for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2449 journals)
    - CHEMICAL ENGINEERING (208 journals)
    - CIVIL ENGINEERING (208 journals)
    - ELECTRICAL ENGINEERING (116 journals)
    - ENGINEERING (1288 journals)
    - ENGINEERING MECHANICS AND MATERIALS (394 journals)
    - HYDRAULIC ENGINEERING (56 journals)
    - INDUSTRIAL ENGINEERING (81 journals)
    - MECHANICAL ENGINEERING (98 journals)

ENGINEERING (1288 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
3D Research     Hybrid Journal   (Followers: 21)
AAPG Bulletin     Hybrid Journal   (Followers: 8)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 5)
ACS Nano     Hybrid Journal   (Followers: 293)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 9)
Advanced Journal of Graduate Research     Open Access  
Advanced Science     Open Access   (Followers: 5)
Advanced Science Focus     Free   (Followers: 5)
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 4)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 28)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 14)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 21)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 9)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 29)
Advances in Nonlinear Analysis     Hybrid Journal  
Advances in Operations Research     Open Access   (Followers: 12)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 16)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 49)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 3)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 6)
AIChE Journal     Hybrid Journal   (Followers: 35)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access   (Followers: 1)
Al-Nahrain Journal for Engineering Sciences     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 26)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 10)
American Journal of Engineering Education     Open Access   (Followers: 11)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 25)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Pure and Applied Logic     Open Access   (Followers: 3)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Antarctic Science     Hybrid Journal   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 20)
Applied Clay Science     Hybrid Journal   (Followers: 6)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 13)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 5)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Basic and Applied Sciences     Open Access  
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 9)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 6)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 28)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Motor Trade Survey     Full-text available via subscription  
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Beyond : Undergraduate Research Journal     Open Access  
Bhakti Persada : Jurnal Aplikasi IPTEKS     Open Access  
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Bilge International Journal of Science and Technology Research     Open Access  
Biofuels Engineering     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 11)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering     Hybrid Journal   (Followers: 1)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 21)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 37)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Open Access   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Bitlis Eren University Journal of Science and Technology     Open Access  
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 13)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 14)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers Droit, Sciences & Technologies     Open Access  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 31)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 44)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Thermal Engineering     Open Access   (Followers: 6)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 7)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal  
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencia y Tecnología     Open Access  
Ciencias Holguin     Open Access   (Followers: 3)
CienciaUAT     Open Access   (Followers: 1)
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 13)
City, Culture and Society     Hybrid Journal   (Followers: 22)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
Clinical Science     Hybrid Journal   (Followers: 9)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 6)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 3)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 15)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Information Science and Management Engineering     Open Access   (Followers: 4)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 28)
Composite Interfaces     Hybrid Journal   (Followers: 7)
Composite Structures     Hybrid Journal   (Followers: 294)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 223)
Composites Part B : Engineering     Hybrid Journal   (Followers: 261)
Composites Science and Technology     Hybrid Journal   (Followers: 201)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access   (Followers: 1)
Computational Geosciences     Hybrid Journal   (Followers: 17)
Computational Optimization and Applications     Hybrid Journal   (Followers: 8)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Science and Engineering     Open Access   (Followers: 19)
Computers & Geosciences     Hybrid Journal   (Followers: 31)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 8)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 5)
Computers and Geotechnics     Hybrid Journal   (Followers: 11)
Computing and Visualization in Science     Hybrid Journal   (Followers: 7)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 34)

        1 2 3 4 5 6 7 | Last

Journal Cover
Advances in Engineering Software
Journal Prestige (SJR): 1.159
Citation Impact (citeScore): 4
Number of Followers: 28  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0965-9978
Published by Elsevier Homepage  [3162 journals]
  • Efficient design optimization of complex system through an integrated
           interface using symbolic computation
    • Abstract: Publication date: December 2018Source: Advances in Engineering Software, Volume 126Author(s): Hansu Kim, Shinyu Kim, Taekyun Kim, Tae Hee Lee, Namhee Ryu, Kihan Kwon, Seungjae Min A complex system is composed of several subsystems and numerous lower level components. It is inefficient to design the complex system at the system level by using high-fidelity models. A system level approach using a language-based model is required to design such a highly complex system before implementing a detailed design. However, as commercial process integration and design optimization software packages focus on detailed design, which uses the high-fidelity models, it is difficult to perform the design optimization of a highly complex system, such as a combat vehicle. Moreover, as commercial optimization software packages use numerical computation, the gradient calculation cost can increase, and the matrix computation process can be inefficient in terms of optimization time. Therefore, in this study, an integrated interface for efficient design optimization was developed to focus on concept design using a MODELICA language-based model. Additionally, the design variable screening by using analysis of variance, surrogate modeling through sequential design of experiments, and symbolic computation were used to solve the aforementioned problems. These were applied to the design optimization of the combat vehicle system to demonstrate the effectiveness of the integrated interface and symbolic computation. In conclusion, a concept design utilizing a MODELICA language-based model was achieved, and the optimization time achieved by symbolic computation was largely reduced in comparison to the optimization time achieved by numerical computation.
       
