for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 1962 journals)
    - CHEMICAL ENGINEERING (151 journals)
    - CIVIL ENGINEERING (149 journals)
    - ELECTRICAL ENGINEERING (82 journals)
    - ENGINEERING (1119 journals)
    - ENGINEERING MECHANICS AND MATERIALS (290 journals)
    - HYDRAULIC ENGINEERING (45 journals)
    - INDUSTRIAL ENGINEERING (52 journals)
    - MECHANICAL ENGINEERING (74 journals)

ENGINEERING (1119 journals)            First | 1 2 3 4 5 6 7 8 | Last

Developments in Geotechnical Engineering     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription  
Diálogos Interdisciplinares     Open Access  
Diamond Light Source Proceedings     Full-text available via subscription  
Digital Signal Processing     Hybrid Journal   (Followers: 4)
Discrete Optimization     Full-text available via subscription   (Followers: 4)
Doct-Us Journal     Open Access  
Documents pour l'histoire des techniques     Open Access   (Followers: 1)
Dyes and Pigments     Hybrid Journal   (Followers: 3)
Dyna     Open Access  
Dynamical Systems: An International Journal     Hybrid Journal   (Followers: 1)
El Hombre y la Máquina     Open Access  
Electromagnetics     Hybrid Journal   (Followers: 1)
Electrophoresis     Hybrid Journal   (Followers: 5)
Elsevier Geo-Engineering Book Series     Full-text available via subscription   (Followers: 1)
Elsevier Ocean Engineering Series     Full-text available via subscription  
Embedded Systems Letters, IEEE     Hybrid Journal   (Followers: 14)
Energies     Open Access   (Followers: 1)
Energy and Power Engineering     Open Access   (Followers: 6)
Energy Conversion and Management     Hybrid Journal   (Followers: 6)
Energy Engineering     Full-text available via subscription   (Followers: 8)
Energy for Sustainable Development     Hybrid Journal   (Followers: 8)
Energy Procedia     Open Access   (Followers: 2)
Energy Science & Engineering     Open Access   (Followers: 3)
Energy Science and Technology     Open Access   (Followers: 9)
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects     Hybrid Journal   (Followers: 2)
Energy Sources, Part B: Economics, Planning, and Policy     Hybrid Journal   (Followers: 6)
Energy Systems     Hybrid Journal   (Followers: 8)
ENGEVISTA     Open Access  
ENGI : Revista Electrónica de la Facultad de Ingenieria     Open Access  
Engineer : Journal of the Institution of Engineers, Sri Lanka     Open Access  
Engineering     Open Access   (Followers: 2)
Engineering & Technology     Hybrid Journal   (Followers: 15)
Engineering Analysis with Boundary Elements     Hybrid Journal   (Followers: 1)
Engineering Computations     Hybrid Journal   (Followers: 3)
Engineering Economics     Open Access   (Followers: 4)
Engineering Economist, The     Hybrid Journal   (Followers: 3)
Engineering Education     Open Access  
Engineering Failure Analysis     Hybrid Journal   (Followers: 22)
Engineering Geology     Hybrid Journal   (Followers: 7)
Engineering Journal     Open Access   (Followers: 1)
Engineering Management Journal     Hybrid Journal   (Followers: 12)
Engineering Management Research     Open Access   (Followers: 4)
Engineering Management Reviews     Open Access   (Followers: 1)
Engineering Optimization     Hybrid Journal   (Followers: 5)
Engineering Sciences     Open Access  
Engineering Studies     Hybrid Journal  
Engineering With Computers     Hybrid Journal   (Followers: 5)
Engineering, Technology & Applied Science Research     Open Access  
Entramado     Open Access  
Entropy     Open Access   (Followers: 3)
Environmental & Engineering Geoscience     Full-text available via subscription   (Followers: 2)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 5)
Environmetrics     Hybrid Journal  
Épités - Épitészettudomány     Full-text available via subscription   (Followers: 1)
EPJ Photovoltaics     Open Access  
Ergonomics in Design: The Quarterly of Human Factors Applications     Hybrid Journal   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription  
ESAIM: Mathematical Modelling and Numerical Analysis     Full-text available via subscription   (Followers: 3)
ESAIM: Proceedings     Open Access  
Estuaries and Coasts     Hybrid Journal   (Followers: 3)
EURASIP Journal on Advances in Signal Processing     Open Access   (Followers: 3)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 1)
European Journal of Engineering Education     Hybrid Journal   (Followers: 1)
European Journal of Lipid Science and Technology     Hybrid Journal   (Followers: 1)
European Journal of Mass Spectrometry     Full-text available via subscription   (Followers: 10)
European Medical Device Technology     Full-text available via subscription   (Followers: 2)
European Physical Journal - Applied Physics     Full-text available via subscription   (Followers: 4)
European Transport Research Review     Open Access   (Followers: 9)
Evolutionary Intelligence     Hybrid Journal  
Evolving Systems     Hybrid Journal  
Exacta     Open Access  
Experimental Techniques     Hybrid Journal   (Followers: 15)
Experiments in Fluids     Hybrid Journal   (Followers: 4)
Fibers and Polymers     Full-text available via subscription   (Followers: 3)
Filtration & Separation     Full-text available via subscription   (Followers: 1)
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 2)
Fire Science Reviews     Open Access   (Followers: 1)
First Monday     Open Access   (Followers: 147)
Flexible Services and Manufacturing Journal     Hybrid Journal   (Followers: 2)
Flow, Turbulence and Combustion     Hybrid Journal   (Followers: 14)
Fluid Dynamics     Hybrid Journal   (Followers: 5)
Fluid Dynamics Research     Full-text available via subscription   (Followers: 7)
Fluid Phase Equilibria     Hybrid Journal   (Followers: 1)
Focus on Catalysts     Full-text available via subscription  
Focus on Pigments     Full-text available via subscription   (Followers: 4)
Focus on Powder Coatings     Full-text available via subscription   (Followers: 3)
Focus on Surfactants     Full-text available via subscription   (Followers: 3)
Food Engineering Reviews     Hybrid Journal   (Followers: 2)
Formación Universitaria     Open Access   (Followers: 3)
FORMakademisk     Open Access  
Formal Methods in System Design     Hybrid Journal   (Followers: 6)
Forschung     Hybrid Journal  
Forschung im Ingenieurwesen     Hybrid Journal  
Foundations and Trends in Systems and Control     Full-text available via subscription  
Foundations and Trends® in Communications and Information Theory     Full-text available via subscription   (Followers: 5)
Foundations and Trends® in Electronic Design Automation     Full-text available via subscription  
Foundations of Science     Hybrid Journal  
Frontiers in Aerospace Engineering     Open Access   (Followers: 3)
Frontiers in Energy     Hybrid Journal   (Followers: 2)

