for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2450 journals)
    - CHEMICAL ENGINEERING (208 journals)
    - CIVIL ENGINEERING (208 journals)
    - ELECTRICAL ENGINEERING (116 journals)
    - ENGINEERING (1288 journals)
    - ENGINEERING MECHANICS AND MATERIALS (394 journals)
    - HYDRAULIC ENGINEERING (56 journals)
    - INDUSTRIAL ENGINEERING (82 journals)
    - MECHANICAL ENGINEERING (98 journals)

ENGINEERING (1288 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
3D Research     Hybrid Journal   (Followers: 21)
AAPG Bulletin     Hybrid Journal   (Followers: 8)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 5)
ACS Nano     Hybrid Journal   (Followers: 292)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 9)
Advanced Journal of Graduate Research     Open Access  
Advanced Science     Open Access   (Followers: 5)
Advanced Science Focus     Free   (Followers: 5)
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 4)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 28)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 14)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 21)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 9)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 29)
Advances in Nonlinear Analysis     Hybrid Journal  
Advances in Operations Research     Open Access   (Followers: 12)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 16)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 49)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 3)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 6)
AIChE Journal     Hybrid Journal   (Followers: 35)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access   (Followers: 1)
Al-Nahrain Journal for Engineering Sciences     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 26)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 10)
American Journal of Engineering Education     Open Access   (Followers: 11)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 25)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Pure and Applied Logic     Open Access   (Followers: 3)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Antarctic Science     Hybrid Journal   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 20)
Applied Clay Science     Hybrid Journal   (Followers: 6)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 13)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 5)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Basic and Applied Sciences     Open Access  
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 9)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 6)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 28)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Motor Trade Survey     Full-text available via subscription  
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Beyond : Undergraduate Research Journal     Open Access  
Bhakti Persada : Jurnal Aplikasi IPTEKS     Open Access  
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Bilge International Journal of Science and Technology Research     Open Access  
Biofuels Engineering     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 11)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering     Hybrid Journal   (Followers: 1)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 21)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 37)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Open Access   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Bitlis Eren University Journal of Science and Technology     Open Access  
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 13)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 14)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers Droit, Sciences & Technologies     Open Access  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 31)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 44)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Thermal Engineering     Open Access   (Followers: 6)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 7)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal  
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencia y Tecnología     Open Access  
Ciencias Holguin     Open Access   (Followers: 3)
CienciaUAT     Open Access   (Followers: 1)
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 13)
City, Culture and Society     Hybrid Journal   (Followers: 22)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
Clinical Science     Hybrid Journal   (Followers: 9)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 6)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 3)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 15)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Information Science and Management Engineering     Open Access   (Followers: 4)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 28)
Composite Interfaces     Hybrid Journal   (Followers: 7)
Composite Structures     Hybrid Journal   (Followers: 290)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 222)
Composites Part B : Engineering     Hybrid Journal   (Followers: 260)
Composites Science and Technology     Hybrid Journal   (Followers: 200)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access   (Followers: 1)
Computational Geosciences     Hybrid Journal   (Followers: 17)
Computational Optimization and Applications     Hybrid Journal   (Followers: 8)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Science and Engineering     Open Access   (Followers: 19)
Computers & Geosciences     Hybrid Journal   (Followers: 31)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 8)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 5)
Computers and Geotechnics     Hybrid Journal   (Followers: 11)
Computing and Visualization in Science     Hybrid Journal   (Followers: 7)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 34)

