for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2270 journals)
    - CHEMICAL ENGINEERING (191 journals)
    - CIVIL ENGINEERING (183 journals)
    - ELECTRICAL ENGINEERING (99 journals)
    - ENGINEERING (1199 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (64 journals)
    - MECHANICAL ENGINEERING (89 journals)

ENGINEERING (1199 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Full-text available via subscription   (Followers: 5)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 215)
Acta Geotechnica     Hybrid Journal   (Followers: 6)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 2)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 4)
Advanced Science     Open Access   (Followers: 4)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Artificial Neural Systems     Open Access   (Followers: 4)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 19)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 23)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 12)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 35)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 28)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 8)
Applied Clay Science     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 3)
Applied Nanoscience     Open Access   (Followers: 7)
Applied Network Science     Open Access  
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 3)
Applied Sciences     Open Access   (Followers: 2)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 7)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 2)
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 7)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 7)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
Batteries     Open Access   (Followers: 3)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 23)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 9)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 3)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 1)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription  
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Full-text available via subscription   (Followers: 13)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 40)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 7)
Case Studies in Thermal Engineering     Open Access   (Followers: 3)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 5)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 21)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 4)
Coatings     Open Access   (Followers: 2)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 23)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Composite Structures     Hybrid Journal   (Followers: 252)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 176)
Composites Part B : Engineering     Hybrid Journal   (Followers: 223)
Composites Science and Technology     Hybrid Journal   (Followers: 165)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 25)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 8)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 25)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 6)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 8)
Control Engineering Practice     Hybrid Journal   (Followers: 41)
Control Theory and Informatics     Open Access   (Followers: 7)
Corrosion Science     Hybrid Journal   (Followers: 24)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  

        1 2 3 4 5 6 | Last

Journal Cover Advances in Engineering Software
  [SJR: 0.812]   [H-I: 49]   [25 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0965-9978
   Published by Elsevier Homepage  [3031 journals]
  • Seismic parameters’ combinations for the optimum prediction of the
           damage state of R/C buildings using neural networks
    • Authors: Konstantinos Morfidis; Konstantinos Kostinakis
      Pages: 1 - 16
      Abstract: Publication date: April 2017
      Source:Advances in Engineering Software, Volume 106
      Author(s): Konstantinos Morfidis, Konstantinos Kostinakis
      The aim of the present paper is to investigate the number and the combination of 14 seismic parameters through which an optimum prediction for the damage state of r/c buildings can be achieved using Artificial Neural Networks (ANNs). Multilayer perceptron networks are utilized. For the training of the ANNs a data set is created using results from Nonlinear Time History Analyses of 30 r/c buildings with different structural dynamic characteristics, which are subjected to 65 actual ground motions. The Maximum Interstorey Drift Ratio is used as the damage index. Two versions of the “Stepwise method”, i.e. the Forward Stepwise Method and the Backward Stepwise Method, as well as the “Weights Method”, are adopted as methods for the investigation of the most effective combinations of the examined seismic parameters. The most significant conclusion that turned out is that ANNs can predict adequately the seismic damage state of r/c buildings if at least 5 seismic parameters are used as inputs. The classification of the seismic parameters on the basis of their correlation with the damage state is not unique, since it depends to the configuration and the training algorithm of ANNs as well as the method which is utilized for the classification.

      PubDate: 2017-01-11T12:31:28Z
      DOI: 10.1016/j.advengsoft.2017.01.001
      Issue No: Vol. 106 (2017)
  • An object-oriented MATLAB toolbox for automotive body conceptual design
           using distributed parallel optimization
    • Authors: Huan Qin; Zijian Liu; Yu Liu; Haolong Zhong
      Pages: 19 - 32
      Abstract: Publication date: April 2017
      Source:Advances in Engineering Software, Volume 106
      Author(s): Huan Qin, Zijian Liu, Yu Liu, Haolong Zhong
      Appropriate structural analysis and optimization methods are of great significance for the conceptual design of automotive body-in-white (BIW) structure. This paper simplifies BIW structure as a spatial semi-rigid framed structure to provide early-stage predictions. Then a novel exact transfer stiffness matrix method (TSMM) is proposed for both static and dynamic analyses of three-dimensional semi-rigid framed structures. The matrix storage and equation solution techniques for large-scale engineering structures are also considered. Additionally, a size optimization mathematical model for BIW conceptual structure is formulated and solved by genetic algorithm (GA). Afterwards, to promote the conceptual design of BIW structure, an object-oriented MATLAB toolbox, based on TSMM, is developed. The Unified Modeling Language (UML) and strategy design pattern are employed to facilitate the development of the toolbox. Distributed parallel computing technique is adopted to speed up the former sequential optimization algorithm with simple modifications. Lastly, the validity of this easy-used toolbox is demonstrated by a benchmarking auto-body.

      PubDate: 2017-01-24T17:15:25Z
      DOI: 10.1016/j.advengsoft.2017.01.003
      Issue No: Vol. 106 (2017)
  • Centralized and optimal motion planning for large-scale AGV systems: A
           generic approach
    • Authors: Bai Li; Hong Liu; Duo Xiao; Guizhen Yu; Youmin Zhang
      Pages: 33 - 46
      Abstract: Publication date: April 2017
      Source:Advances in Engineering Software, Volume 106
      Author(s): Bai Li, Hong Liu, Duo Xiao, Guizhen Yu, Youmin Zhang
      A centralized multi-AGV motion planning method is proposed. In contrast to the prevalent planners with decentralized (decoupled) formulations, a centralized planner contains no priority assignment, decoupling, or other specification strategies, thus is free from being case-dependent and deadlock-involved. Although centralized motion planning is computationally expensive, it deserves investigations in schemes that are sensitive to solution quality but insensitive to computation time. Specifically, centralized multi-AGV motion planning is formulated as an optimal control problem in this work, wherein differential algebraic equations are used to describe the AGV dynamics, mechanical restrictions, and exterior constraints. Orthogonal collocation direct transcription method is adopted to discretize the original infinite-dimensional optimal control problem into a large-scale nonlinear programming (NLP) problem, which is solved using interior point method thereafter. Exhaustive simulations are conducted on 10-AGV formation reconfiguration tasks. Simulation results show the validation, unification, and real-time implementation potential of the introduced centralized planner. Particularly, the computation time on a PC reduces to several seconds with near-optimal initial guess in the NLP solving process, making receding horizon replanning possible via this centralized planner.