  First | 1 2 3 4 5 6 7 8 | Last

Journal Cover Frontiers in Energy
   [4 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 2095-1701 - ISSN (Online) 2095-1698
     Published by Springer-Verlag Homepage  [2209 journals]
  • Multi-objective design optimization of a large-scale directdrive permanent
           magnet generator for wind energy conversion systems
    • Abstract: Abstract This paper presents a simultaneous multiobjective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e., the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.
      PubDate: 2014-06-01
       
  • Power quality investigation of a solar PV transformer-less grid-connected
           system fed DVR
    • Abstract: Abstract This paper presents a single stage transformer-less grid-connected solar photovoltaic (PV) system with an active and reactive power control. In the absence of active input power, the grid-tied voltage source converter (VSC) is operated in a reactive power generation mode, which powers the control circuitry, and maintains a regulated DC voltage to the VSC. A data-based maximum power point tracking (MPPT) control scheme which performs power quality control at a maximum power by reducing the total harmonic distortion (THD) in grid injected current as per IEEE-519/1547 standards is implemented. A proportional-integral (PI) controller based dynamic voltage restorer (DVR) control scheme is implemented which controls the grid side converter during single-phase to ground fault. The analysis includes the grid current THD along with the corresponding variation of the active and reactive power during the fault condition. The MPPT tracks the actual variable DC link voltage while deriving the maximum power from the solar PV array, and maintains the DC link voltage constant by changing the modulation index of the VSC. Simulation results using Matlab/Simulink are presented to demonstrate the feasibility and validations of the proposed novel MPPT and DVR control systems under different environmental conditions.
      PubDate: 2014-06-01
       