  • A new multiscale phase field method to simulate failure in composites
    • Abstract: Publication date: December 2018Source: Advances in Engineering Software, Volume 126Author(s): R.U. Patil, B.K. Mishra, I.V. Singh, T.Q. Bui In this paper, a new multiscale phase field method (MsPFM) has been proposed to simulate crack propagation in composites. The MsPFM inherits the merits of anisotropic phase field method and multiscale finite element method. It is known that phase field simulation requires dense meshing to represent a sharp crack, thus the main aim of the MsPFM is to achieve mesh refinement in the vicinity of diffused crack/cracks. The proposed method is also used to study the interaction of a pre-existing crack with weak or strong interfaces (between matrix-fibre or between laminates) in terms of crack arrest, crack deflection, crack coalescence, and multiple cracks initiation in composites. Various numerical experiments are performed to demonstrate the effectiveness of proposed MsPFM to simulate the aforementioned failure characteristics of the composites. The crack growth trajectory obtained by the MsPFM for few test cases is validated through standard extended finite element method.
       
  • A Uniform-Gaussian distributed heat source model for analysis of residual
           stress field of S355 steel T welding
    • Abstract: Publication date: December 2018Source: Advances in Engineering Software, Volume 126Author(s): Tianci Li, Lele Zhang, Chao Chang, Liang Wei A novel combined heat source model is derived for the simulation of the residual stress field of a T welding. The model is derived combining Gaussian surface and uniform volume heat source, and is applicable to simulate welding process as the electric arc is moving across an angled structure. By both physical characteristics of T and arc welding process, one part of heat input is from the welding arc acting in the workpiece surface, the other is from the molten metal droplets. The two portions are accurately calculated by Gaussian surface heat source distribution and uniform volume source. The numerical simulation of the welding process for a S355 steel T welding based on this novel model has been done and obtain the transient temperature field, stress evolution and residual stress field of the structure. The comparison between measured results by the hole drilling and X-ray diffraction (XRD) and simulation indicates that the combined heat source is sufficient to allow for an overall prediction of the entire welding process of T joints.
       
  • A Bézier extraction based XIGA approach for three-dimensional crack
           simulations
    • Abstract: Publication date: November 2018Source: Advances in Engineering Software, Volume 125Author(s): S.K. Singh, I.V. Singh, G. Bhardwaj, B.K. Mishra In this work, Bézier extraction based extended isogeometric analysis (XIGA) has been performed for three-dimensional (3-D) crack simulations in linear elastic materials. The Bézier extraction represent the original NURBS basis functions in terms of Bernstein shape functions defined over C 0 continuous isogeometric Bézier elements, and provides an element wise data structure of NURBS which makes the implementation similar to extended finite element method (XFEM). A crack in the domain is modeled by Heaviside and crack tip enrichment functions. The values of mixed-mode stress intensity factors (SIFs) are obtained by interaction integral approach using virtual cuboidal domain. Various 3-D crack problems are solved by Bézier extraction based XIGA, and the results are compared with XFEM and analytical solutions.
       
  • A novel extension of the Bézier model and its applications to surface
           modeling
    • Abstract: Publication date: November 2018Source: Advances in Engineering Software, Volume 125Author(s): Gang Hu, Junli Wu, Xinqiang Qin The construction of Bézier curves and surfaces with shape parameters is one of the most popular areas of research in CAD. In this paper, we present a novel shape-adjustable generalized Bézier curve with multiple shape parameters and discuss its applications to surface modeling in engineering. Firstly, a class of new generalized Bernstein basis functions with explicit expressions is proposed, which is a natural extension of the classical Bernstein basis functions of degree n. Furthermore, the corresponding Bézier curves and surfaces with global and local shape parameters are constructed and their properties are also studied. The shapes of the curves and surfaces can be adjusted intuitively and foreseeably by changing the shape parameters. Secondly, in order to tackle the problem that most complex curves in engineering often cannot be constructed by using a single curve, we derive the necessary and sufficient conditions for C1 and C2 continuity of these new curves. Finally, using shape-adjustable generalized Bézier curves, we construct six different types of engineering surfaces with multiple shape parameters, including general cylinders, bilinear surfaces, ruled surfaces, swung surfaces, swept surfaces and rotation surfaces. The modeling examples show that the proposed methods are effective in geometric modeling.
       
