for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2118 journals)
    - CHEMICAL ENGINEERING (179 journals)
    - CIVIL ENGINEERING (159 journals)
    - ELECTRICAL ENGINEERING (89 journals)
    - ENGINEERING (1163 journals)
    - HYDRAULIC ENGINEERING (54 journals)
    - INDUSTRIAL ENGINEERING (54 journals)
    - MECHANICAL ENGINEERING (79 journals)

ENGINEERING (1163 journals)            First | 1 2 3 4 5 6 7 8 | Last

Design Journal     Full-text available via subscription   (Followers: 17)
Designed Monomers and Polymers     Hybrid Journal   (Followers: 2)
Designs, Codes and Cryptography     Hybrid Journal   (Followers: 7)
Developments in Clay Science     Full-text available via subscription  
Developments in Geotechnical Engineering     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 1)
Diálogos Interdisciplinares     Open Access  
Diamond Light Source Proceedings     Full-text available via subscription  
Digital Signal Processing     Hybrid Journal   (Followers: 8)
Discrete Optimization     Full-text available via subscription   (Followers: 5)
Doct-Us Journal     Open Access  
Documents pour l'histoire des techniques     Open Access   (Followers: 1)
Dyes and Pigments     Hybrid Journal   (Followers: 3)
Dyna     Open Access  
Dynamical Systems: An International Journal     Hybrid Journal   (Followers: 1)
El Hombre y la Máquina     Open Access  
Electromagnetics     Hybrid Journal   (Followers: 1)
Electrophoresis     Hybrid Journal   (Followers: 5)
Elsevier Geo-Engineering Book Series     Full-text available via subscription   (Followers: 2)
Elsevier Ocean Engineering Series     Full-text available via subscription   (Followers: 1)
Embedded Systems Letters, IEEE     Hybrid Journal   (Followers: 22)
Energies     Open Access   (Followers: 2)
Energy and Power Engineering     Open Access   (Followers: 10)
Energy Conversion and Management     Hybrid Journal   (Followers: 8)
Energy Engineering     Full-text available via subscription   (Followers: 9)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Energy Procedia     Open Access   (Followers: 4)
Energy Science & Engineering     Open Access   (Followers: 4)
Energy Science and Technology     Open Access   (Followers: 12)
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects     Hybrid Journal   (Followers: 2)
Energy Sources, Part B: Economics, Planning, and Policy     Hybrid Journal   (Followers: 6)
Energy Systems     Hybrid Journal   (Followers: 11)
ENGEVISTA     Open Access   (Followers: 1)
ENGI : Revista Electrónica de la Facultad de Ingenieria     Open Access  
Engineer : Journal of the Institution of Engineers, Sri Lanka     Open Access  
Engineering     Open Access   (Followers: 2)
Engineering & Technology     Hybrid Journal   (Followers: 19)
Engineering Analysis with Boundary Elements     Hybrid Journal   (Followers: 1)
Engineering Computations     Hybrid Journal   (Followers: 3)
Engineering Economics     Open Access   (Followers: 4)
Engineering Economist, The     Hybrid Journal   (Followers: 2)
Engineering Education     Open Access   (Followers: 1)
Engineering Failure Analysis     Hybrid Journal   (Followers: 41)
Engineering Geology     Hybrid Journal   (Followers: 8)
Engineering International     Open Access  
Engineering Journal     Open Access   (Followers: 1)
Engineering Management Journal     Hybrid Journal   (Followers: 13)
Engineering Management Research     Open Access   (Followers: 4)
Engineering Management Reviews     Open Access   (Followers: 1)
Engineering Optimization     Hybrid Journal   (Followers: 7)
Engineering Sciences     Open Access  
Engineering Studies     Hybrid Journal  
Engineering With Computers     Hybrid Journal   (Followers: 5)
Engineering, Technology & Applied Science Research     Open Access  
Entramado     Open Access  
Entropy     Open Access   (Followers: 3)
Environmental & Engineering Geoscience     Full-text available via subscription   (Followers: 2)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 5)
Environmetrics     Hybrid Journal  
Épités - Épitészettudomány     Full-text available via subscription   (Followers: 1)
EPJ Photovoltaics     Open Access   (Followers: 1)