        1 2 3 4 5 6 7 | Last

Journal Cover
Acta Metallurgica Sinica (English Letters)
Journal Prestige (SJR): 0.576
Citation Impact (citeScore): 2
Number of Followers: 7  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1006-7191 - ISSN (Online) 2194-1289
Published by Springer-Verlag Homepage  [2351 journals]
  • Young’s Modulus Enhancement and Measurement in CNT/Al Nanocomposites
    • Authors: Zi-Yun Yu; Zhan-Qiu Tan; Gen-Lian Fan; Ren-Bang Lin; Ding-Bang Xiong; Qiang Guo; Yi-Shi Su; Zhi-Qiang Li; Di Zhang
      Pages: 1121 - 1129
      Abstract: Young’s modulus is a critical parameter for designing lightweight structure, but Al and its alloys only demonstrate a limited value of 70–72 GPa. The introduction of carbon nanotubes (CNTs) is an effective way to make Al and its alloys stiffer. However, little research attention has been paid to Young’s modulus of CNT/Al nanocomposites attributed to the uncertain measurement and unconvincing stiffening effect of CNTs. In this work, improved Young’s modulus of 82.4 ± 0.4 GPa has been achieved in 1.5 wt% CNT/Al nanocomposite fabricated by flake powder metallurgy, which was determined by resonance test and 13.5% higher than 72.6 ± 0.64 GPa of Al matrix. A comparative study and statistical analysis further revealed that Young’s modulus determined by tensile test was relatively imprecise (83.1 ± 4.0 GPa) due to the low-stress microplasticity or interface decohesion during tensile deformation of CNT/Al nanocomposite, while the value (98–100 GPa) was highly overestimated by nanoindentation due to the “pile-up” effect. This work shows an in-depth discussion on studying Young’s modulus of CNT/Al nanocomposites.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0730-8
      Issue No: Vol. 31, No. 11 (2018)
       
  • Ni-Based Metallic Glass Composites Containing Cu-Rich Crystalline
           Nanospheres
    • Authors: Yao-Yao Xi; Jie He; Xiao-Jun Sun; Wang Li; Jiu-Zhou Zhao; Hong-Ri Hao; Ting Xiong
      Pages: 1130 - 1136
      Abstract: In this work, a quaternary Ni–Cu–Nb–Ta system has been designed to obtain composite microstructure with spherical crystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by using single-roller melting-spinning method. The microstructure and thermal properties of the as-quenched alloy samples were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and differential scanning calorimetry. It shows that the spherical crystalline Cu-rich particles are embedded in the amorphous Ni-rich matrix. The average size of the Cu-rich particles is strongly dependent upon the Cu content. The effect of the alloy composition on the behavior of liquid–liquid phase separation and microstructure evolution was discussed. The phase formation in the Ni-based metallic glass matrix composite was analyzed.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0756-y
      Issue No: Vol. 31, No. 11 (2018)
       
  • Crevice Corrosion of Several Supper Stainless Steels in the Simulated
           LT-MED Environment
    • Authors: Chang-Gang Wang; Xiao-Fang Li; Jie Wei; Xin Wei; Fang Xue; Rong-Yao Ma; Jun-Hua Dong; Wei Ke
      Pages: 1137 - 1147
      Abstract: Susceptibility and morphological characteristics of crevice corrosion for SS316, SS904L, SS254sMo and SS2507 in the simulated low-temperature multi-effect distillation environment were investigated by cyclic polarization test, scanning electron microscope and laser microscope. The results show that the crevice corrosion resistance of four kinds of stainless steel is ranked as SS254sMo ≈ SS2507 > SS316 > SS904L. There are “cover” structures over the edge of active crevice corrosion regions of SS904L, SS254sMo and SS2507, but SS316 is an exception. Galvanic corrosion characteristics appeared in the crevice of duplex supper stainless steel SS2507.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0728-2
      Issue No: Vol. 31, No. 11 (2018)
       
  • Evolution of the Corrosion Product Film and Its Effect on the
           Erosion–Corrosion Behavior of Two Commercial 90Cu–10Ni Tubes in
           Seawater
    • Authors: Okpo O. Ekerenam; Ai-Li Ma; Yu-Gui Zheng; Si-Yu He; Peter C. Okafor
      Pages: 1148 - 1170
      Abstract: The composition and structural evolution of the corrosion product film of two commercial 90Cu–10Ni tubes, namely Tube A and Tube B, after being immersed in natural seawater for 1, 3, and 6 months were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and its effect on the erosion–corrosion behavior of the tubes was determined through a rotating cylinder electrode system using various electrochemical techniques. For the freshly polished samples used as contrast samples, the flow velocity mainly enhanced the cathodic reaction at low flow velocities while both the anodic and the cathodic reactions were remarkably accelerated at higher flow velocities. The corrosion product films formed on the two commercial 90Cu–10Ni tubes after being immersed in seawater for up to 6 months are of a complex three-layer or multilayer structure. The structural evolution of the films is out of sync for the two tubes. A continuous residual substrate layer depleted of Ni was observed in the inner layer of the films on Tube B after 30, 90, and 180 days’ immersion, while it was observed in the film on Tube A only after 180 days’ immersion. The nature of the inner layer plays a crucial role in the erosion–corrosion resistance of the 90Cu–10Ni tubes at higher flow velocity. The film with a compact and continuous inner layer of Cu2O doped with Ni2+ and Ni3+ which bonds firmly with the substrate could survive and even get repaired with the increased flow velocity. The film on Tube B possessing a hollow and discontinuous inner layer composed of the residual substrate was degraded rapidly with increasing rotation speed in spite of its quite good resistance at the stagnant or lower speed conditions.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0745-1
      Issue No: Vol. 31, No. 11 (2018)
       