  • Design of phononic crystals plate and application in vehicle sound
           insulation
    • Abstract: Publication date: November 2018Source: Advances in Engineering Software, Volume 125Author(s): Lijun Li, Xianyue Gang, Zhenyong Sun, Xianxu Zhang, Fan Zhang The sound insulation performance of plates obviously affects the noise inside vehicle. Phononic crystals are periodic structures composed of various elastic materials. In this paper, the sound insulation performance of commonly used phononic crystals plates are analyzed by FEM (Finite Element Method), and some relevant conclusions are obtained. Based on the common two-dimensional convex phononic crystals, combined with micro perforated plate, a new type of phononic crystals plate is proposed, and the new combined phononic crystals structure is applied to the front plate of some automobile. The analysis results show that the combined phononic crystals plate has obvious effect on the noise reduction of the cab.
       
  • Using synchronous and asynchronous parallel Differential Evolution for
           calibrating a second-order traffic flow model
    • Abstract: Publication date: November 2018Source: Advances in Engineering Software, Volume 125Author(s): G.A. Strofylas, K.N. Porfyri, I.K. Nikolos, A.I. Delis, M. Papageorgiou Given the importance of the credibility and validity required by macroscopic traffic flow models in performing real-word simulations, the necessity of including an accurate, computationally fast, and reliable constrained optimization scheme appears to be mandatory to ensure that the traffic flow characteristics are accurately represented by such models. To this end, a parallel, synchronous or asynchronous, metamodel-assisted Differential Evolution (DE) algorithm is employed for the calibration of a second-order macroscopic gas-kinetic traffic flow (GKT) model using real traffic data from Attiki Odos freeway in Athens, Greece. Two Artificial Neural Networks, a Multi-layer Perceptron and a Radial Basis Function network, are used as surrogate models to decrease the computation time of the evaluation phase of the DE optimizer. The parallelization of the DE algorithm is performed using the Message Passing Interface (MPI). Numerical simulations are performed, which demonstrate that the DE algorithm can be effectively used for the search of the global optimal model parameters in the GKT model, while appears to be a promising method for the calibration of other similar traffic models.
       
  • Computational efficiency and accuracy of sequential nonlinear cyclic
           analysis of carbon nanotube nanocomposites
    • Abstract: Publication date: Available online 9 September 2018Source: Advances in Engineering SoftwareAuthor(s): Giovanni Formica, Franco Milicchio, Walter Lacarbonara The accuracy and efficiency of a numerical strategy for sequential nonlinear cyclic analyses of carbon nanotube nanocomposites are investigated. The computational approach resorts to a nonlinear 3D finite element implementation that seeks to solve the cyclic hysteretic response of the nanocomposite. A variant of the Newton-Raphson method within a time integration scheme is proposed whereby the elastic tangent matrix is chosen as iteration matrix without paying the price of its iterative update. This is especially rewarding in the context of the employed mechanical model which exhibits hysteresis manifested through a discontinuous change in the stiffness at the reversal points where the loading direction is reversed. Key implementation aspects – such as the integration of the nonlinear 3D equations of motion, the numerical accuracy/efficiency as a function of the time step or the mesh size – are discussed. In particular, efficiency is regarded as performing fast computations especially when the number of cyclic analyses becomes large. By making use of laptop CPU cores, a good speed of computations is achieved not only through parallelization but also employing a caching procedure for the iteration matrix.
       