Épsilon     Open Access  
Ergonomics in Design: The Quarterly of Human Factors Applications     Hybrid Journal   (Followers: 9)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription  
ESAIM: Mathematical Modelling and Numerical Analysis     Full-text available via subscription   (Followers: 2)
ESAIM: Proceedings     Open Access  
Estuaries and Coasts     Hybrid Journal   (Followers: 6)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 3)
European Journal of Engineering Education     Hybrid Journal   (Followers: 2)
European Journal of Lipid Science and Technology     Hybrid Journal   (Followers: 1)
European Journal of Mass Spectrometry     Full-text available via subscription   (Followers: 10)
European Medical Device Technology     Full-text available via subscription   (Followers: 3)
European Physical Journal - Applied Physics     Full-text available via subscription   (Followers: 5)
European Transport Research Review     Open Access   (Followers: 11)
Evolutionary Intelligence     Hybrid Journal  
Evolving Systems     Hybrid Journal   (Followers: 1)
Exacta     Open Access  
Experimental Techniques     Hybrid Journal   (Followers: 46)
Experiments in Fluids     Hybrid Journal   (Followers: 6)
Fibers and Polymers     Full-text available via subscription   (Followers: 3)
Filtration & Separation     Full-text available via subscription   (Followers: 6)
Finite Fields and Their Applications     Full-text available via subscription   (Followers: 3)
Fire Science Reviews     Open Access   (Followers: 2)
First Monday     Open Access   (Followers: 243)
Flexible Services and Manufacturing Journal     Hybrid Journal   (Followers: 1)
Flow, Turbulence and Combustion     Hybrid Journal   (Followers: 17)
Fluid Dynamics     Hybrid Journal   (Followers: 5)
Fluid Dynamics Research     Full-text available via subscription   (Followers: 7)
Fluid Phase Equilibria     Hybrid Journal   (Followers: 2)
Focus on Catalysts     Full-text available via subscription  
Focus on Pigments     Full-text available via subscription   (Followers: 3)
Focus on Powder Coatings     Full-text available via subscription   (Followers: 3)
Focus on Surfactants     Full-text available via subscription   (Followers: 4)
Food Engineering Reviews     Hybrid Journal   (Followers: 2)
Food Science and Technology     Open Access   (Followers: 2)
Formación Universitaria     Open Access   (Followers: 3)
FORMakademisk     Open Access  
Formal Methods in System Design     Hybrid Journal   (Followers: 6)
Forschung     Hybrid Journal  
Forschung im Ingenieurwesen     Hybrid Journal  

  First | 1 2 3 4 5 6 7 8 | Last

Journal Cover   Frontiers in Energy
  [SJR: 0.231]   [H-I: 4]   [6 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 2095-1701 - ISSN (Online) 2095-1698
   Published by Springer-Verlag Homepage  [2302 journals]
  • Inhibition of NO emission by adding antioxidant mixture in Jatropha
           biodiesel on the performance and emission characteristics of a C.I. engine
    • Abstract: Abstract In this paper, the effect of adding an antioxidant mixture in Jatropha biodiesel as fuel, in a single cylinder, direct injection compression ignition engine was experimentally investigated and the level of pollutants in the exhaust and performance characteristics of the engine were analyzed. Nine test fuels were prepared with three antioxidants, namely, Succinimide (C4H5NO2), N,N-dimethyl-p-phenylenediamine-dihydrochloride (C8H14Cl2N2), and N-phenyl-p-phenylenediamine (C6H5NHC6H4NH2) added to neat biodiesel at 500 parts per million (ppm), 1000 ppm and 2000 ppm and the observed experimental results were compared with those of neat biodiesel and neat diesel as base fuels. The comparison showed that NO emission was reduced drastically for the test fuels with the antioxidant addition of 2000 ppm. The maximum reduction of 10% of NO emission was observed for the antioxidant mixture in neat biodiesel, with a slight increase in unburned HC, CO and smoke opacity. In addition, the obtained experimental results reveal that the addition of two antioxidants as mixture in neat biodiesel caused improved NO emission reduction for all test fuels.