  • Corrosion Behavior of Epoxy-Coated Rebar with Pinhole Defect in Seawater
           Concrete
    • Authors: Yao-Zong Mao; Ying-Hua Wei; Hong-Tao Zhao; Chen-Xi Lv; Hai-Jiao Cao; Jing Li
      Pages: 1171 - 1182
      Abstract: Experiments were carried out to investigate the corrosion behavior of epoxy-coated rebar (ECR) with pinhole defect (diameter in hundreds of microns) immersed in the uncarbonated/carbonated simulated pore solution (SPS) of seawater concrete. Corrosion behavior was analyzed by electrochemical impedance spectroscopy. The composition and morphology of corrosion products were characterized by X-ray diffraction, energy-dispersive spectrometry and scanning electron microscopy. Meanwhile, oxide film produced by preheating before spray coating was investigated by X-ray photoelectron spectroscopy and Mott–Schottky technology. Results indicated that corrosion behavior of ECR with pinhole defect exhibited three stages when immersed in the uncarbonated/carbonated SPS. In the initial stage, steel in defect was passivated when exposed in the uncarbonated SPS and corroded when exposed in the carbonated SPS, due to competitive adsorption between chloride and hydroxyl ions. In the second stage, the oxide film under coating reconstituted (the thickness and defects density decreasing) in the uncarbonated SPS, which was caused by the synergy between high hydroxide and chloride activity, while in the carbonated SPS, crevice corrosion happened under the coating around pinhole, because of the different oxygen concentrations cell at the coating/steel interface. In the third stage, localized corrosion occurred under the coating around the pinhole in the uncarbonated SPS, which was probably induced by ion diffusion at the nano-scale coating/steel interface. The corrosion products adjacent to the defects were re-oxidized from FeCl2·4H2O and Fe2(OH)3Cl to Fe2O3·H2O, and the corrosion area was expanded outward in the carbonated SPS.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0755-z
      Issue No: Vol. 31, No. 11 (2018)
       
  • Dissimilar Joining of Pure Copper to Aluminum Alloy via Friction Stir
           Welding
    • Authors: Farhad Bakhtiari Argesi; Ali Shamsipur; Seyyed Ehsan Mirsalehi
      Pages: 1183 - 1196
      Abstract: In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively. Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and 100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength. Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0741-5
      Issue No: Vol. 31, No. 11 (2018)
       
  • Precipitation Characteristics and Mechanism of Vanadium Carbides in a
           V-Microalloyed Medium-Carbon Steel
    • Authors: Xiao-Lin Pan; Minoru Umemoto
      Pages: 1197 - 1206
      Abstract: The precipitation characteristics and mechanism of vanadium carbides during isothermal transformation at 650 °C in a V-microalloyed medium-carbon steel were investigated through scanning electron microscopy and transmission electron microscopy as well as dilatometry test. Five morphologies of vanadium carbides were found to precipitate at different nucleation sites during the transformation. Two kinds of interphase precipitation form simultaneously in both pro-eutectoid and pearlitic ferrites. The linear arrays of fine interphase precipitates are parallel to the γ/α interface, and the fine needles of interphase precipitates are perpendicular to the γ/α interface. The vanadium carbides of long or short fibers, coarse particles and fine particles form in both pro-eutectoid and pearlitic ferrites, displaying different precipitation distributions and orientation relationships with ferrite. The precipitation mechanisms of vanadium carbide precipitates with different modes were proposed, and the precipitation sequence of various vanadium carbide precipitates was finally ascertained.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0775-8
      Issue No: Vol. 31, No. 11 (2018)
       