  • Deploying Docker Swarm cluster on hybrid clouds using Occopus
    • Abstract: Publication date: Available online 31 August 2018Source: Advances in Engineering SoftwareAuthor(s): József Kovács, Péter Kacsuk, Márk Emődi The paper introduces a new method of deploying complex infrastructures in hybrid clouds. The new method is based on a new cloud orchestrator, called Occopus that enables cloud independent infrastructure deployment at user level. Occopus applies a plugin based cloud access architecture. As a result, porting infrastructure among different kind of clouds or deploying an infrastructure on top of a hybrid cloud including private and public (commercial) clouds becomes straightforward. Occopus supports all the major cloud technologies and protocols like OpenStack, OpenNebula, OCCI, Amazon EC2 or CloudSigma. The paper also shows how to apply Occopus in order to deploy a Docker Swarm cluster on the top of hybrid clouds. As a concrete example it shows the deployment on a hybrid cloud system containing OpenStack, Amazon and CloudSigma clouds as components. Using hybrid clouds raises security and communication performance issues that are also covered and investigated in the paper. The technology described in the paper is intensively used in the EU H2020 project COLA for more than 20 commercial applications and on MTA Cloud that is the cloud of the Hungarian Academy of Sciences where more than 40 academic projects run.
       
  • Evaluation of the Intel Xeon Phi offload runtimes for domain decomposition
           solvers
    • Abstract: Publication date: Available online 8 July 2018Source: Advances in Engineering SoftwareAuthor(s): Lukas Maly, Jan Zapletal, Michal Merta, Lubomir Riha, Vit Vondrak In the paper we provide a comparison of several runtimes which can be used for offloading computationally intensive kernels to the Intel Xeon Phi coprocessors. The presented benchmark application is a stripped-down version of an iterative solver used within the Schur complement finite or boundary element tearing and interconnecting (FETI, BETI) domain decomposition methods where the sparse solve with local stiffness matrices is replaced by the multiplication with dense matrices in order to exploit coalesced memory access patterns. We present offload approaches based on the Intel Language Extension for Offload (LEO), Hetero Streams Library (hStreams), and Heterogeneous Active Messages (HAM), and compare their performance and ease of use.
       
  • Path-following interior point method: Theory and applications for the
           Stokes flow with a stick-slip boundary condition
    • Abstract: Publication date: Available online 8 July 2018Source: Advances in Engineering SoftwareAuthor(s): Tomáš Brzobohatý, Marta Jarošová, Radek Kučera, Václav Šátek A path-following interior point method is proposed for minimization of quadratic functions subject to box and equality constraints. The problems with the singular Hessian that is symmetric, positive definite on the null space of the equality constraint matrix are considered. The inner linear systems are solved by the projected conjugate gradient method preconditioned by oblique projectors. Numerical experiments include large-scale problems arising from the TFETI domain decomposition method applied for solving the Stokes flow with the stick-slip boundary condition.
       
  • Modelling fracture in heterogeneous materials on HPC systems using a
           hybrid MPI/Fortran coarray multi-scale CAFE framework
    • Abstract: Publication date: Available online 27 June 2018Source: Advances in Engineering SoftwareAuthor(s): A. Shterenlikht, L. Margetts, L. Cebamanos A 3D multi-scale cellular automata finite element (CAFE) framework for modelling fracture in heterogeneous materials is described. The framework is implemented in a hybrid MPI/Fortran coarray code for efficient parallel execution on HPC platforms. Two open source BSD licensed libraries developed by the authors in modern Fortran were used: CGPACK, implementing cellular automata (CA) using Fortran coarrays, and ParaFEM, implementing finite elements (FE) using MPI. The framework implements a two-way concurrent hierarchical information exchange between the structural level (FE) and the microstructure (CA). MPI to coarrays interface and data structures are described. The CAFE framework is used to predict transgranular cleavage propagation in a polycrystalline iron round bar under tension. Novel results enabled by this CAFE framework include simulation of progressive cleavage propagation through individual grains and across grain boundaries, and emergence of a macro-crack from merging of cracks on preferentially oriented cleavage planes in individual crystals. Nearly ideal strong scaling up to at least tens of thousands of cores was demonstrated by CGPACK and by ParaFEM in isolation in prior work on Cray XE6. Cray XC30 and XC40 platforms and CrayPAT profiling were used in this work. Initially the strong scaling limit of hybrid CGPACK/ParaFEM CAFE model was 2000 cores. After replacing all-to-all communication patterns with the nearest neighbour algorithms the strong scaling limit on Cray XC30 was increased to 7000 cores. TAU profiling on non-Cray systems identified deficiencies in Intel Fortran 16 optimisation of remote coarray operations. Finally, coarray synchronisation challenges and opportunities for thread parallelisation in CA are discussed.
       