      PubDate: 2015-04-15
  • Ternary phase behavior of water microemulsified diesel-palm biodiesel
    • Abstract: Abstract This paper aims to develop a new microemulsions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel microemulsions were prepared by applying PME mixed with diesel, non-ionic surfactants, co-surfactants and water to make the water-in-oil (W/O) microemulsion system. This microemulsified fuel was achieved through low-energy microemulsification by using the constant composition method. The diesel used was mixed with four different concentrations of PME, i.e., 10% (w/w) (B10), 20% (w/w) (B20), 30% (w/w) (B30) and neat diesel (B0). The amount of water was fixed at 20%(w/w). The phase behavior of the water/mixed non-ionic surfactant/diesel-PME system were studied by constructing pseudoternary phase diagrams with the goal of formulating optimized systems. The results showed that the microemulsions were formed and stabilized with a mixture of non-ionic surfactants at a weight ratio of 80:20 at 20% (w/w), and with mixed co-surfactants at a weight ratio of 25:75, 20:80 and 10:90 for B0, B10, B20 and B30 respectively. The particle size, kinematic viscosity at 40°C, refractive index, density, heating value, cloud point, pour point and flash point of the selected water-in-diesel microemulsion were 19.40 nm (polydispersity of 0.012), 12.86 mm2/s, 1.435, 0.8913 g/mL, 31.87 MJ/kg, 7.15°C, 10.5°C and 46.5°C respectively. The corresponding values of the water-in-diesel-PME selected were 20.72 nm to 23.74 nm, 13.02 mm2/s to 13.29 mm2/s, 1.442, 0.8939 g/mL to 0.8990 g/mL, 31.45 MJ/kg to 27.34 MJ/kg, 7.2°C to 6.8°C, 8.5°C to 1.5°C and 47.5°C to 52.0°C. These preliminary findings were further studied as potential fuels for diesel engines.
      PubDate: 2015-04-15
  • Optimal Su-Do-Ku based interconnection scheme for increased power output
           from PV array under partial shading conditions
    • Abstract: Abstract Partial shading is a common phenomenon in PV arrays. They drastically reduce the power output because of mismatch losses, which are reliant on the shape of the shade as well as the locations of shaded panels in the array. The power output can be improved by distributing the shade over various rows to maximize the current entering the node. A Su-Do-Ku configuration can be used to rearrange the physical locations of the PV modules in a total cross tied PV array with the electrical connections left unchanged. However, this arrangement increases the length of the wire required to interconnect the panels thus increasing the line losses. In this paper, an improved Su-Do-Ku arrangement that reduces the length of the wire required for the connection is proposed. The system is designed and simulated in a Matlab/Simulink environment for various shading patterns and the efficacies of various arrangements are compared. The results prove that the power output is higher in the proposed improved Su-Do-Ku reconfiguration technique compared to the earlier proposed Su-Do-Ku technique.