      PubDate: 2017-01-24T17:15:25Z
      DOI: 10.1016/j.advengsoft.2017.01.002
      Issue No: Vol. 106 (2017)
  • HyTest: Platform for Structural Hybrid Simulations with Finite Element
           Model Updating
    • Authors: Ge Yang; Bin Wu; Ge Ou; Zhen Wang; Shirley Dyke
      Abstract: Publication date: Available online 19 May 2017
      Source:Advances in Engineering Software
      Author(s): Ge Yang, Bin Wu, Ge Ou, Zhen Wang, Shirley Dyke
      Hybrid simulation has been demonstrated to be a powerful method to evaluate the system-level dynamic performance of structure. With the numerical substructure analyzed with finite element software and the difficult-to-model components tested with an experimental substructure, complex structures with sophisticated behaviors can readily be examined through a hybrid simulation. To coordinate and synchronize the substructures in hybrid simulation, software is required. In recent studies, model updating has been integrated into hybrid simulation to improve testing accuracy by updating the numerical model during the analysis. However, online model updating scheme requires some modifications in the typical hybrid simulation testing procedure, and this greater complexity is entailed in its implementation regarding the collaboration of identification algorithms with existing hybrid simulation software. To address this issue and broaden the utilization of hybrid simulation with model updating, an existing platform named HyTest originally for conventional hybrid simulation is extended for this purpose. This version of HyTest facilitates the online identification of material constitutive parameters using experimental measurements in its finite element based identification module. It also includes a data center with a uniform data transmission protocol to incorporate different substructures and modules. A numerical example is used to demonstrate the online identification of material parameters for concrete and steel models in a reinforced column, and to verify the accuracy of the identification module. Lastly the effectiveness of HyTest in conducting hybrid simulation with model updating is validated using actual hybrid tests on a steel frame.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.007
  • Crashworthiness design of a steel–aluminum hybrid rail using
           multi-response objective-oriented sequential optimization
    • Authors: Jianguang Fang; Na Qiu; Xiuzhe An; Fenfen Xiong; Guangyong Sun; Qing Li
      Abstract: Publication date: Available online 19 May 2017
      Source:Advances in Engineering Software
      Author(s): Jianguang Fang, Na Qiu, Xiuzhe An, Fenfen Xiong, Guangyong Sun, Qing Li
      Hybrid structures with different materials have aroused increasing interest for their lightweight potential and excellent performances. This study explored the optimization design of steel–aluminum hybrid structures for the highly nonlinear impact scenario. A metamodel based multi-response objective-oriented sequential optimization was adopted, where Kriging models were updated with sequential training points. It was indicated that the sequential sampling strategy was able to obtain a much higher local accuracy in the neighborhood of the optimum and thus to yield a better optimum, although it did lead to a worse global accuracy over the entire design space. Furthermore, it was observed that the steel–aluminum hybrid structure was capable of decreasing the peak force and simultaneously enhancing the energy absorption, compared to the conventional mono-material structure.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.013
  • Topological design optimization of lattice structures to maximize shear
    • Authors: Yixian Du; Hanzhao Li; Zhen Luo; Qihua Tian
      Abstract: Publication date: Available online 19 May 2017
      Source:Advances in Engineering Software
      Author(s): Yixian Du, Hanzhao Li, Zhen Luo, Qihua Tian
      To improve the poor shear performance of periodic lattice structure consisting of hexagonal unit cells, this study develops a new computational design method to apply topology optimization to search the best topological layout for lattice structures with enhanced shear stiffness. The design optimization problem of micro-cellular material is formulated based on the properties of macrostructure to maximize the shear modulus under a prescribed volume constraint using the energy-based homogenization method. The aim is to determine the optimal distribution of material phase within the periodic unit cell of lattice structure. The proposed energy-based homogenization procedure utilizes the sensitivity filter technique, especially, a modified optimal algorithm is proposed to evolve the microstructure of lattice materials with distinct topological boundaries. A high shear stiffness structure is obtained by solving the optimization model. Then, the mechanical equivalent properties are obtained and compared with those of the hexagonal honeycomb sandwich structure using a theoretical approach and the finite element method (FEM) according to the optimized structure. It demonstrates the effectiveness of the proposed method in this paper. Finally, the structure is manufactured, and then the properties are tested. Results show that the shear stiffness and bearing properties of the optimized lattice structure is better than that of the traditional honeycomb sandwich structure. In general, the proposed method can be effectively applied to the design of periodic lattice structures with high shear resistance and super bearing property.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.04.011
  • Deforming grid generation for numerical simulations of fluid dynamics in
           sliding vane rotary machines
    • Authors: Giuseppe Bianchi; Sham Rane; Ahmed Kovacevic; Roberto Cipollone
      Abstract: Publication date: Available online 18 May 2017
      Source:Advances in Engineering Software
      Author(s): Giuseppe Bianchi, Sham Rane, Ahmed Kovacevic, Roberto Cipollone
      The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of a computational grid suitable for fast and reliable numerical analysis. The paper addresses this issue through an analytical grid generation based on the user defined nodal displacement which discretizes the moving and deforming fluid domain of the sliding vane machine and ensures conservation of intrinsic quantities by maintaining the cell connectivity and structure. Mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. For testing of generated grids, single phase simulations of an industrial air rotary vane compressor are solved by use of commercial CFD solvers FLUENT and CFX. This paper presents implementation of the mesh motion algorithm, stability and robustness experienced with the solvers when working with highly deforming grids and the obtained flow results.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.010
  • An integrated platform for design and numerical analysis of shield
           tunnelling processes on different levels of detail
    • Authors: Jelena Ninić; Christian Koch; Janosch Stascheit
      Abstract: Publication date: Available online 18 May 2017
      Source:Advances in Engineering Software
      Author(s): Jelena Ninić, Christian Koch, Janosch Stascheit
      Building and construction information modelling for decision making during the life cycle of infrastructure projects are vital tools for the analysis of complex, integrated, multi-disciplinary systems. The traditional design process is cumbersome and involves significant manual, time-consuming preparation and analysis as well as significant computational resources. To ensure a seamless workflow during the design and analysis and to minimise the computation time, we propose a novel concept of multi-level numerical simulations, enabling the modelling on different Levels of Detail (LoDs) for each physical component, process information, and analysis type. In this paper, we present SATBIM, an integrated platform for information modelling, structural analysis and visualisation of the mechanised tunnelling process for design support. Based on a multi-level integrated parametric Tunnel Information Model, numerical models for each component on different LoDs are developed, considering proper geometric as well as material representation, interfaces and the representation of the construction process. Our fully automatic modeller for arbitrary tunnel alignments provides a high degree of automation for the generation, the setup and the execution of the simulation model, connecting the multi-level information model with the open-source simulation software KRATOS. The software of SATBIM is organized in a modular way in order to offer high flexibility not only for further extensions, but also for adaptation to future improvements of the simulation software. The SATBIM platform enables practical, yet flexible and user-friendly generation of the tunnel structure for arbitrary alignments on different LoDs, supporting the design process and providing an insight into soil-structure interactions during construction.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.012
  • Three-dimensional thermal stress analysis using the indirect BEM in
           conjunction with the radial integration method
    • Authors: Wenzhen Qu; Yaoming Zhang; Yan Gu; Fajie Wang
      Abstract: Publication date: Available online 16 May 2017
      Source:Advances in Engineering Software
      Author(s): Wenzhen Qu, Yaoming Zhang, Yan Gu, Fajie Wang
      Thermal stress analysis is one of key aspects in mechanical design. Based on the indirect boundary integral equation (BIE) and the radial integration method (RIM), this paper develops a boundary-only element method for the boundary stress analysis of three-dimensional (3D) static thermoelastic problems. A transformation system constructed with the normal and two special tangential vectors is used to regularize the singularity in the indirect BIE. The RIM is then employed to transform the domain integrals arising in both displacement and its derivative integral equations into the equivalent boundary integrals, which results in a pure boundary discretized algorithm. Several numerical experiments are provided to verify the accuracy and convergence of the present approach.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.003
  • Design optimization of a new W-beam guardrail for enhanced highway safety
    • Authors: Hanfeng Yin; Youye Xiao; Guilin Wen; Hongbing Fang
      Abstract: Publication date: Available online 16 May 2017
      Source:Advances in Engineering Software
      Author(s): Hanfeng Yin, Youye Xiao, Guilin Wen, Hongbing Fang
      As one of the most widely used safety devices on highways, W-beam guardrail plays an important role in protecting errant vehicles from entering dangerous zones or colliding with oncoming vehicles. As one of the most widely used safety devices on highways, W-beam guardrails play an important role in protecting errant vehicles from entering dangerous zones or colliding with oncoming vehicles. One common issue with the traditional W-beam guardrails (TWG) is tire snagging which often occurred when the wheel of a striking vehicle entangled with a guardrail post. Tire snagging reduces the redirection performance of the guardrail and can result in serious injuries to the occupants. In this study, a new W-beam guardrail, named as “η-shaped W-beam guardrail (η-WG)”, was developed using nonlinear finite element simulations combined with metamodeling-based design optimization methodology. The simulation results showed that tire snagging did not occur on the η-WG and the optimum design of the η-WG had an improved safety performance in vehicular crashes.

      PubDate: 2017-05-21T06:13:29Z
      DOI: 10.1016/j.advengsoft.2017.05.002
  • Robust design to optimize client–server bi-directional communication for
           structural analysis web applications or services
    • Authors: J. Calvo; J. Gracia; E. Bayo
      Abstract: Publication date: Available online 10 May 2017
      Source:Advances in Engineering Software
      Author(s): J. Calvo, J. Gracia, E. Bayo
      Current trends in web application development favours bi-directional communication between front-end and back-end applications instead of the traditional ones where the front-end is constantly monitoring the back-end. This way of communication improves the user experience and this work tries to find the best bi-directional way of communication particularized to structural analysis software as a service or web applications. The effects of the most significant factors have been studied to optimize the total time involved in the communication, which is comprised of: time spent sending data from the client to the server, server data processing, and time consumed returning the data back. Design of experiments (DoE) techniques have been used to characterize the influence of four factors: serialization language, communication protocol, amount of data (size of the structure measured by the number of elements), and server post-processing. Moreover, factors like server workload and network congestion have also been addressed. The first factor is dealt with as a nuisance factor whose influence is to be minimized, and the second one as an uncontrollable variable.