  • Cloud agnostic Big Data platform focusing on scalability and
           cost-efficiency
    • Abstract: Publication date: Available online 27 June 2018Source: Advances in Engineering SoftwareAuthor(s): Róbert Lovas, Enikő Nagy, József Kovács Nowadays a significant part of the cloud applications processes a large amount of data to provide the desired analytics, simulation and other results. Cloud computing is becoming a widely used IT model to address the needs of many scientific and commercial Big Data applications. In this paper, we present a Hadoop platform deployment method for various cloud infrastructures with the Occopus cloud orchestrator tool. Our automated solution provides an easy-to-use, portable and scalable way to deploy the popular Hadoop platform with the main goal to avoid vendor locking issues, i.e. there is no dependency on any cloud provider prepared and offered virtual machine image or “black-box” Platform-as-a-Service mechanism. The paper presents promising performance measurements results and cost analysis.
       
  • Transformations of Arm-Z modular manipulator with Particle Swarm
           Optimization
    • Abstract: Publication date: Available online 27 June 2018Source: Advances in Engineering SoftwareAuthor(s): Machi Zawidzki, Jacek Szklarski A novel concept of hyper-redundant, snake-like manipulator is presented. It is based on the reconfigurable modular construction system–Arm-Z (AZ). AZ is comprised of linearly joined congruent modules with possibility of relative twist. AZ is an Extremely Modular System, i.e. it is composed of a single basic unit and allows for creating free-form shapes. Required level of usefulness and efficiency are among the most challenging design aspects of such reconfigurable systems. Here AZ is considered in the context of kinematics of robotic arms. In general, due to its highly non-linear nature, it is very difficult to find transitions between given states (configurations), especially under realistic environmental and structural constraints. As a way to control the manipulator, an implementation of Particle Swarm Optimization (PSO) for finding transitions between AZ states in realistic scenarios is proposed. Four practical examples are presented which are variations of two distinct problems: bending of a hexagonal AZ in a narrow slot (strong environmental constraints), and reaching a given point in 3D space by the tip of dodecagonal AZ (acting as a robotic arm). The problem of AZ transformation has been defined as a multi-objective optimization. The methodology is general with no restrictions to the objective function. Since the problem is strongly non-linear, in order to cover large space of potential solutions, the algorithm runs for a relatively large number of random initial swarms. This task was distributed on a computer cluster. Although the nature of AZ reconfiguration is discrete, the optimization algorithm is continuous.
       
  • Parallel implementation of hyper-dimensional dynamical particle system on
           CUDA
    • Abstract: Publication date: Available online 7 April 2018Source: Advances in Engineering SoftwareAuthor(s): Jan Mašek, Miroslav Vořechovský The presented paper deals with possible approaches to parallel implementation of solution of a hyper-dimensional dynamical particle system. The proposed implementation approaches are generally applicable for similar particle systems of interest in various research and engineering fields. The original motivation for the present work was a simulation of particles that represent a space-filling design to be optimized for further use in design of experiments. Due to the underlying purpose of this particle system, the dimension of the particle system of interest is considered to be entirely arbitrary. Such a hyper-dimensional space is further folded into a periodically repeated domain.The theoretical background of the proposed particle system is provided along with the derivation of equations of motion of the dynamical system. As the complexity of the system is not limited by the number of particles nor the number of dimensions, the possibilities of utilizing the GPGPU platform are more restricted in comparison with today’s fast parallel implementations of common particle systems.Two distinct approaches to parallel implementation are presented, one aiming at a generalized usage of the fast on-chip resources, the other entirely relying on the GPU’s on-board global memory. Despite unambiguous mutual differences in their performance, both parallel implementations deliver major speedup compared to the single-thread CPU solution as well as a better scaling of execution time when increasing both the number of particles and dimensions.
       
  • Modelling of nitrogen leaching from watersheds with large drained peat
           areas
    • Abstract: Publication date: Available online 23 March 2018Source: Advances in Engineering SoftwareAuthor(s): Anatoli Vassiljev, Katrin Kaur, Ivar Annus The SOIL and MACRO models with different versions of SOILN initially developed for small field-scales were used to simulate the water flow and nitrate N concentrations in two watersheds in Estonia that contain large areas of peat soils. Monitoring data show that nitrogen concentrations tend to increase in some rivers even where the human activity is very low. This may be connected to soil self-degradation processes taking place in drained peat soils where it is difficult to use most of the hydrological models. Results show that SOIL, MACRO and SOILN may be successfully applied at the watershed scale to model the water quantity and quality on watersheds with high content of peat soils. The analysis revealed that the nitrate nitrogen level trends depend considerably on the meteorological conditions.
       