  • Fe-Based Powders Prepared by Ball-Milling with Considerable Degradation
           Efficiency to Methyl Orange Compared with Fe-Based Metallic Glasses
    • Authors: Sheng-Hui Xie; Guang-Qiang Peng; Xian-Meng Tu; Hai-Xia Qian; Xie-Rong Zeng
      Pages: 1207 - 1214
      Abstract: In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components were evaluated for methyl orange (MO). The results show that the structure is an essential factor that affects degradation, and added non-metallic elements help optimize the structure. The amorphous and balled-milled crystalline Fe70Si10B20 has comparative degradation efficiencies to MO with t1/2 values of 6.9 and 7.0 min, respectively. Increasing the boron content can create a favorable structure and promote degradation. The ball-milled crystalline Fe70B30 and Fe43.64B56.36 powders have relatively short t1/2 values of 5.2 and 3.3 min, respectively. The excellent properties are mainly attributed to their heterogeneous structure with boron-doped active sites in ZVI. Composition segregation in the nanoscale range in an amorphous FeSiB alloy and small boron particles in the microscale range embedded in large iron particles prepared by ball-milling, both constitute effective galvanic cells that promote iron electron loss and therefore decompose organic chemicals. These findings may provide a new, highly efficient, low-cost commercial method for azo dye wastewater treatment using ZVI.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0751-3
      Issue No: Vol. 31, No. 11 (2018)
       
  • EBSD Study of Microstructural and Textural Changes of Hot-Rolled
           Ti–6Al–4V Sheet After Annealing at 800 °C
    • Authors: Ji-Ying Xia; Lin-Jiang Chai; Hao Wu; Yan Zhi; Yin-Ning Gou; Wei-Jiu Huang; Ning Guo
      Pages: 1215 - 1223
      Abstract: In this paper, electron backscatter diffraction and various other characterization and analysis techniques including X-ray diffraction, electron channeling contrast imaging and energy-dispersive spectrometry were jointly employed to investigate microstructural and textural changes of a hot-rolled Ti–6Al–4V (TC4) sheet after annealing at 800 °C for 5 h. In addition, the hardness variation induced by the annealing treatment is rationalized based on revealed microstructural and textural characteristics. Results show that the TC4 sheet presents a typical dual-phase (α + β) microstructure, with α-Ti as the major phase and short-rod-shaped β-Ti (minority) uniformly distributed throughout the α matrix. Most of α grains correspond to the un-recrystallized structures with a typical rolling texture (c//TD and <11–20>//ND) and dense low angle boundaries (LABs). After the annealing, the stored energy in the as-received specimen is significantly reduced, along with greatly decreased LABs density. Also, the annealing allows recrystallization and grain growth to occur, leading to weakening of the initial texture. Furthermore, the water quenching immediately after the annealing triggers martensitic transformation, which makes the high-temperature β phases be transformed into submicron α plates. The hardness of the annealed specimen is 320.5 HV, lower than that (367.0 HV) of the as-received specimen, which could be attributed to reduced LABs, grain growth and weakened texture. Nevertheless, the hardening effect from the fine martensitic plates could help to suppress a drastic hardness drop.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0768-7
      Issue No: Vol. 31, No. 11 (2018)
       
  • Effect of Heat Treatment on the Microstructure and Mechanical Properties
           of the Modified 718 Alloy
    • Authors: Da-Wei Han; Lian-Xu Yu; Fang Liu; Bin Zhang; Wen-Ru Sun
      Pages: 1224 - 1232
      Abstract: M718 alloy with an extra high Mo content of 7.50 wt% which reduced Nb addition and increased Al and Ti additions within the composition specifications of 718 alloy has been designed to increase the service temperature of 718 alloy. And the effect of the heat treatment on the microstructure and mechanical properties of M718 alloy has been investigated in this study. The results showed that Laves phase precipitated on the grain boundaries of M718 alloy instead of δ-Ni3Nb phase in 718 alloy, and γ′′ and γ′ phases precipitated in the matrix of M718 alloy as that in 718 alloy. Increasing the solution temperature from 960 to 1050 °C noticeably reduced the intergranular precipitation of Laves phase. The precipitation of Laves phase was appropriate at 1020 °C for improving the grain boundary cohesion. Increasing the two-stage aging temperatures markedly increased the sizes of γ′′ and γ′ phases. As a result, the strength of M718 alloy increased.
      PubDate: 2018-11-01
      DOI: 10.1007/s40195-018-0790-9
      Issue No: Vol. 31, No. 11 (2018)
       