      PubDate: 2017-05-11T08:23:12Z
      DOI: 10.1016/j.advengsoft.2017.04.010
  • Intel Xeon Phi acceleration of Hybrid Total FETI solver
    • Authors: Michal Merta; Lubomir Riha; Ondrej Meca; Alexandros Markopoulos; Tomas Brzobohaty; Tomas Kozubek; Vit Vondrak
      Abstract: Publication date: Available online 10 May 2017
      Source:Advances in Engineering Software
      Author(s): Michal Merta, Lubomir Riha, Ondrej Meca, Alexandros Markopoulos, Tomas Brzobohaty, Tomas Kozubek, Vit Vondrak
      This paper describes an approach for acceleration of the Hybrid Total FETI (HTFETI) domain decomposition method using the Intel Xeon Phi coprocessors. The HTFETI method is a memory bound algorithm which uses sparse linear BLAS operations with irregular memory access pattern. The presented local Schur complement (LSC) method has regular memory access pattern, that allows the solver to fully utilize the Intel Xeon Phi fast memory bandwidth. This translates to speedup over 10.9 of the HTFETI iterative solver when solving 3 billion unknown heat transfer problem (3D Laplace equation) on almost 400 compute nodes. The comparison is between the CPU computation using sparse data structures (PARDISO sparse direct solver) and the LSC computation on Xeon Phi. In the case of the structural mechanics problem (3D linear elasticity) of size 1 billion DOFs the respective speedup is 3.4. The presented speedups are asymptotic and they are reached for problems requiring high number of iterations (e.g., ill-conditioned problems, transient problems, contact problems). For problems which can be solved with under hundred iterations the local Schur complement method is not optimal. For these cases we have implemented sparse matrix processing using PARDISO also for the Xeon Phi accelerators.

      PubDate: 2017-05-11T08:23:12Z
      DOI: 10.1016/j.advengsoft.2017.05.001
  • Nonlinear analysis of a building surmounted by a reinforced concrete water
           tank under hydrostatic load
    • Authors: Lamia Ait L'Hadj; Hocine Hammoum; Karima Bouzelha
      Abstract: Publication date: Available online 8 May 2017
      Source:Advances in Engineering Software
      Author(s): Lamia Ait L'Hadj, Hocine Hammoum, Karima Bouzelha
      This work presents a methodology for assessing the damage level of an existing structure under seismic action. First, the seismic demand is introduced by the response spectrum provided by the seismic code, and then the nonlinear static equivalent analysis is performed by structural finite element software to obtain the capacity curve. The evaluated performance point according to the pushover analysis is positioned in European macroseismic scale in order to deduce the damage domain of the structure. The effectiveness of this proposed method is tested successfully for a real case. As a practical application, we analyse a highly complex structure which is an apartment building in Algiers surmounted by a reinforced concrete water tank with a container capacity of 1000 m3. It is complex in its design and analysis, and complex also by its behaviour under earthquake effect. Since being commissioned in 1962, this structure has been subjected to several earthquakes, but the one that hit Boumerdes town on 2003, was fatal for it. The proposed approach classifies the studied structure in the third domain; which describes a very important state of damage. This work fits into a practical environment of the engineering by combining analysis software with design codes and by the applicative character of the proposed approach.

      PubDate: 2017-05-11T08:23:12Z
      DOI: 10.1016/j.advengsoft.2017.04.005
  • Study of fluid edge detection and tracking method in glass flume based on
           image processing technology
    • Authors: Hai Du; Muguo Li; Juan Meng
      Abstract: Publication date: Available online 8 May 2017
      Source:Advances in Engineering Software
      Author(s): Hai Du, Muguo Li, Juan Meng
      Research on changes in the fluid edge of a wave flume is important for experimental hydrodynamics. However, disturbances often occur because of the presence of sensors. To solve this problem, a new grey-scale image processing method for fluid edge analysis is presented here. By fusing methods combining image gradients and image segmentation with shifting-window technology and with concepts derived from experimental fluid mechanics, the proposed method can overcome many of the inherent challenges of fluid-edge measurement. First, the geodesic distance is modified to obtain a class curve. Second, an edge position is determined by the inflection point of the class curve related to the gradient peak distribution. Next, the position of the interrogation window is relocated with reference to neighbors or to previous results, and the current edge position can be calculated according to the predicted value. During the computation, the interrogation window can change its position adaptively with fluid motion, ensuring that the amount of data to be analyzed always remains stable. A model combining the class curve and gradient curve can improve the validity of edge identification. Finally, the performance of the proposed method has been evaluated using images in a glass flume. The results show that the proposed method for studying the fluid edge is effective and robust.

      PubDate: 2017-05-11T08:23:12Z
      DOI: 10.1016/j.advengsoft.2017.04.007
  • An iterative method for the linearization of nonlinear failure criteria
    • Authors: S.K. Sharan
      Abstract: Publication date: Available online 4 May 2017
      Source:Advances in Engineering Software
      Author(s): S.K. Sharan
      Linearization of a nonlinear failure criterion may be required if a software incorporating the nonlinear failure criterion is not readily available or if an additional computational difficulty is encountered due to the nonlinearity of the failure criterion. In this paper, a novel method is proposed for the linearization of nonlinear failure criteria. The proposed method is based on an iterative procedure and the least-squares regression is used for the linearization. The material is assumed to be elastic-perfectly plastic. By conducting analytical and finite element analyses of stresses and displacements around underground openings in rock mass governed by the generalized Hoek–Brown failure criterion, it is shown that the proposed method is convergent, efficient and effective.

      PubDate: 2017-05-06T07:54:28Z
      DOI: 10.1016/j.advengsoft.2017.04.008
  • Development and validation of a simulation-based safety evaluation program
           for a mega floating crane
    • Authors: Seung-Ho Ham; Myung-Il Roh; Hyewon Lee; Jin-Wuk Hong; Hong-Rae Lee
      Abstract: Publication date: Available online 4 May 2017
      Source:Advances in Engineering Software
      Author(s): Seung-Ho Ham, Myung-Il Roh, Hyewon Lee, Jin-Wuk Hong, Hong-Rae Lee
      The motions of the mega floating crane and the lifted module must be evaluated in advance, to determine whether they satisfy the safety criteria or not. Due to the limitations of the existing dynamic analysis programs, we develop a differentiated program that is dedicated to the mega floating crane. This program is focused on reducing modeling time, while increasing modeling accuracy. Furthermore, it can model the block loader that distributes the tension in wire ropes between the lifted module and the block loader equally, and link beams that are used to connect hooks by hinge joints. The equations of motion based on multibody system dynamics are derived. Wave, wind, and current are included as external environmental loads. A direct volume calculation method below the water plane is adopted to find the buoyant force and center of buoyancy. External loads are verified by commercial program. Finally, the simulation results of the module erection are validated by comparison with the measurement of real operation.

      PubDate: 2017-05-06T07:54:28Z
      DOI: 10.1016/j.advengsoft.2017.04.009
  • Type oriented parallel programming for Exascale
    • Authors: Nick Brown
      Abstract: Publication date: Available online 26 April 2017
      Source:Advances in Engineering Software
      Author(s): Nick Brown
      Whilst there have been great advances in HPC hardware and software in recent years, the languages and models that we use to program these machines have remained much more static. This is not from a lack of effort, but instead by virtue of the fact that the foundation that many programming languages are built on is not sufficient for the level of expressivity required for parallel work. The result is an implicit trade-off between programmability and performance which is made worse due to the fact that, whilst many scientific users are experts within their own fields, they are not HPC experts. Type oriented programming looks to address this by encoding the complexity of a language via the type system. Most of the language functionality is contained within a loosely coupled type library that can be flexibly used to control many aspects such as parallelism. Due to the high level nature of this approach there is much information available during compilation which can be used for optimisation and, in the absence of type information, the compiler can apply sensible default options thus supporting both the expert programmer and novice alike. We demonstrate that, at no performance or scalability penalty when running on up to 8196 cores of a Cray XE6 system, codes written in this type oriented manner provide improved programmability. The programmer is able to write simple, implicit parallel, HPC code at a high level and then explicitly tune by adding additional type information if required.