  • Parallel two-stage algorithms for solving the PageRank problem
    • Abstract: Publication date: Available online 13 March 2018Source: Advances in Engineering SoftwareAuthor(s): Héctor Migallón, Violeta Migallón, José Penadés In this work we present parallel algorithms based on the use of two-stage methods for solving the PageRank problem as a linear system. Different parallel versions of these methods are explored and their convergence properties are analyzed. The parallel implementation has been developed using a mixed MPI/OpenMP model to exploit parallelism beyond a single level. In order to investigate and analyze the proposed parallel algorithms, we have used several realistic large datasets. The numerical results show that the proposed algorithms can speed up the time to converge with respect to the parallel Power algorithm and behave better than other well-known techniques.
       
  • CUDA accelerated implementation of parallel dynamic relaxation
    • Abstract: Publication date: Available online 8 March 2018Source: Advances in Engineering SoftwareAuthor(s): P. Iványi The dynamic relaxation method has been widely used for the design and analysis of cable-membrane structures. The method iteratively determines a static solution and it has already been parallelized with the MPI environment to speed up the analysis process. This paper discusses a new parallelization approach, which is programmed with the NVIDIA CUDA API and executed on GPU systems. Since a GPU system has a large number of cores and a separate memory from the computer therefore the original dynamic relaxation method has to be reorganized. The paper also discusses the performance measurements of the dynamic relaxation method on GPU systems.
       
  • Comparative studies of metamodeling and AI-Based techniques in damage
           detection of structures
    • Abstract: Publication date: Available online 6 March 2018Source: Advances in Engineering SoftwareAuthor(s): Ramin Ghiasi, Mohammad Reza Ghasemi, Mohammad Noori Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of structural health monitoring. To cut down the cost, surrogate models, also known as metamodels, are constructed and then used in place of the actual simulation models. In this study, structural damage detection is performed using two approaches. In both cases ten popular metamodeling techniques including Back-Propagation Neural Networks (BPNN), Least Square Support Vector Machines (LS-SVMs), Adaptive Neural-Fuzzy Inference System (ANFIS), Radial Basis Function Neural network (RBFN), Large Margin Nearest Neighbors (LMNN), Extreme Learning Machine (ELM), Gaussian Process (GP), Multivariate Adaptive Regression Spline (MARS), Random Forests and Kriging are used and the comparative results are presented. In the first approach, by considering dynamic behavior of a structure as input variables, ten metamodels are constructed, trained and tested to detect the location and severity of damage in civil structures. The variation of running time, mean square error (MSE), number of training and testing data, and other indices for measuring the accuracy in the prediction are defined and calculated in order to inspect advantages as well as the shortcomings of each algorithm. The results indicate that Kriging and LS-SVM models have better performance in predicting the location/severity of damage compared with other methods. In the second approach, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using a properly trained surrogate model. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging colliding bodies optimization algorithm (CBO) by efficient surrogate model of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
       
  • Static load estimation using artificial neural network: Application on a
           wing rib
    • Abstract: Publication date: Available online 7 February 2018Source: Advances in Engineering SoftwareAuthor(s): Samson B. Cooper, Dario DiMaio This paper presents a novel approach to predicting the static load on a large wing rib in the absence of load cells. A Finite Element model of the wing rib was designed and calibrated using measured data obtained from static experimental test. An Artificial Neural Network (ANN) model was developed to predict the static load applied on the wing rib, this was achieved by using random data and strain values obtained from the static test as input parameters. A number of two layer feed-forward networks were designed and trained in MATLAB using the back-propagation algorithm. The first set of Neural Networks (NN) were trained using random data as inputs, measured strain values were introduced as input into the already trained neural network to access the training algorithm and quantify the accuracy of the static load prediction produced by the trained NN. In addition, a procedure that combines ANN and FE modelling to create a hybrid inverse problem analysis and load monitoring tool is presented. The hybrid approach is based on using trained NN to estimate the applied load from a known FE structural response. Results obtained from this research proves that using an ANN to identify loads is feasible and a well-trained NN shows fast convergence and high degree of accuracy of 92% in the load identification process. Finally, additional trained network results showed that ANN as an inverse problem solver can be used to estimate the load applied on a structure once the load-response relationship has been identified.
       
  • A new nodal outflow function for head-dependent modelling of water
           distribution networks
    • Abstract: Publication date: Available online 19 January 2007Source: Advances in Engineering SoftwareAuthor(s): T.T. Tanyimboh, A.B. TemplemanThis article has been removed consistent with Elsevier Policy on Article Withdrawal. The Publisher apologises for any inconvenience this may cause.
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.92.163.105
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-