  • Effects of Passes on Microstructure Evolution and Mechanical Properties of
           Mg–Gd–Y–Zn–Zr Alloy During Multidirectional Forging
    • Authors: Bing Li; Bu-Gang Teng; De-Gao Luo
      Pages: 1009 - 1018
      Abstract: The multidirectional forging (MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg–13Gd–4Y–2Zn–0.6Zr alloy containing long-period stacking ordered phase. The effects of MDF passes on microstructure evolution and mechanical properties were also investigated. The results show that both the volume fraction of dynamic recrystallization (DRX) grains and mechanical properties of the deformed alloy enhanced with MDF passes increasing till seven passes. The average grain size decreased from 76 to 2.24 μm after seven passes, while the average grain size increased to 7.12 μm after nine passes. The microstructure after seven passes demonstrated randomly oriented fine DRX grains and larger basal (0001)<11 \(\bar{2}\) 0> Schmid factor of 0.31. The superior mechanical properties at room temperature (RT) with ultimate tensile strength (UTS) of 416 MPa and fracture elongation of 4.12% can be obtained after seven passes. The mechanical properties at RT after nine passes are inferior to those after seven passes due to the coarsening of DRX grains, which can be ascribed to the static recovery resulting from the repeated heating at the interval of MDF passes. The elevated temperature mechanical properties of the deformed alloy after seven passes and nine passes were investigated. When test temperature was below 523 K, the elevated temperature tensile yield strength and UTS after seven passes are superior to those after nine passes, while they are inferior to that after nine passes as temperature exceeds 523 K.
      PubDate: 2018-10-01
      DOI: 10.1007/s40195-018-0769-6
      Issue No: Vol. 31, No. 10 (2018)
       
  • CO Catalytic Oxidation of Pt-Loaded Perovskite BaTiO 3 Near
           Ferroelectric-Phase Transition Temperature
    • Authors: Si-Min Yin; Jia-Jie Duanmu; Yong-Feng Yuan; Shao-Yi Guo; Zhi-Chao Zhu; Zhao-Hui Ren; Gao-Rong Han
      Pages: 1031 - 1037
      Abstract: Perovskite BaTiO3 (BTO) nanocrystals with a size of 150–200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2–5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 °C when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric–paraelectric transition of BTO nanocrystals with a Curie temperature of ~ 110 °C. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation.
      PubDate: 2018-10-01
      DOI: 10.1007/s40195-018-0757-x
      Issue No: Vol. 31, No. 10 (2018)
       
  • Effect of Pre-deformation on Grain Ultrafining by Intercritical
           Deformation in Low-Carbon Microalloyed Steels
    • Authors: Ba Li; Qing-You Liu; Shu-Jun Jia; Yi Ren; Bing Wang
      Pages: 1038 - 1048
      Abstract: In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of ~ 1.0 μm was fabricated through pre-deformation in the recrystallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism.
      PubDate: 2018-10-01
      DOI: 10.1007/s40195-018-0767-8
      Issue No: Vol. 31, No. 10 (2018)
       
  • Tribocorrosion Behavior of 304 Stainless Steel in 0.5 mol/L Sulfuric
           Acid
    • Authors: Ming Liu; De-Li Duan; Sheng-Li Jiang; Ming-Yang Li; Shu Li
      Pages: 1049 - 1058
      Abstract: The tribocorrosion behavior of 304 stainless steel was studied through comparing the damage behavior of 304 stainless steel in dilute sulfuric acid to that in distilled water by a reciprocating tribotester. The re-passivation behavior, the surface and sectional morphological features, as well as the change of microhardness of samples were studied, and the tribocorrosion mechanism was also discussed. The experimental results reveal that the damage of stainless steel in dilute sulfuric acid was caused by the steel’s mechanical removal and electrochemical dissolution. The wear mechanism of stainless steel is abrasive wear, which mainly consists of micro-cutting and peeling. The synergetic action between corrosion and wear is notable. The corrosive environment leads to the embrittlement of the surface layer, and the wear destroys the passivation film and causes galvanic corrosion.
      PubDate: 2018-10-01
      DOI: 10.1007/s40195-018-0773-x
      Issue No: Vol. 31, No. 10 (2018)
       