      PubDate: 2017-04-30T07:00:59Z
      DOI: 10.1016/j.advengsoft.2017.04.006
  • Multi-layered UL700 arch-grid module with inelastic buckling for localized
           reinforcement of soft ground
    • Authors: Dongkyu Lee; Jaehong Lee; Quoc Hoan Doan
      Abstract: Publication date: Available online 25 April 2017
      Source:Advances in Engineering Software
      Author(s): Dongkyu Lee, Jaehong Lee, Quoc Hoan Doan
      This research proposes the inelastic buckling and modal analysis to design optimal shape and size through UL700 steel arch-grid unit module which is for localized reinforcement of soft ground. The optimal arch-grid design is achieved among its most efficient design possibilities such as different plate type, extended grid, multi-story grid, combined grid. The steel arch-grid unit module is composed of a vertical member and a board member combined with the top and bottom sides of the said vertical member, including the horizontal member equipped with multiple arm parts combined with the center part into one body in the shape of a cross. The construction method for reinforcement of soft ground is proposed in detail in this research. Numerical experiments are provided to survey optimal shape and size of arch-grid structures with differential models applied to buckling analysis, modal and static load, in consideration of both linear and nonlinear behaviors, by using SAP2000 version 15.0.1 software. With sufficient features of steel arch-grid for supporting structural foundations, this research suggests the possibility of requiring more studies and of providing more applications in the field of constructional structures.

      PubDate: 2017-04-30T07:00:59Z
      DOI: 10.1016/j.advengsoft.2017.03.009
  • Grid generation on free-form surface using guide line advancing and
           surface flattening method
    • Authors: Boqing Gao; Chuanzhong Hao; Tierui Li; Jun Ye
      Abstract: Publication date: Available online 24 April 2017
      Source:Advances in Engineering Software
      Author(s): Boqing Gao, Chuanzhong Hao, Tierui Li, Jun Ye
      Automatic grid generation on a curved surface is important to more efficient design of free-form structures. However, it is neither a convenient nor an obvious task for engineers to create a discrete grid structure on a complex surface that meets the architectural requirements. Besides, research on the rapid grid generation methodology for free form structural design is still limited. In order to achieve better grid distribution of rods on free-form surface, a grid generation methodology which combines surface flattening technique with guide line method is put forward. The parametric domain of the free-form surface was firstly divided into a number of parts and a discrete free-form surface was accordingly formed by mapping the generated dividing points onto the curved surface. The free-form surface was then flattened based on the principle of identical area. Accordingly, the flattened rectangular lattices were fitted into the 2D surface where grids were formed by using the guide line method. Finally, the 2D grids were mapped onto the 3D surface, and grids were therefore generated on the given surface. A grid shape and rod length quality index was proposed to evaluate the shape of grid cells and rod lengths. The results show that the grid shape quality index and the deviation of rod length of the grid structure are reduced by up to 47% and 34% respectively by using the guide line method with surface flattening when compared to the method without surface flattening.

      PubDate: 2017-04-30T07:00:59Z
      DOI: 10.1016/j.advengsoft.2017.04.003
  • Crash analysis and evaluation of vehicular impacts on W-beam guardrails
           placed on sloped medians using finite element simulations
    • Authors: Matthew Gutowski; Emre Palta; Howie Fang
      Abstract: Publication date: Available online 21 April 2017
      Source:Advances in Engineering Software
      Author(s): Matthew Gutowski, Emre Palta, Howie Fang
      With an average of six billion miles traveled per day on U.S. highways, according to the Federal Highway Administration (FHWA), transportation safety is of the utmost importance. Over the years, various traffic barrier systems, including W-beam guardrails, have been developed to reduce the number and severity of vehicle crashes. Despite their general effectiveness, improvements could be made, especially when installed on unlevelled terrains such as sloped medians. The destructive nature of crashes imposes significant challenges to barrier design using full-scale physical testing; numerical simulations thus become a viable means to support crash analysis, performance evaluation, and barrier designs. In this study, validated vehicle and W-beam models were used to perform full-scale simulations of vehicle-guardrail impacts. Fourteen single-faced and double-faced NCDOT W-beam guardrails (with placement heights of 29 and 31 inches) placed along a six-lane 46-foot median divided highway with 2.5H:1V and 4H:1V slopes were evaluated under front-side and backside vehicular impacts. The guardrails performance was determined by evaluating the vehicular responses based on MASH exit-box criterion, post-impact exit trajectory, yaw, pitch, and roll angles, transverse displacements, and transverse velocities.

      PubDate: 2017-04-23T11:51:00Z
      DOI: 10.1016/j.advengsoft.2017.04.004
  • A novel meta-heuristic optimization algorithm: Thermal exchange
    • Authors: A. Kaveh; A. Dadras
      Abstract: Publication date: Available online 18 April 2017
      Source:Advances in Engineering Software
      Author(s): A. Kaveh, A. Dadras
      This paper introduces a new optimization algorithm based on Newton's law of cooling, which will be called Thermal Exchange Optimization algorithm. Newton's law of cooling states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. Here, each agent is considered as a cooling object and by associating another agent as environment, a heat transferring and thermal exchange happens between them. The new temperature of the object is considered as its next position in search space. The performance of the algorithm is examined by some mathematical functions and four mechanical benchmark problems.

      PubDate: 2017-04-23T11:51:00Z
      DOI: 10.1016/j.advengsoft.2017.03.014
  • Running high resolution coastal models in forecast systems: Moving from
           workstations and HPC cluster to cloud resources
    • Authors: João Rogeiro; Marta Rodrigues; Alberto Azevedo; Anabela Oliveira; João Paulo Martins; Mário David; João Pina; Nuno Dias; Jorge Gomes
      Abstract: Publication date: Available online 18 April 2017
      Source:Advances in Engineering Software
      Author(s): João Rogeiro, Marta Rodrigues, Alberto Azevedo, Anabela Oliveira, João Paulo Martins, Mário David, João Pina, Nuno Dias, Jorge Gomes
      Computational forecast systems (CFS) are essential modelling tools for coastal management by providing water dynamics predictions. Nowadays CFS are processed in dedicated workstations, fulfilling quality control through automatic comparison with field data. Recently, CFS has been successfully ported to High Performance Computing (HPC) resources, maintained by highly-specialized staff in these complex environments. The need to increase the available resources for more demanding applications and to enhance the portability for use in non-scientific institutions has promoted the search for more flexible and user-friendly approaches. The scalability and flexibility of cloud resources, with dedicated services for facilitating their use, makes them an attractive option. Herein, the performance of CFS using ECO-SELFE MPI-based model is assessed and compared for the first time in multiple environments, including local workstations, an HPC cluster and a pilot cloud. The analysis is conducted in a range of resources from the physical core count available at the smaller resources to the optimal number of processes, using cloud and HPC cluster resources. Results for the smaller, common physical resources show that the cloud is an attractive option for CFS operation. As the optimal number of processes for the use case is at the limit of the workstations common pool, an analysis was also performed using HPC cluster nodes and federated MPI resources. Results show that the cloud remains an attractive option for CFS. This conclusion is valid both for the use of a single host or through federated hosts, providing that efficient communication infrastructure (such as SRIOV) is available.