      PubDate: 2015-03-14
  • Energy consumption of 270 schools in Tianjin, China
    • Abstract: Abstract With the rapid development of education cause, the increasing energy consumption of school buildings is gradually causing widespread concern in recent years in China. This paper presented an analysis of energy consumption of 270 schools located in the city of Tianjin, China. The analysis focused specifically on calculating the space heating energy consumption indexes and non-heating energy consumption indexes of different types of schools, aiming at providing reliable and precise data for the government to elaborate policies and measures. The space heating energy consumption of schools adopting district heating and gas boiler were 92.04 kWh/(m2·a) and 64.25 kWh/(m2·a), respectively. Comparing to the schools without a canteen, the non-heating energy consumption index of schools with a canteen can increase by 8%–37%. Furthermore, clustering of different energy sources, the total primary energy consumption indexes were also presented. Space heating energy consumption accounted for approximately 64%–79% of the total primary energy consumption. When using time-sharing control and self-contained gas boiler instead of district heating, an amount of almost 27.8 kWh/(m2·a) and 77.5 kWh/(m2·a) can be saved respectively. Through extensive statistical analysis of the data collected, this paper demonstrated that gross floor area, heating energy source and canteen had a close relationship with the total primary energy consumption regarding complete schools. Eventually, a linear regression equation was established to make a simple prediction about the total energy consumption of existing complete schools and to estimate the energy consumption of complete schools to be built.
      PubDate: 2015-03-14
  • Experimental investigations on operating characteristics of a closed loop
           pulsating heat pipe
    • Abstract: Abstract The operating mechanism of the pulsating heat pipe (PHP) is not well understood and the present technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand the operation regimes of the PHP through experimental investigations. A series of experiments were conducted on a closed loop PHP with 5 turns made of copper capillary tube of 2 mm in inner diameter. Two different working fluids viz. ethanol and acetone were employed. The operating characteristics were studied for the variation of heat input, filling ratio (FR) and inclination angle of the tested device. The results strongly demonstrate the effect of the filling ratio of the working fluid on the operational stability and heat transfer capability of the device. Important insight into the operational characteristics of PHP has been obtained.
      PubDate: 2015-03-14
  • A comprehensive simulator for assessing the reliability of a photovoltaic
           panel peak power tracking system
    • Abstract: Abstract When designing a maximum power point tracking (MPPT) algorithm, it is often difficult to correctly predict, before field testing, the behavior of this MPPT under varying solar irradiation on photovoltaic (PV) panels. A solution to this problem is to design a maximum power point trackers simulator of a PV system used to test MPPT algorithms. This simulator must have the same role as the MPPT card of the PV panel and thus will fully emulate the response of a real MPPT card of the PV panel. Therefore, it is a good substitute to help to test the peak power trackers of the PV system in the laboratory. This paper describes a simple peak power trackers simulator of the PV system which has a short response time thus, can be used to test MPPT algorithms under very rapid variation condition. The obtained results and the theoretical operation confirm the reliability and the superior performance of the proposed model.
      PubDate: 2015-03-12
  • DSM in an area consisting of residential, commercial and industrial load
           in smart grid
    • Abstract: Abstract With the latest introduction of the demand side management (DSM) in smart grids, the power distribution units are able to modify the load schedules of the consumers. This involves a co-operative interaction of the utility and the consumers so as to achieve customer load modifications in which the customer, utility and society all are benefited. The interaction is performed with the help of the devices known as the smart meter. This paper shows the use of game theory and logical mathematical expressions in order to achieve the objectives. The objectives are to minimize the peak to average ratio (PAR) and the energy cost. The outcome of the game between supplier and customers helps to shape the load profile. The design proposed in this paper is very user-friendly and is based on simple logarithmic programming computations. In this paper, residential, commercial and industrial types of loads are taken into account. A basic 24 h load schedule along with the fluctuating prices at each hour of the day is forecasted by the supplier of the various shiftable and non-shiftable loads and then that schedule is conveyed to the user. The users are encouraged to shift their high load devices to off-peak hours which will not only reduce their electricity costs but also substantially reduce the PAR in the load demand.
      PubDate: 2015-03-06
  • Intelligent optimization of renewable resource mixes incorporating the
           effect of fuel risk, fuel cost and CO 2 emission
    • Abstract: Abstract Power system planning is a capital intensive investment-decision problem. The majority of the conventional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design practices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.
      PubDate: 2015-03-01
  • Exergy-energy analysis of full repowering of a steam power plant
    • Abstract: Abstract A 320MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.