  • Friction and Wear Behavior of AlTiN-Coated Carbide Balls Against SKD11
           Hardened Steel at Elevated Temperatures
    • Authors: Rui Wang; Hai-Juan Mei; Ren-Suo Li; Quan Zhang; Teng-Fei Zhang; Qi-Min Wang
      Pages: 1073 - 1083
      Abstract: In this study, AlTiN coatings were deposited on YT14 cemented carbide balls by arc ion plating technique. The friction and wear behavior of the AlTiN-coated balls against SKD11 hardened steel was investigated by sliding tests using a ball-on-disk tribometer at various temperatures from 25 to 700 °C in air. The results showed that the friction and wear behavior was significantly influenced by the testing temperature. Obvious fluctuations were observed in the friction curves at elevated temperatures, which could be attributed to the formation and rupture of unstable Fe and Cr oxide layers. As the temperature increased from 25 to 500 °C, the wear rate of the coated balls increased from the scale of 10−21–10−20 m3/N m, and then decreased to 10−22 m3/N m as the temperature further increased to 700 °C. It was also found that the friction and wear behavior of the coated balls was directly dependent on the counterpart materials. As the temperature increased, the main wear mechanism of the coated balls changed from mild abrasive wear and adhesive wear to abrasive wear failure at 500 °C, and then transferred to adhesive wear and mild oxidation wear at 700 °C. For SKD11 hardened steel, the primary wear mechanism changed from delamination wear to abrasive wear and then transferred to plastic deformation and fatigue wear, accompanied by adhesive wear and tribo-oxidation wear.
      PubDate: 2018-10-01
      DOI: 10.1007/s40195-018-0753-1
      Issue No: Vol. 31, No. 10 (2018)
       
  • Coil Ambient Temperature and Its Influence on the Formation of Blocking
           Layer in the Electromagnetic Induction-Controlled Automated Steel-Teeming
           System
    • Authors: Ming He; Xian-Liang Li; Xing-An Liu; Xiao-Wei Zhu; Tie Liu; Qiang Wang
      Abstract: Ambient temperature of induction coil is an important factor to influence the implementation of the electromagnetic induction-controlled automated steel-teeming (EICAST) technology. Meanwhile, it also affects the formation of Fe–C alloy blocking layer, which determines the length and installation position of induction coil. An experimental platform was designed to imitate actual working conditions in a ladle with the EICAST system. Ambient temperature of induction coil under high-temperature condition was measured to verify the accuracy of numerical result. After containing molten steel for 120 min and steel teeming for 40 min, the ambient temperature on the upper side of induction coil is 791 °C. In addition, the position of blocking layer in a 110 t ladle was measured by sand-collection and steel-pour methods, and the criterion temperatures of blocking layer in numerical simulation process were corrected. When the refining temperature is 1600 °C and the containing time of molten steel is 120 min, the thickness of blocking layer is 130 mm, and the distance between the upper surface of blocking layer and the upper surface of nozzle brick is 154 mm. When the criterion temperatures are 919 °C and 428 °C, the numerical results can be used to confirm the position of blocking layer and the installation position of induction coil.
      PubDate: 2018-10-12
      DOI: 10.1007/s40195-018-0831-4
       
  • Fractional Cooling Strategy of the Hot-Stamping Process and Its Influence
           on Formability and Mechanical Properties of Ultra-High-Strength Steel
           Parts
    • Authors: Xian-Hong Han; Cheng-Long Wang; Si-Si Chen; Jun Chen
      Abstract: The effects of forming temperature on the formability and product properties of hot-stamping boron steel B1500HS were investigated. Based on the fractional cooling strategy, boron steel sheets were heated to achieve full austenitization before they were removed from the furnace and cooled to the forming temperature using different cooling methods. Subsequently, they were simultaneously press-formed and quenched inside the tool until the martensitic transformation was finished. A series of thermal tensile tests were conducted to study the effects of forming temperatures on the stamping performance indices, including elongation, yield ratio, and hardening exponent. Then, the mechanical properties and microstructures of the hot-stamped products were characterized. Finally, an irregular part was formed using different fractional cooling strategies, while its formability and springback phenomena were discussed. The results show that using a fast-cooling method to reach 650 °C as the forming temperature optimizes the formability of the tested B1500HS boron steel. The best mechanical properties and smallest springback values were achieved using this optimal strategy.
      PubDate: 2018-10-11
      DOI: 10.1007/s40195-018-0832-3
       