  • Unified power quality conditioner based on a three-level NPC inverter
           using fuzzy control techniques for all voltage disturbances compensation
    • Abstract: Abstract This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.
      PubDate: 2014-06-01
       
  • Experimental study of heat transfer coefficient with rectangular baffle
           fin of solar air heater
    • Abstract: Abstract This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number Re from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number Nu have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.
      PubDate: 2014-06-01
       
  • Reactive power compensation of an isolated hybrid power system with load
           interaction using ANFIS tuned STATCOM
    • Abstract: Abstract This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is ful-filled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.
      PubDate: 2014-06-01
       
  • Power quality improvement using fuzzy logic controller for five-level
           shunt active power filter under distorted voltage conditions
    • Abstract: Abstract In this paper, a five-level inverter is used as a shunt active power filter (APF), taking advantages of the multilevel inverter such as low harmonic distortion and reduced switching losses. It is used to compensate reactive power and eliminate harmonics drawn from a thyristor rectifier feeding an inductive load (RL) under distorted voltage conditions. The APF control strategy is based on the use of self-tuning filters (STF) for reference current generation and a fuzzy logic current controller. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the α-β axis without phase locked loop (PLL). The MATLAB fuzzy logic toolbox is used for implementing the fuzzy logic control algorithm. The obtained results show that the proposed shunt APF controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the line voltage.
      PubDate: 2014-06-01
       
  • Performance of PI controller for control of active and reactive power in
           DFIG operating in a grid-connected variable speed wind energy conversion
           system
    • Abstract: Abstract Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simulation tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.
      PubDate: 2014-05-05
       
  • Electromagnetic modeling and control of switched reluctance motor using
           finite elements
    • Abstract: Abstract This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase 6/4 SRM is given theoretical calculation of inductance of the SRM model. The SRM was then tested in a Matlab/Simulink environment and numerically analyzed by using nonlinear 2D look-up tables created from its calculated flux linkage and static torque data. The simulation studied the hysteresis and voltage control strategies. The ideal waveform of stator current under the voltage-current condition and improved shape of rotor were proposed.
      PubDate: 2014-04-25
       
  • Solution to economic dispatch problem with valve-point loading effect by
           using catfish PSO algorithm
    • Abstract: Abstract This paper proposes application of a catfish particle swarm optimization (PSO) algorithm to economic dispatch (ED) problems. The ED problems considered in this paper include valve-point loading effect, power balance constraints, and generator limits. The conventional PSO and catfish PSO algorithms are applied to three different test systems and the solutions obtained are compared with each other and with those reported in literature. The comparison of solutions shows that catfish PSO outperforms the conventional PSO and other methods in terms of solution quality though there is a slight increase in computational time.
      PubDate: 2014-04-04
       
  • A solution to stochastic unit commitment problem for a wind-thermal system
           coordination
    • Abstract: Abstract Unit commitment (UC) problem is one of the most important decision making problems in power system. In this paper the UC problem is solved by considering it as a real time problem by adding stochasticity in the generation side because of wind-thermal co-ordination system as well as stochasticity in the load side by incorporating the randomness of the load. The most important issue that needs to be addressed is the achievement of an economic unit commitment solution after solving UC as a real time problem. This paper proposes a hybrid approach to solve the stochastic UC problem considering the volatile nature of wind and formulating the UC problem as a chance constrained problem in which the load is met with high probability over the entire time period.
      PubDate: 2014-03-26
       
  • Novel quantum-inspired firefly algorithm for optimal power quality monitor
           placement
    • Abstract: Abstract The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum principles to attain a faster convergence rate that can improve system performance and to avoid premature convergence. In the optimization process, a multi-objective function was used with the system observability constraint, which is determined via the topological monitor reach area concept. The multi-objective function comprises three functions: number of required monitors, monitor overlapping index, and sag severity index. The effectiveness of the proposed method was verified by applying the algorithm to an IEEE 118-bus transmission system and by comparing the algorithm with others of its kind.
      PubDate: 2014-03-24
       