      PubDate: 2015-03-01
  • A smooth co-ordination control for a hybrid autonomous power system (HAPS)
           with battery energy storage (BES)
    • Abstract: Abstract The standalone hybrid power system constitutes a synchronous generator driven by a diesel engine, renewable energy source (wind) apart from a battery energy storage system. A coherent control strategy to regulate the voltage and frequency of the standalone grid is proposed in this paper. The system is simulated using Matlab/Simulink for preliminary validation and further tested on a laboratory prototype which involves a TMS320LF2407A DSP controller to digitally implement the control strategy. The dynamic behavior of the system is perused through the direct connection of an induction machine. The control strategy is verified for step changes in load and variation in wind power.
      PubDate: 2015-02-10
  • Quantifying and mapping spatial variability of Shanghai household carbon
    • Abstract: Abstract Understanding the spatial variability of household carbon emissions is necessary for formulating sustainable and low-carbon energy policy. However, data on household carbon emissions is limited in China, the world’s largest greenhouse gases emitter. This study quantifies and maps household carbon emissions in Shanghai using a city-wide household survey. The findings reveal substantial spatial variability in household carbon emissions, especially in transport-related emissions. Low emission clusters are founded in Hongkou, Xuhui, Luwan, Jinshan, and Fengxian. High emission clusters are located in Jiading and Pudong. Overall, the spatial pattern of household carbon emissions in Shanghai is donut-shaped: lowest in the urban core, increasing in the surrounding suburban areas, and declining again in the urban fringe and rural regions. The household emissions are correlated with a number of housing and socioeconomic factors, including car ownership, type of dwelling, size of dwelling, age of dwelling, and income. The findings underscore the importance of a localized approach to low-carbon policymaking and implementation.
      PubDate: 2015-02-07
  • Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion
           in air atmosphere
    • Abstract: Abstract The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.
      PubDate: 2015-02-06
  • Pragmatic multi-stage simulated annealing for optimal placement of
           synchrophasor measurement units in smart power grids
    • Abstract: Abstract Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorporating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimization. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.
      PubDate: 2015-02-06
  • Sizing of hybrid PMSG-PV system for battery charging of electric vehicles
    • Abstract: Abstract The number of electric vehicles are increasing in the society as they are considered as zero emission vehicles and also because conventional fuels are becoming expensive. Additional electrical power should be produced to meet the energy requirement of this increase in electric vehicle population. To use the existing grid infrastructure without any failure, installing distributed generator at secondary distribution network is essential. In this work, sizing of wind-driven permanent magnet synchronous generator—photovoltaic hybrid distributed generating system has been attempted to meet the energy demand of electric vehicles of a particular residential area. Different feasible combinations for wind generator capacity and photovoltaic capacity are obtained to satisfy the additional energy requirement. Results are analyzed based on energy, financial payback periods and daily power profile of the hybrid system. Based on this analysis, the sizes of wind generator and photovoltaic array have been chosen to meet the energy demand of electric vehicles of that particular residential locality.
      PubDate: 2015-02-05
  • Fractional order extremum seeking approach for maximum power point
           tracking of photovoltaic panels
    • Abstract: Abstract Due to the high interest in renewable energy and diversity of research regarding photovoltaic (PV) array, a great research effort is focusing nowadays on solar power generation and its performance improvement under various weather conditions. In this paper, an integrated framework was proposed, which achieved both maximum power point tracking (MPPT) and minimum ripple signals. The proposed control scheme was based on extremum-seeking (ES) combined with fractional order systems (FOS). This auto-tuning strategy was developed to maximize the PV panel output power through the regulation of the voltage input to the DC/DC converter in order to lead the PV system steady-state to a stable oscillation behavior around the maximum power point (MPP). It is shown that fractional order operators can improve the plant dynamics with respect to time response and disturbance rejection. The effectiveness of the proposed controller scheme is illustrated with simulations using measured solar radiation data.