      PubDate: 2017-04-23T11:51:00Z
      DOI: 10.1016/j.advengsoft.2017.04.002
  • A multi-fidelity information fusion metamodeling assisted laser beam
           welding process parameter optimization approach
    • Authors: Qi Zhou; Yang Yang; Ping Jiang; Xinyu Shao; Longchao Cao; Jiexiang Hu; Zhongmei Gao; Chaochao Wang
      Abstract: Publication date: Available online 18 April 2017
      Source:Advances in Engineering Software
      Author(s): Qi Zhou, Yang Yang, Ping Jiang, Xinyu Shao, Longchao Cao, Jiexiang Hu, Zhongmei Gao, Chaochao Wang
      Selecting reasonable laser beam welding (LBW) process parameters is very helpful for obtaining a good welding bead profile and hence a high quality of the welding joint. Existing process parameter optimization approaches for LBW either based on cost-expensive physical experiments or low-fidelity (LF) computer simulations. This paper proposes a multi-fidelity (MF) metamodel based LBW process parameter optimization approach, in which different levels fidelity information, both from LF computer simulations and high-fidelity (HF) physical experiments can be integrated and fully exploited. In the proposed approach, a three-dimensional thermal finite element model is developed as the LF model, which is fitted with a LF metamodel firstly. Then, by taking the LF metamodel as a base model and scaling it using the HF physical experiments, a MF metamodel is constructed to approximate the relationships between the LBW process parameters and the bead profile. Two metrics are adopted to compare the prediction accuracy of the MF metamodel with the single-fidelity metamodels solely constructed with physical experiments or computer simulations. Results illustrate that the MF metamodel outperforms the single-fidelity metamodels both in global and local accuracy. Finally, the fast elitist non-dominated sorting genetic algorithm (NSGA-II) is used to facilitate LBW process parameter space exploration and multi-objective Pareto optima search. LBW verification experiments verify the effectiveness and reliability of the obtained optimal process parameters.

      PubDate: 2017-04-23T11:51:00Z
      DOI: 10.1016/j.advengsoft.2017.04.001
  • Editorial Board/Publishing Info
    • Abstract: Publication date: July 2017
      Source:Advances in Engineering Software, Volume 109

      PubDate: 2017-04-16T11:34:52Z
  • Coupling parallel adaptive mesh refinement with a nonoverlapping domain
           decomposition solver
    • Authors: Pavel Kůs; Jakub Šístek
      Abstract: Publication date: Available online 7 April 2017
      Source:Advances in Engineering Software
      Author(s): Pavel Kůs, Jakub Šístek
      We study the effect of adaptive mesh refinement on a parallel domain decomposition solver of a linear system of algebraic equations. These concepts need to be combined within a parallel adaptive finite element software. A prototype implementation is presented for this purpose. It uses adaptive mesh refinement with one level of hanging nodes. Two and three-level versions of the Balancing Domain Decomposition based on Constraints (BDDC) method are used to solve the arising system of algebraic equations. The basic concepts are recalled and components necessary for the combination are studied in detail. Of particular interest is the effect of disconnected subdomains, a typical output of the employed mesh partitioning based on space-filling curves, on the convergence and solution time of the BDDC method. It is demonstrated using a large set of experiments that while both refined meshes and disconnected subdomains have a negative effect on the convergence of BDDC, the number of iterations remains acceptable. In addition, scalability of the three-level BDDC solver remains good on up to a few thousands of processor cores. The largest presented problem using adaptive mesh refinement has over 109 unknowns and is solved on 2048 cores.

      PubDate: 2017-04-09T11:55:40Z
      DOI: 10.1016/j.advengsoft.2017.03.012
  • Development and validation of software for rapid performance estimation of
           small RPAS
    • Authors: Hugo Aliaga-Aguilar; Cristina Cuerno-Rejado
      Abstract: Publication date: Available online 6 April 2017
      Source:Advances in Engineering Software
      Author(s): Hugo Aliaga-Aguilar, Cristina Cuerno-Rejado
      There is a high demand for small unmanned aircraft for a wide variety of missions. The relatively limited experience and resources of new commercial companies renders it almost impossible for them to tackle a complete design process with the same quality and results as bigger and more experienced companies. We aim to develop a full rapid design methodology software for such aircraft and present the first step in the process in the form of a performance estimation model. This model is tested with data from ten different commercially available RPAS, as well as two additional RPAS for aerodynamic validation. A comparison between the results obtained by means of this model and the manufacturers’ data is presented.

      PubDate: 2017-04-09T11:55:40Z
      DOI: 10.1016/j.advengsoft.2017.03.010
  • Numerical modeling of steel fillet welded joint
    • Authors: Martin Krejsa; Jiri Brozovsky; David Mikolasek; Premysl Parenica; Jakub Flodr; Alois Materna; Radim Halama; Jaroslav Kozak
      Abstract: Publication date: Available online 5 April 2017
      Source:Advances in Engineering Software
      Author(s): Martin Krejsa, Jiri Brozovsky, David Mikolasek, Premysl Parenica, Jakub Flodr, Alois Materna, Radim Halama, Jaroslav Kozak
      The paper is focused on the numerical modeling of steel bearing elements and their verification using experiment. Currently, for the stress-strain analysis of the elements supporting structures it is possible to use many commercial software systems, based on the finite element method - FEM. It is important to to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model.The article deals with the physical test of steel supporting elements, whose main purpose is obtaining of material, geometry and strength characteristics of the fillet welds. The main aim was defining of tested samples numerical models for using FEM analysis and for the commercial software ANSYS. The pressure test was performed during the experiment, wherein the total load value and the corresponding deformation of the specimens under the load was monitored. The measurements were carried out for a more detailed analysis of stresses and deformations in welds samples using a strain-gauge and a Q100 laser device for measuring the 3D deformation and infrared thermographic non-destructive testing.Obtained data were used for the calibration of numerical models of test samples and they are necessary for further strain analysis of steel supporting elements.

      PubDate: 2017-04-09T11:55:40Z
      DOI: 10.1016/j.advengsoft.2017.03.013
  • Automated low cost scheduling driven watermarking methodology for modern
           CAD high-level synthesis tools
    • Authors: Anirban Sengupta; Dipanjan Roy
      Abstract: Publication date: Available online 4 April 2017
      Source:Advances in Engineering Software
      Author(s): Anirban Sengupta, Dipanjan Roy
      This paper presents a novel low cost scheduling driven watermarking methodology for modern computer aided design (CAD) high level synthesis tools. The proposed watermarking algorithm is embedded in the scheduling module of a CAD high level synthesis (HLS) tool. The presented watermarking methodology is capable of reusable intellectual property (IP) core protection of control data flow graphs (CDFG) from a vendor's perspective based on user provided resource constraint and loop unrolling factor as inputs. The proposed low cost robust watermarking embedded inside high level synthesis process protects an IP core against threats such as false claim of ownership and piracy. The proposed watermarking satisfies desirable properties such as covertness, robustness, low embedding cost and low complexity. Results of comparison indicated significant reduction in embedding cost through proposed technique than similar state of the art techniques.

      PubDate: 2017-04-09T11:55:40Z
      DOI: 10.1016/j.advengsoft.2017.03.008
  • New prediction models for concrete ultimate strength under true-triaxial
           stress states: An evolutionary approach
    • Authors: Saeed K. Babanajad; Amir H. Gandomi; Amir H. Alavi
      Abstract: Publication date: Available online 4 April 2017
      Source:Advances in Engineering Software
      Author(s): Saeed K. Babanajad, Amir H. Gandomi, Amir H. Alavi
      The complexity associated with the in-homogeneous nature of concrete suggests the necessity of conducting more in-depth behavioral analysis of this material in terms of different loading configurations. Distinctive feature of Gene Expression Programming (GEP) has been employed to derive computer-aided prediction models for the multiaxial strength of concrete under true-triaxial loading. The proposed models correlate the concrete true-triaxial strength (σ1) to mix design parameters and principal stresses (σ2,σ3), needless of conducting any time-consuming laboratory experiments. A comprehensive true-triaxial database is obtained from the literature to build the proposed models, subsequently implemented for the verification purposes. External validations as well as sensitivity analysis are further carried out using several statistical criteria recommended by researchers. More, they demonstrate superior performance to the other existing empirical and analytical models. The proposed design equations can readily be used for pre-design purposes or may be used as a fast check on deterministic solutions.

