.
      PubDate: Wed, 28 May 2014 00:00:00 GMT
  • Two Degree of Freedom Control Synthesis With Applications to Agricultural
    • Authors: Xie Y; Alleyne A.
      Abstract: This paper presents a two degree of freedom (DOF) controller for combine harvester header height control (HHC). Fundamental limitations to the tracking and disturbance rejection bandwidth for feedback control designs exist in the HHC system due to the considerable actuator delay and underactuated and noncollocated mechanical design. In this work, we utilize H∞ optimal control design to ensure closed-loop stability and robust performance, and augment the feedback loop with a feedforward control structure based on readily available global positioning system (GPS) information. The GPS provides anticipatory information of the field map elevation; albeit with noise, resolution limits, and latency. The elevation changes result in disturbances to the header height control problem and the feedforward controller uses the knowledge of the field to increase the overall disturbance rejection bandwidth. Simulation and experimental results illustrate the performance improvements resulting from the 2-DOF design over the stand alone feedback controller, which removes a long standing obstacle in increasing the harvesting productivity. Additionally, an error analysis examines the effect of uncertainties from system modeling and field map measurements on the system performance.
      PubDate: Wed, 28 May 2014 00:00:00 GMT
  • Teleoperation Systems Design Using Singular Perturbation Method and
           Sliding Mode Controllers
    • Authors: Ganjefar S; Sarajchi M, Mahmoud Hoseini SS.
      Abstract: The purpose of designing a controller for a teleoperation system is to achieve stability and optimal operation in the presence of factors such as time-delay, system disturbance, and modeling errors. This paper proposes a new method of controller design based on singular perturbation for the bilateral teleoperation of robots through Internet. This study provides sliding mode controller based on the singular perturbation model which is robust on time-varying delay. Using singular perturbation method, the teleoperation system is decomposed into fast and slow subsystems. Teleoperation systems usually have complex dynamic and controller designing is difficult for them. This method is a novel step toward reducing order modeling. In this paper, teleoperation system dynamic was decomposed into two states, slave and error (different from master and slave) and a sliding mode controller was designed for each state. Despite the communication channel in teleoperation systems, it is difficult and almost impossible to design controller based on full-order system. Therefore, many researchers have focused on controller design based on master and slave subsystems. This study shows that the singular perturbation is a proper method for controller design in master or slave, based on slave and error subsystem models with the effect on the total system. It is intended here to reduce the tracking error between the master and the slave. For different values of time-delay, the positions of master-slave were compared. This comparison was also applied for master and slave control signals based on singular perturbation. In all schemes, the effectiveness of the system was shown through simulations and comparisons between the various schemes were presented.
      PubDate: Thu, 22 May 2014 00:00:00 GMT
  • An Analytical Study of Dynamic Characteristics of Multi-Story Timoshenko
           Planar Frame Structures
    • Authors: Mei CC.
      Abstract: This paper concerns in-plane vibration analysis of coupled bending and longitudinal vibrations in multi-story planar frame structures based on the advanced Timoshenko bending theory. It takes into account the effects of both rotary inertia and shear distortion. A wave based vibration analysis approach is proposed. From a wave vibration standpoint, vibrations propagate along a uniform waveguide (or structural element), and are reflected and transmitted at discontinuities (such as joints and boundaries). Reflection matrices at various boundaries, as well as transmission and reflection matrices at joint discontinuities are derived. Natural frequencies of coupled bending and longitudinal in-plane vibrations are obtained by assembling these propagation, reflection, and transmission matrices. Numerical examples are presented along with comparisons to results available in literature. The examples show good agreement with the results presented in the available literature.
      PubDate: Mon, 19 May 2014 00:00:00 GMT
  • System Identification and Control Design of Vapor Compression Cycle
    • Authors: Mahmoud MS; Baig MH.
      Abstract: In vapor compression cycle (VCC) systems, it is desirable to control the thermodynamic cycle effectively by controlling the thermodynamic states of the refrigerant. By controlling the thermodynamic states with an inner loop, supervisory algorithms can manage critical functions and objectives such as maintaining superheat and maximizing the coefficient of performance. This paper describes a novel two-stage control system design, in which the first stage considers the application of system identification techniques to obtain models using experimental data of a vapor compression plant. Several models were identified, wherein the output parameters within each model shared the same inputs and the one picked up for control design has the largest level of fitness. In the second stage, a set of improved control methods are implemented to design controllers for thermodynamic states of the VCC system based on the identified models. The methods include a new linear matrix inequality (LMI)-based guaranteed control, H∞ controller, Kalman filter and the Linear Quadratic Gaussian Regulator (LQGR). The ensuing results of typical simulation on a lab-scale vapor compression plant have illustrated the effectiveness of the developed approach.
      PubDate: Mon, 19 May 2014 00:00:00 GMT
  • Compound Velocity Synchronizing Control Strategy for Electro-Hydraulic
           Load Simulator and Its Engineering Application
    • Authors: Han S; Jiao Z, Yao J, et al.
      Abstract: An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.
      PubDate: Mon, 12 May 2014 00:00:00 GMT
  • Bilateral Control and Stabilization of Asymmetric Teleoperators With
           Bounded Time-Varying Delays
    • Authors: Hilliard T; Pan Y.
      Abstract: A novel control scheme for asymmetric bilateral teleoperation systems is developed based on linear models of the hardware, with considerations in the existence of communication time delays. The master and slave manipulators were modeled as linear single degree of freedom systems. The human user force was modeled based on the band limited availability of human motion, and the environmental force was modeled as a spring and damper combination based on the slave position. The configuration of the whole system represents a relatively general framework for the teleoperation systems. The main contribution of the work can be concluded as follows. First to deal with asymmetric systems in teleoperation, an impedance matching approach was applied to the master side dynamics, while a static error feedback gain was used to stabilize the slave side dynamics. Second, in the existence of bounded random time-varying delays, approaches and techniques based on the Lyapunov method proposed for network controlled systems are now proposed for bilateral teleoperation systems. Specifically, a Lyapunov functional is proposed with consideration for the upper and lower bound of random delays. Linear matrix inequality (LMI) techniques are used with rigorous stability proof to design the slave side controller control gains. Furthermore, the cone complementarity algorithm is used to deal with nonlinear terms within the LMI under the new formulation. Finally, the applications of the proposed algorithm to haptic devices are described thoroughly, and experimental results with comparisons to simulation results are demonstrated to show the effectiveness of the proposed approach.
      PubDate: Mon, 12 May 2014 00:00:00 GMT
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014