      PubDate: 2015-02-05
  • Multi-objective optimization of molten carbonate fuel cell system for
           reducing CO 2 emission from exhaust gases
    • Abstract: Abstract The aim of this paper is to investigate the implementation of a molten carbonate fuel cell (MCFC) as a CO2 separator. By applying multi-objective optimization (MOO) using the genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. Objective functions are minimization of the cost of electricity (COE) and minimization of CO2 emission rate. CO2 tax that is accounted as the pollution-related cost, transforming the environmental objective to the cost function. The results show that the MCFC stack which is fed by the syngas and gas turbine exhaust, not only reduces CO2 emission rate, but also produces electricity and reduces environmental cost of the system.
      PubDate: 2015-01-30
  • A modified neural learning algorithm for online rotor resistance
           estimation in vector controlled induction motor drives
    • Abstract: Abstract Online estimation of rotor resistance is essential for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. Neural based estimators are now receiving active consideration as they have a number of advantages over conventional techniques. The training algorithm of the neural network determines its learning speed, stability, weight convergence, accuracy of estimation, speed of tracking and ease of implementation. In this paper, the neural estimator has been studied with conventional and proposed learning algorithms. The sensitivity of the rotor resistance change has been tested for a wide range of variation from −50% to +50% on the stability of the drive system with and without estimator. It is quiet appealing to settle with optimal estimation time and error for the viable realization. The study is conducted extensively for estimation and tracking. The proposed learning algorithm is found to exhibit good estimation and tracking capabilities. Besides, it reduces computational complexity and, hence, more feasible for practical digital implementation.
      PubDate: 2015-01-21
  • Current situation and future perspectives of European natural gas sector
    • Abstract: Abstract Gas market in Europe is experiencing a radical change for different reasons, partially determined and accelerated by economic downturn of the last period. In the past few years, many European countries adopted energy policies largely based on the utilization of natural gas. In fact, a sharp increase of the demand was observed and, at the same time, a lot of infrastructures were developed to assure the necessary supply. In the last few years, due to the economic downturn, natural gas demand decreased, causing a consistent oversupply on the market, which altered the consolidated dynamics of the sector. Understanding the changes currently under development in the European gas market is of paramount importance in order to design future strategies for the sector; in particular, it is necessary to understand if the present situation will cause a reshaping of the sector.
      PubDate: 2015-01-21
  • Hybrid intelligent water drop bundled wavelet neural network to solve the
           islanding detection by inverter-based DG
    • Abstract: Abstract In this paper, a passive neuro-wavelet based islanding detection technique for grid-connected inverter-based distributed generation was developed. The weight parameters of the neural network were optimized by intelligent water drop (IWD) to improve the capability of the proposed technique in the proposed problem. The proposed method utilizes and combines wavelet analysis and artificial neural network (ANN) to detect islanding. Connecting distributed generator to the distribution network has many benefits such as increasing the capacity of the grid and enhancing the power quality. However, it gives rise to many problems. This is mainly due to the fact that distribution networks are designed without any generation units at that level. Hence, integrating distributed generators into the existing distribution network is not problem-free. Unintentional islanding is one of the encountered problems. Discrete wavelet transform (DWT) is capable of decomposing the signals into different frequency bands. It can be utilized in extracting discriminative features from the acquired voltage signals. In passive schemes with a large non-detection zone (NDZ), concern has been raised on active method due to its degrading power quality effect. The main emphasis of the proposed scheme is to reduce the NDZ to as close as possible and to keep the output power quality unchanged. The simulation results from Matlab/Simulink shows that the proposed method has a small non-detection zone, and is capable of detecting islanding accurately within the minimum standard time.
      PubDate: 2014-12-18
  • Impact of wind power generating system integration on frequency
           stabilization in multi-area power system with fuzzy logic controller in
           deregulated environment
    • Abstract: Abstract Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.
      PubDate: 2014-12-18
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015