      PubDate: 2017-04-09T11:55:40Z
      DOI: 10.1016/j.advengsoft.2017.03.011
  • Editorial Board/Publishing Info
    • Abstract: Publication date: June 2017
      Source:Advances in Engineering Software, Volume 108

      PubDate: 2017-04-02T01:46:42Z
  • An enhanced honey bee mating optimization algorithm for design of side
           sway steel frames
    • Authors: Mahmoud R Maheri; H. Shokrian; M.M. Narimani
      Abstract: Publication date: Available online 27 March 2017
      Source:Advances in Engineering Software
      Author(s): Mahmoud R Maheri, H. Shokrian, M.M. Narimani
      Honeybee mating is a swarm-based meta-heuristic optimization method where the search algorithm is inspired by the process of mating in honeybees. In this paper, a new improved algorithm is proposed which performs remarkably better than the basic honeybee mating optimization process and is very competitive with other meta-heuristic optimization algorithms reported in the literature. The new algorithm, termed as enhanced honey bee mating optimization (EHBMO) algorithm, uses the concept of giving weight to distant candidates which are slightly less feasible than the current local candidates but may hold information about the location of global optima further afield. The robustness of the algorithm in terms of both solution quality and computational cost is proven by solving four design optimization problems of side sway steel frames.

      PubDate: 2017-04-02T01:46:42Z
      DOI: 10.1016/j.advengsoft.2017.03.006
  • A methodology for microstructure-based structural optimization of cast and
           injection moulded parts using knowledge-based design automation
    • Authors: Jakob Olofsson; Kent Salomonsson; Joel Johansson; Kaveh Amouzgar
      Abstract: Publication date: Available online 24 March 2017
      Source:Advances in Engineering Software
      Author(s): Jakob Olofsson, Kent Salomonsson, Joel Johansson, Kaveh Amouzgar
      The local material behaviour of cast metal and injection moulded parts is highly related to the geometrical design of the part as well as to a large number of process parameters. In order to use structural optimization methods to find the geometry that gives the best possible performance, both the geometry and the effect of the production process on the local material behaviour thus has to be considered. In this work, a multidisciplinary methodology to consider local microstructure-based material behaviour in optimizations of the design of engineering structures is presented. By adopting a knowledge-based industrial product realisation perspective combined with a previously presented simulation strategy for microstructure-based material behaviour in Finite Element Analyses (FEA), the methodology integrates Computer Aided Design (CAD), casting and injection moulding simulations, FEA, design automation and a multi-objective optimization scheme into a novel structural optimization method for cast metal and injection moulded polymeric parts. The different concepts and modules in the methodology are described, their implementation into a prototype software is outlined, and the application and relevance of the methodology is discussed.

      PubDate: 2017-04-02T01:46:42Z
      DOI: 10.1016/j.advengsoft.2017.03.003
  • Fuzzy modeling of wave-shielding under consideration of cost-effectiveness
           for an efficient reduction of uncertainty
    • Authors: Wolfgang E. Weber; Uwe Reuter
      Abstract: Publication date: Available online 24 March 2017
      Source:Advances in Engineering Software
      Author(s): Wolfgang E. Weber, Uwe Reuter
      The shielding of waves is an appropriate method to protect human beings, livestock, as well as structures and commercial goods from the harmful effects of dynamic loads. Areas of application of the concept of shielding range from ocean and coastal engineering, acoustics, to civil as well as mechanical engineering. Materials that can be effective in constructing shielding structural components and facilities are primarily cementitious composites as well as various categories of non-cementitious composites. However, the planning and production processes behind these low-cost materials is often characterized by uncertain information regarding their mechanical properties and even their dimensions. This leads to uncertainty in the forecasting of their overall performance, as well as their effectiveness in shielding incoming elastic, acoustic and water waves. In this paper, a new approach is presented which allows for improving these performance forecasts. In the proposed interdisciplinary procedure used here, the cost-effectiveness fuzzy analysis is connected to an appropriate mechanical model describing the shielding of elastic waves. This analysis procedure leads to a reduction of epistemic uncertainty. This can be achieved provided additional monetary investment is made, as proposed for the first time here, in order to improve the production quality of these shielding materials.

      PubDate: 2017-04-02T01:46:42Z
      DOI: 10.1016/j.advengsoft.2017.03.005
  • A microstructure modeling scheme for unidirectional composites using
           signed distance function based boundary smoothing and element trimming
    • Authors: Jae Hyuk Lim; Hobeom Kim; Sun-Won Kim; Dongwoo Sohn
      Abstract: Publication date: Available online 22 March 2017
      Source:Advances in Engineering Software
      Author(s): Jae Hyuk Lim, Hobeom Kim, Sun-Won Kim, Dongwoo Sohn
      A simple and accurate scheme for modeling microstructures is proposed with the help of element trimming combined with signed distance function based boundary smoothing. To accommodate randomly distributed fibers in unidirectional composites, digital image processing is used. The interfaces of multi-materials are identified by introducing a signed distance function, and then, square background elements crossing the interfaces are simply trimmed and divided to represent a single material behavior by a single element. After element trimming, the elements that are polygon-shaped in the two-dimensional domain are split into conventional three-node triangle elements (six-node prism elements in the three-dimensional domain) available in many commercial software packages. The present modeling scheme was verified through benchmark examples in terms of the accuracy and efficiency and then applied to the modeling of unidirectional composites based on real microscopic images to evaluate the equivalent elastic properties.

      PubDate: 2017-04-02T01:46:42Z
      DOI: 10.1016/j.advengsoft.2017.02.014
  • A computational strategy to establish algebraic parameters for the
           Reference Resistance Design of metal shell structures
    • Authors: Adam J. Sadowski; O. Kunle Fajuyitan; Jie Wang
      Abstract: Publication date: Available online 18 March 2017
      Source:Advances in Engineering Software
      Author(s): Adam J. Sadowski, O. Kunle Fajuyitan, Jie Wang
      The new Reference Resistance Design (RRD) method, recently developed by Rotter [1], for the manual dimensioning of metal shell structures effectively permits an analyst working with only a calculator or spreadsheet to take full advantage of the realism and accuracy of an advanced nonlinear finite element (FE) calculation. The method achieves this by reformulating the outcomes of a vast programme of parametric FE calculations in terms of six algebraic parameters and two resistances, each representing a physical aspect of the shell's behaviour. The formidable challenge now is to establish these parameters and resistances for the most important shell geometries and load cases. The systems that have received by far the most research attention for RRD are that of a cylindrical shell under uniform axial compression and uniform bending. Their partial algebraic characterisations required thousands of finite element calculations to be performed across a four-dimensional parameter hyperspace (i.e. length, radius to thickness ratio, imperfection amplitude, linear strain hardening modulus). Handling so many nonlinear finite element models is time-consuming and the quantities of data generated can be overwhelming. This paper illustrates a computational strategy to deal with both issues that may help researchers establish sets of RRD parameters for other important shell systems with greater confidence and accuracy. The methodology involves full automation of model generation, submission, termination and processing with object-oriented scripting, illustrated using code and pseudocode fragments.

      PubDate: 2017-04-02T01:46:42Z
      DOI: 10.1016/j.advengsoft.2017.02.012
  • Algebraic generation of single domain computational grid for twin screw
           machines Part II – Validation
    • Authors: Ahmed Kovacevic; Sham Rane
      Abstract: Publication date: Available online 11 March 2017
      Source:Advances in Engineering Software
      Author(s): Ahmed Kovacevic, Sham Rane
      Algebraic procedures are available to generate computational grid for CFD analysis of twin screw compressors. Recently new algebraic method was formulated to generate numerical grids for CFD calculation of twin screw machines with grids generated from outer casing boundaries [16,18]. In this paper, the grids of Rotor to Casing and Casing to Rotor type are tested for performance calculation of a dry air screw compressor using ANSYS CFX solver and the results have been compared with measurements. Firstly the base-line grid of the Rotor to Casing grid type was used to obtain CFD results. A grid independent solution was obtained for this base-line grid. The size of the mesh thus obtained has been used with other grid variants for comparison. A set of successively refined Casing to Rotor grid type was tested by increasing the density of nodes on the rotor profile in the interlobe leakage region. A gradual improvement in the accuracy of flow prediction was achieved with successive refinement in the interlobe region. The third variant used for comparison is a Casing to Rotor grid type with a single rotor domain that has no interface between the rotor blocks. A significant improvement in the prediction of flow and internal pressure was achieved. These developments have also extended the capability of the deforming grids to be used with other CFD solvers like STAR-CCM+ and ANSYS FLUENT. Due to fully hexahedral cell structure and improved global grid quality, addition of physical phenomena like oil injection in the models has now become achievable.