  • Potential and economic viability of standalone hybrid systems for a rural
           community of Sokoto, North-west Nigeria
    • Abstract: Abstract An assessment of the potential and economic viability of standalone hybrid systems for an off-grid rural community of Sokoto, North-west Nigeria was conducted. A specific electric load profile was developed to suite the community consisting 200 homes, a school and a community health center. The data obtained from the Nigeria Meteorological Department, Oshodi, Lagos (daily mean wind speeds, and daily global solar radiation for 24 years from 1987 to 2010) were used. An assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 3 stand-alone applications of photovoltaic (PV), wind and diesel, and 3 hybrid designs of wind-PV, wind-diesel, and solar-diesel. The diesel standalone system (DSS) was taken as the basis of comparison as the experimental location has no connection to a distribution network. The HOMER® software optimizing tool was engaged following the feasibility analysis with the RETScreen software. The wind standalone system (WSS) was found to be the optimal means of producing renewable electricity in terms of life cycle cost as well as levelised cost of producing energy at $0.15/(kW$h). This is competitive with grid electricity, which is presently at a cost of approximately $0.09/(kW$h) and 410% better than the conventional DSS at a levelized cost of energy (LCOE) of $0.62/kWh. The WSS is proposed for communities around the study site.
      PubDate: 2014-03-24
       
  • Hip-mounted electromagnetic generator to harvest energy from human motion
    • Abstract: Abstract A type of electromagnetic hip-mounted generator (EHG) is proposed to harvest energy from human hip motion to generate electricity. Based on the law of electromagnetic induction, the EHG generator can convert the kinetic power of the thigh swing into electrical energy during walking or running. To demonstrate the feasibility of the present method, a prototype of the EHG has been designed and fabricated. A theoretical analysis has been conducted to interpret the working behavior of this prototype. In addition, the performance of the system has been experimentally tested through a rotary motor and human body motion. When driven by the rotary motor at a rotation speed of 100 r/min, the open-circuit voltage of this prototype is 2.5 V. Further, a maximum open-circuit voltage of approximately 1 V and a maximum output power of 284 μW could be produced respectively when walking with an EHG at a speed of 1.47 m/s. This handy renewable energy technology is promising as a pervasive electricity generation system for a group of wearable or implanted sensors, actuators and mobile electronics.
      PubDate: 2014-03-11
       
  • Heat transfer and fluid flow analysis of an artificially roughened solar
           air heater: a CFD based investigation
    • Abstract: Abstract In this paper, the effect of rib (circular sectioned) spacing on average Nusselt number and friction factor in an artificially roughened solar air heater (duct aspect ratio, AR = 5:1) is studied by adopting the computational fluid dynamics (CFD) approach. Numerical solutions are obtained using commercial software ANSYS FLUENT v12.1. The computations based on the finite volume method with the semi-implicit method for pressure-linked equations (SIMPLE) algorithm have been conducted. Circular sectioned transverse ribs are applied at the underside of the top of the duct, i.e., on the absorber plate. The rib-height-to-hydraulic diameter ratio (e/D) is 0.042. The rib-pitch-to-rib-height (P/e) ratios studied are 7.14, 10.71, 14.29 and 17.86. For each rib spacing simulations are executed at six different relevant Reynolds numbers from 3800 to 18000. The thermo-hydraulic performance parameter for P/e = 10.71 is found to be the best for the investigated range of parameters at a Reynolds number of 15000.
      PubDate: 2014-03-01
       
  • Enhancing power generation of piezoelectric bimorph device through
           geometrical optimization
    • Abstract: Abstract In this paper, it is demonstrated that the power output of a bimorph energy harvesting device can be significantly enhanced through geometrical optimization. The results of the study show that the maximum power is generated when the length of piezoelectric layer is 1/3 and the length of proof mass is 2/3 of the total device length. An optimized device with a total volume of approximately 0.5 cm3 was fabricated and was experimentally characterized. The experimental results show that the optimized device is capable of delivering a maximum power of 1.33 mW to a matched resistive load of 138.4 kΩ, when driven by a peak mechanical acceleration of 1 g at the resonance frequency of 68.47 Hz. This is a very significant power output representing a power density of 2.65 mW/cm3 compared to the value of 200 μW/cm3 normally reported in literature.
      PubDate: 2014-03-01
       