  • Superparamagnetic CoFe 2 O 4 @Au with High Specific Absorption Rate and
           Intrinsic Loss Power for Magnetic Fluid Hyperthermia Applications
    • Authors: Sandip Sabale; Vidhya Jadhav; Shubhangi Mane-Gavade; Xiao-Ying Yu
      Abstract: CoFe2O4 nanoparticles (NPs) and surface modified with gold (Au) have been synthesized by a thermal decomposition method. The obtained NPs and formation of CoFe2O4@Au core–shell (CS) were confirmed by characterizing their structural and optical properties using X-ray powder diffraction (XRD) patterns, Fourier transform infrared spectroscopy, Raman spectroscopy, UV–Visible and photoluminescence studies. Morphological and compositional studies were carried out using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy, while the magnetic properties were determined using alternating gradient magnetometer and Mossbauer to define the magneto-structural effects of shell formation on the core NPs. Induction heating properties of CoFe2O4 and CoFe2O4@Au CS magnetic nanoparticles (MNPs) have been investigated and correlated with magneto-structural properties. Specific absorption rate and intrinsic loss power were calculated for these MNPs within the human tolerable range of frequency and amplitude, suggesting their potential in magnetic fluid hyperthermia therapy for possible cancer treatment.
      PubDate: 2018-10-10
      DOI: 10.1007/s40195-018-0830-5
       
  • Silver Dopant-Induced Effect on Structural and Optoelectronic Properties
           of CdSe Thin Films
    • Authors: Jagdish Kaur; Ramneek Kaur; S. K. Tripathi
      Abstract: Thin films of CdSe and silver (Ag)-doped CdSe have been prepared on glass substrates by thermal evaporation in argon gas atmosphere. X-ray diffraction pattern indicates the presence of hexagonal structure with preferred orientation along (100) plane. Elemental composition of the thin films has been analyzed using energy dispersive X-ray analysis. Scanning electron microscopy has been used to investigate the morphology of the thin films. Transmission electron microscope reveals spherical nature of nanoparticles. A decrease in the band gap due to the formation of band tails in the band gap with increase in Ag doping in CdSe lattice has been observed. Photoluminescence spectra indicate redshift in band edge emission peak with increase in Ag doping in CdSe. Electrical conductivity measurements are also studied, and two types of conduction mechanisms taking part in the transport phenomena are observed. Hall measurements indicate n-type behavior of undoped and Ag-doped CdSe thin films.
      PubDate: 2018-10-09
      DOI: 10.1007/s40195-018-0824-3
       
  • Effect of Short-Time Aging on the Pitting Corrosion Behavior of a Novel
           Lean Duplex Stainless Steel 2002
    • Authors: Tian-Yi Sun; Yan-Jun Guo; Yi-Ming Jiang; Jin Li
      Abstract: The effect of short-time aging in the temperature range between 400 and 1000 °C on the pitting corrosion behavior and mechanical property of a novel lean duplex stainless steel (LDSS) 2002 was investigated through the potentiostatic critical pitting temperature (CPT) tests and the Charpy impact tests. Both the pitting corrosion resistance and the toughness of aged specimens degraded due to the precipitation of detrimental secondary phases and the most significant reduction of CPT and impact energy emerged at 650 °C concurrently. The CPT of LDSS 2002 specimen aged at 650 °C decreased by 28 °C, and the impact energy dropped from 69 to 29 J/cm2 compared with the solution-annealed sample. Transmission electron microscopy characterization showed that the main precipitates in LDSS 2002 were Cr2N and M23C6 along the ferrite–austenite grain boundaries.
      PubDate: 2018-10-09
      DOI: 10.1007/s40195-018-0829-y
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.161.77.30
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-