      PubDate: 2017-03-13T00:13:10Z
      DOI: 10.1016/j.advengsoft.2017.03.001
  • Editorial Board/Publishing Info
    • Abstract: Publication date: May 2017
      Source:Advances in Engineering Software, Volume 107

      PubDate: 2017-03-11T00:07:20Z
  • The application of drilling degree of freedom to checkerboards in
           structural topology optimization
    • Authors: Balogh
      Abstract: Publication date: May 2017
      Source:Advances in Engineering Software, Volume 107
      Author(s): B. Balogh, J. Lógó
      The subject of the paper is to investigate a new way for avoiding the development of checkerboard patterns in structural topology optimization, using an additional in-plane rotational freedom. The efficiency of a few, from the many existing formulations, with differing complexity are put into comparison, such as the standard 4 noded bilinear element, the Allman-type solution, the shell element from SAP2000 and finally an element constructed on the basis of micropolar theory. Since the emergence of checkerboarded regions is a general phenomenon, the optimization problem is as simple as possible, being a weight minimization with a compliance constraint, solved with the optimality criteria method and a FEM discretization of the design domain.

      PubDate: 2017-03-11T00:07:20Z
  • Regularized immersed boundary-type formulation for fast transient dynamics
           with fluid-structure interaction
    • Authors: Olivier Jamond; Vincent Faucher
      Abstract: Publication date: Available online 9 March 2017
      Source:Advances in Engineering Software
      Author(s): Olivier Jamond, Vincent Faucher
      The present article deals with fast transient phenomena involving fluids and structures undergoing large displacements and rotations, associated with non-linear local behavior, such as plasticity, damage and failure. In this context, classical Arbitrary Lagrangian Eulerian approaches reach a limit where it is not possible to update the fluid grid to follow the structural motion without encountering entangled fluid cells forcing the simulations to stop. So-called immersed boundary approaches are thus frequently preferred in this situation, since they allow breaking the topological connection between the fluid and structural meshes and retrieve the expected level of robustness to handle complex structural motions. Their potential for efficient, robust and accurate simulations at the industrial level has been proven. However, it appears that the classical implementation of such approaches still imposes some constraints over the fluid mesh with respect to the structural mesh in terms of cell sizes, due to the expression of the kinematic links between fluid and structural velocities, which must be improved. It is demonstrated in the present article that an extended regularized framework can be designed to overcome the current drawbacks, but it comes with a significant increase of computational complexity and requires an extension of the classical software features encountered in fast transient dynamics simulation programs.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.002
  • Structural reliability simulation for the latching mechanism in MEMS-based
           Safety and Arming device
    • Authors: Hongmao Tu; Wenzhong Lou; Zhili Sun; Yunpeng Qian
      Abstract: Publication date: Available online 9 March 2017
      Source:Advances in Engineering Software
      Author(s): Hongmao Tu, Wenzhong Lou, Zhili Sun, Yunpeng Qian
      Based on the deterministic performance analysis of latching mechanism in MEMS (micro-electro-mechanical system)-based Safety and Arming device (S&A device), probabilistic algorithms and Kriging approximation method coupling with finite element simulation are used to quantify the effect of input uncertainties on the response metrics of the mechanism. It firstly uses performance function to represent the failure of the latching mechanism mathematically, and then constructs the corresponding reliability model according to structural reliability theory. In order to relieve the burden of further reliability and sensitivity calculations, Kriging interpolation technique is adopted to approximate the performance function and hence simplify the reliability model. Samples of input variables and the corresponding response, which all together serve as the inputs of Kriging approximation, are gotten through finite element simulations based on the design of experiments. An efficient CAE software integration method is proposed to facilitate the repetitive FE-based calculations of those samples. Finally, FORM (First Order Second Moment Method) is utilized to get the reliability index and its sensitivities with respect to the input random variables and their parameters, which can not only be employed for reliability assessment of the latching mechanism, but also can help to identify key factors for additional structural improvements.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.008
  • Accelerating parametric studies in computational dynamics: Selective modal
           re-orthogonalization versus model order reduction methods
    • Authors: J. García-Martínez; F.J. Herrada; L.K.H. Hermanns; A. Fraile; F.J. Montáns
      Abstract: Publication date: Available online 8 March 2017
      Source:Advances in Engineering Software
      Author(s): J. García-Martínez, F.J. Herrada, L.K.H. Hermanns, A. Fraile, F.J. Montáns
      In the dynamic analysis of a structure, it is frequent the use of parametric studies to consider several design configurations or possible modifications of the structure. These changes modify the physical properties of the structure, and therefore, finite element models need updates in order to compute the response of the modified structure. A wide variety of model order reduction methods which may be suitable for this task has been developed, either static or dynamic, which also consider non-classical damping, which is especially relevant in the design of vibration absorption devices. In this paper, we compare the use of selective reorthogonalization with other model order reduction techniques, both in terms of computational time and in accuracy, using three computer architectures. The proposed reorthogonalization method allows for parametric structural modifications and evaluates the solution using a modified complex modal domain only along a selection of a few degrees of freedom that are relevant for the dynamic analysis of the system. This acceleration method does not result in any significative decrease of the quality of the results of interest due to approximations, whereas remains very competitive when compared to usual model order reduction techniques.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.006
  • Study on the reduction method of the satellite thermal mathematical model
    • Authors: Jung Hoon Kim; Byoungsoo Kim
      Abstract: Publication date: Available online 7 March 2017
      Source:Advances in Engineering Software
      Author(s): Jung Hoon Kim, Byoungsoo Kim
      The thermal model reduction method is introduced to condense a huge satellite panel thermal model into a simplified model in order to make efficient calculations in the thermal analysis of a satellite in orbit. The static condensation algorithm with a substitution matrix manipulation is employed to handle the huge matrices without any numerical restriction. The relevant mathematical procedures of reduction are described step-by-step. The thermal model example of a satellite panel is illustrated to demonstrate the developed reduction method and its results are discussed. The influence of generated meshes for the reduced thermal model is reviewed. The calculation times are assessed and comparison between the developed method and the classical block-form LU decomposition method is also performed.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.007
  • 3-D elasto-plastic large deformations: IGA simulation by Bézier
           extraction of NURBS
    • Authors: Wenjiang Lai; Tiantang Yu; Tinh Quoc Bui; Zhiguo Wang; Jose L. Curiel-Sosa; Raj Das; Sohichi Hirose
      Abstract: Publication date: Available online 7 March 2017
      Source:Advances in Engineering Software
      Author(s): Wenjiang Lai, Tiantang Yu, Tinh Quoc Bui, Zhiguo Wang, Jose L. Curiel-Sosa, Raj Das, Sohichi Hirose
      This paper is devoted to the numerical simulation of elasto-plastic large deformation in three-dimensional (3-D) solids using isogeometric analysis (IGA) based on Bézier extraction of NURBS (non-uniform rational B-splines), due to some inherently desirable features. The Bézier extraction operation decomposes the NURBS basis functions into a set of linear combination of Bernstein polynomials and a set of C 0-continuity Bézier elements. Consequently, the IGA based on Bézier extraction of NURBS can be embedded in existing FEM codes, and more importantly, as have been shown in literature that higher accuracy over traditional FEM can be gained. The main features distinguishing between the IGA and FEM are the exact geometry description with fewer control points, high-order continuity, high accuracy. Unlike the standard FEM, the NURBS basis functions are capable of precisely describing both geometry and solution fields. The present kinematic is based on the Total Lagrange description due to the elasto-plastic large deformation with deformation history. The results for the distributions of displacements, von Mises stress, yielded zones, and force-displacement curves are computed and analyzed. For the sake of comparison of the numerical results, the same numerical examples have additionally been computed with the FEM using ABAQUS. IGA numerical results show the robustness and accuracy of the technique.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.011
  • A novel resource sharing algorithm based on distributed construction for
           radiant enclosure problems
    • Authors: Peter Finzell; Kenneth M. Bryden
      Abstract: Publication date: Available online 6 March 2017
      Source:Advances in Engineering Software
      Author(s): Peter Finzell, Kenneth M. Bryden
      This paper demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchange blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.