  • Influence of infiltration on energy consumption of a winery building
    • Abstract: Abstract With the wide use of light steel structure in industrial buildings, some problems such as air leakage, water dripping and condensation and so forth occur during the construction and operation phases. Through the onsite testing of a winery building in Huailai County, Hebei Province in China, the influence of infiltration on energy consumption in industrial buildings was studied. The pressurization test method and moisture condensation method were used to test the infiltration rates. The results show that the winery building is twice as leaky as normal Chinese buildings and five times as leaky as Canadian buildings. The energy use simulation demonstrates that the reduction of the infiltration rate of the exterior rooms to 1/3 and the interior rooms to 1/2 could help decrease a total energy consumption of approximately 20% and reduce a total energy cost of approximately $ 225000. Therefore, it has a great potential to reduce the energy consumption in this type of buildings. Enforcement of the appropriate design, construction and installation would play a significant role in improving the overall performance of the building.
      PubDate: 2014-01-13
       
  • Assessment of a fuzzy logic based MRAS observer used in a photovoltaic
           array supplied AC drive
    • Abstract: Abstract In this paper a fuzzy logic (FL) based model reference adaptive system (MRAS) speed observer for high performance AC drives is proposed. The error vector computation is made based on the rotor-flux derived from the reference and the adaptive model of the induction motor. The error signal is processed in the proposed fuzzy logic controller (FLC) for speed adaptation. The drive employs an indirect vector control scheme for achieving a good closed loop speed control. For powering the drive system, a standalone photovoltaic (PV) energy source is used. To extract the maximum power from the PV source, a constant voltage controller (CVC) is also proposed. The complete drive system is modeled in MATLAB/Simulink and the performance is analyzed for different operating conditions.
      PubDate: 2014-01-04
       
  • Calculations of narrow-band transimissities and the Planck mean absorption
           coefficients of real gases using line-by-line and statistical narrow-band
           models
    • Abstract: Abstract Narrow-band transmissivities in the spectral range of 150 to 9300 cm−1 and at a uniform resolution of 25 cm−1 were calculated using the statistical narrow-band (SNB) model with the band parameters of Soufiani and Taine, the more recent parameters of André and Vaillon, and the line-by-line (LBL) method along with the HITEMP-2010 spectroscopic database. Calculations of narrow-band transmissivity were conducted for gas columns of different lengths and containing different isothermal and non-isothermal CO2-H2O-N2 mixtures at 1 atm. Narrow-band transmissivities calculated by the SNB model are in large relative error at many bands. The more recent SNB model parameters of André and Vaillon are more accurate than the earlier parameters of Soufiani and Taine. The Planck mean absorption coefficients of CO2, H2O, CO, and CH4 in the temperature range of 300 to 2500 K were calculated using the LBL method and different versions of the high resolution transmission (HITRAN) and high-temperature spectroscopic absorption parameters (HITEMP) spectroscopic databases. The SNB model was also used to calculate the Planck mean absorption coefficients of these four radiating gases. The LBL results of the Planck mean absorption coefficient were compared with the classical results of Tien and those from the SNB model.
      PubDate: 2014-01-03
       
  • A simple digital control algorithm for three phase shunt active filter:
           simulation and experimentation
    • Abstract: Abstract A novel and simple i freal control algorithm using digital signal processor (DSP) has been proposed and realized for a three phase shunt active filter (SAF). The simulation and prototype construction of SAF is conducted to compensate the reactive power and harmonics in a distribution system. The major feature of the proposed i freal algorithm is that it does not require unit vector templates and any transformations for the reference current generation of SAF. This reduces the computational complexity and makes the control flexible and faster. The simulation is conducted in MATLAB/SIMULINK while DSP TMS320LF2407 is employed in the digital implementation of hysteresis current control (HCC) for experimentation. The hardware results correlate with the simulation results in reducing the total harmonic distortion (THD) of the source current and achieving unity power factor.
      PubDate: 2013-12-30
       
  • A linear quadratic regulator control of a stand-alone PEM fuel cell power
           plant
    • Abstract: Abstract This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a standalone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains k i by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD), which is very useful for high power applications.
      PubDate: 2013-12-26
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014