      PubDate: 2017-03-11T00:07:20Z
      DOI: 10.1016/j.advengsoft.2017.02.009
  • Research on multi-variation coupling effect of heart-shaped dual phase
           Hy-Vo silent chain system
    • Authors: Yabing Cheng; Xiaopeng Wang; Huan Liu; Wang Gao; Junyue Zhang
      Abstract: Publication date: Available online 3 March 2017
      Source:Advances in Engineering Software
      Author(s): Yabing Cheng, Xiaopeng Wang, Huan Liu, Wang Gao, Junyue Zhang
      Based on the theory of transmission that the Hy-Vo silent chain meshes with the sprocket, the meshing design system of the dual phase Hy-Vo silent chain link-sprocket-tool and the dynamics model of the dual phase Hy-Vo silent chain transmission system based on heart-shaped hole are built. The main design parameters of chain link, benchmark apothem and positioning offset angle, are designed and the harmonic relationship between them and the dual phase transmission system fluctuations is analyzed. The simulation analysis results show that the fluctuations of the dual phase transmission system are less than those of the single phase transmission system obviously no matter how the benchmark apothem and the positioning offset angle vary. Compared to the single phase transmission system, the angular velocity variation of the dual phase transmission system is smaller and the frequency is lower. In addition, the influence on fluctuation of Hy-Vo silent chain that the benchmark apothem and the positioning offset angle have is not a simple superposition, but the result of interaction. The research results of this paper will provide the support for parameter optimization of dual phase transmission Hy-Vo silent chain, and also provide some scientific basis for multi-variation coupling effect of the dual phase Hy-Vo silent chain system.

      PubDate: 2017-03-05T17:35:29Z
      DOI: 10.1016/j.advengsoft.2017.02.010
  • Algebraic generation of single domain computational grid for twin screw
           machines. Part I. Implementation
    • Authors: Sham Rane; Ahmed Kovacevic
      Abstract: Publication date: Available online 2 March 2017
      Source:Advances in Engineering Software
      Author(s): Sham Rane, Ahmed Kovacevic
      Special attention is required for generation of computational grids in highly deforming working chambers of twin screw machines for 3D CFD calculations. Two approaches for customised grid generation are practically available. The first is an algebraic grid generation and the second is a differential decomposition method. This paper reports on new developments in the algebraic approach that has the advantages associated with both algebraic and differential methods. Two control functions are introduced for regularisation of the initial algebraic distribution. One is based on an analytical control function in transformed coordinate system while the other uses background blocking structure in order to guide the initial algebraic distribution towards a single computational mesh. This paper presents implementation and grid characteristics of these new functions. Developed grids have been tested and results from flow calculations on a dry air compressor have been validated in part II of the paper [29]. It was possible to achieve two distinct characteristics desirable in a twin screw rotor domain mesh. Firstly, it is possible to independently control grid refinement in the interlobe region thereby providing better accuracy in representation of the leakage gaps. Secondly and most importantly, it is possible now to eliminate the non-conformal interface between the two rotor domains thereby producing a single domain structured grid for the rotors, while still maintaining the fully hexahedral cell topology. An improvement in the global orthogonality of the cells was achieved. Despite of a decrement in the Face warp quality, aspect ratio of cells retained similar scale.

      PubDate: 2017-03-05T17:35:29Z
      DOI: 10.1016/j.advengsoft.2017.02.003
  • An agglomeration strategy for accelerating RBF-based mesh deformation
    • Authors: Giorgos A. Strofylas; Georgios N. Lygidakis; Ioannis K. Nikolos
      Abstract: Publication date: Available online 2 March 2017
      Source:Advances in Engineering Software
      Author(s): Giorgos A. Strofylas, Georgios N. Lygidakis, Ioannis K. Nikolos
      RBF-based mesh deformation methods have been recognized during the past years as an essential tool for numerical simulations involving mesh deformation. Nevertheless, they call for excessive memory and computation time requirements, especially for large-scale problems. A remedy to this shortcoming appears to be the selection of a reduced number of surface mesh nodes, to be used as RBF-centers, resulting in decreased dimensions of the system of equations. In this study a methodology for the reduction of the RBF-centers is developed, based on the agglomeration of boundary nodes' control areas. This technique has been adopted from the multigrid methods frequently employed in numerical simulation of fluid flow, heat transfer, etc. The fusion strategy is performed on a topology-preserving framework, while it resembles the advancing front technique, as it begins from regions with surface discontinuities extending successively to the interior. The proposed algorithm was evaluated against benchmark test cases, concerning deformation of the wing of a transonic commercial aircraft and the blade of a wind turbine, revealing its potential for radically improved computational performance of the grid deformation procedure. Moreover, the obtained results confirm its capability to preserve grid quality, despite the notable reduction of RBF-centers.

      PubDate: 2017-03-05T17:35:29Z
      DOI: 10.1016/j.advengsoft.2017.02.004
  • Lattice Boltzmann parallel simulation of microflow dynamics over
           structured surfaces
    • Authors: Wenning Zhou; Yuying Yan; Xunliang Liu; Baiqian Liu
      Abstract: Publication date: Available online 24 February 2017
      Source:Advances in Engineering Software
      Author(s): Wenning Zhou, Yuying Yan, Xunliang Liu, Baiqian Liu
      In the present work, a parallel lattice Boltzmann multiphase model was developed to investigate the effects of surface structures on wettabilities and flow dynamics in a microchannel. The theory of wetting transition was firstly discussed. Then three types including triangular, rectangle and hierarchical shaped microstructures were constructed on the surface to examine the effects on wettabilities and drag reduction. It was found that flow behaviour is strongly affected by the surface morphology of the channel. The results indicated that hierarchical structures on the surface could improve the hydrophobicity significantly. For rectangular structures, they can improve the hydrophobicity with the increase of height and distance ratio h/d of the structures, and the improvement will reach its optimal hydrophobicity when the value h/d is over a certain value of 0.6. Moreover, to accelerate computational speed, the Open Multi-Processing (OpenMP) was employed for the parallelization of the model. A maximum speedup of 2.95 times was obtained for 4 threads on a multi-core CPU platform.

      PubDate: 2017-02-25T17:00:31Z
      DOI: 10.1016/j.advengsoft.2017.02.001
  • Editorial Board/Publishing Info
    • Abstract: Publication date: April 2017
      Source:Advances in Engineering Software, Volume 106

      PubDate: 2017-02-12T16:12:47Z
  • Eliminate localized eigenmodes in level set based topology optimization
           for the maximization of the first eigenfrequency of vibration
    • Authors: Zhenhua Li; Tielin Shi; Qi Xia
      Abstract: Publication date: Available online 23 December 2016
      Source:Advances in Engineering Software
      Author(s): Zhenhua Li, Tielin Shi, Qi Xia
      Maximizing the fundamental eigenfrequency of vibration is an important topic in structural topology optimization. Previous studies of such a topology optimization problem should always be cautious of the “artificial localized mode” as it makes the optimization fail. In the present work, a level set based topology optimization is proposed to address such an issue. The finite element analysis is conducted on the actual structure by using a body-fitted mesh and without artificial weak material, thus localized mode that conventionally arises due to low-density region is prevented. In the present study, attention is turned to localized mode occurred gradually during the optimization. Such kind of localized mode results from the emergence of isolated area or cracked structure member produced by topological changes. A mode recognition technique based on the volume ratio of vibration-free region to the entire structure is proposed to identify such localized mode. Numerical examples of 2D structures are investigated.

      PubDate: 2016-12-24T23:14:08Z
      DOI: 10.1016/j.advengsoft.2016.12.001
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016