for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2543 journals)
    - CHEMICAL ENGINEERING (214 journals)
    - CIVIL ENGINEERING (220 journals)
    - ELECTRICAL ENGINEERING (126 journals)
    - ENGINEERING (1332 journals)
    - HYDRAULIC ENGINEERING (57 journals)
    - INDUSTRIAL ENGINEERING (87 journals)
    - MECHANICAL ENGINEERING (104 journals)

ENGINEERING (1332 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
3D Research     Hybrid Journal   (Followers: 21)
AAPG Bulletin     Hybrid Journal   (Followers: 8)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 7)
ACS Nano     Hybrid Journal   (Followers: 322)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 5)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 9)
Advanced Journal of Graduate Research     Open Access  
Advanced Nonlinear Studies     Hybrid Journal  
Advanced Science     Open Access   (Followers: 6)
Advanced Science Focus     Free   (Followers: 5)
Advanced Science Letters     Full-text available via subscription   (Followers: 11)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 8)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 16)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 6)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 10)
Advances in Engineering Software     Hybrid Journal   (Followers: 29)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 17)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 16)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 24)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 23)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 29)
Advances in Nonlinear Analysis     Open Access  
Advances in Operations Research     Open Access   (Followers: 12)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 16)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 52)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 3)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 6)
AIChE Journal     Hybrid Journal   (Followers: 35)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access   (Followers: 1)
Al-Nahrain Journal for Engineering Sciences     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 10)
American Journal of Engineering Education     Open Access   (Followers: 12)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 25)
Anadolu University Journal of Science and Technology A : Applied Sciences and Engineering     Open Access  
Annals of Civil and Environmental Engineering     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Pure and Applied Logic     Open Access   (Followers: 4)
Annals of Regional Science     Hybrid Journal   (Followers: 8)
Annals of Science     Hybrid Journal   (Followers: 7)
Antarctic Science     Hybrid Journal   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 7)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 20)
Applied Clay Science     Hybrid Journal   (Followers: 6)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 14)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 9)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 6)
Applied Sciences     Open Access   (Followers: 4)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 7)
Arab Journal of Basic and Applied Sciences     Open Access  
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 6)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 9)
Arid Zone Journal of Engineering, Technology and Environment     Open Access   (Followers: 2)
Arkiv för Matematik     Hybrid Journal   (Followers: 2)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 2)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
AURUM : Mühendislik Sistemleri ve Mimarlık Dergisi = Aurum Journal of Engineering Systems and Architecture     Open Access  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autocracy : Jurnal Otomasi, Kendali, dan Aplikasi Industri     Open Access  
Automotive Experiences     Open Access  
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Avances en Ciencias e Ingeniería     Open Access  
Avances en Ciencias e Ingenierías     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 6)
Bautechnik     Hybrid Journal   (Followers: 2)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 28)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Motor Trade Survey     Full-text available via subscription  
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Beyond : Undergraduate Research Journal     Open Access  
Bhakti Persada : Jurnal Aplikasi IPTEKS     Open Access  
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Bilge International Journal of Science and Technology Research     Open Access  
Biofuels Engineering     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 12)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering     Hybrid Journal   (Followers: 2)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 19)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 35)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomicrofluidics     Open Access   (Followers: 5)
BioNanoMaterials     Open Access   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 40)
Bitlis Eren University Journal of Science and Technology     Open Access  
Black Sea Journal of Engineering and Science     Open Access  
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 13)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 14)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers Droit, Sciences & Technologies     Open Access  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 32)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 45)
Carbon Resources Conversion     Open Access   (Followers: 1)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Thermal Engineering     Open Access   (Followers: 6)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 9)
Catalysis Science and Technology     Hybrid Journal   (Followers: 9)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 7)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal  
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencia y Tecnología     Open Access  
Ciencias Holguin     Open Access   (Followers: 3)
CienciaUAT     Open Access   (Followers: 1)
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 13)
City, Culture and Society     Hybrid Journal   (Followers: 23)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
Clinical Science     Hybrid Journal   (Followers: 8)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 6)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 3)
Cognitive Computation     Hybrid Journal   (Followers: 3)
Color Research & Application     Hybrid Journal   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 15)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering     Open Access  
Communications in Information Science and Management Engineering     Open Access   (Followers: 4)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 29)
Composite Interfaces     Hybrid Journal   (Followers: 7)
Composite Structures     Hybrid Journal   (Followers: 297)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 237)
Composites Part B : Engineering     Hybrid Journal   (Followers: 271)
Composites Science and Technology     Hybrid Journal   (Followers: 207)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access   (Followers: 1)
Computational Geosciences     Hybrid Journal   (Followers: 17)
Computational Optimization and Applications     Hybrid Journal   (Followers: 8)

        1 2 3 4 5 6 7 | Last

Journal Cover
Bulletin of Engineering Geology and the Environment
Journal Prestige (SJR): 0.896
Citation Impact (citeScore): 2
Number of Followers: 14  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1435-9537 - ISSN (Online) 1435-9529
Published by Springer-Verlag Homepage  [2352 journals]
  • Comparative analysis of rockmass characterization techniques for the
           stability prediction of road cut slopes along NH-44A, Mizoram, India
    • Abstract: The network of roads in hilly areas plays an important role in the socio-economic development of any country. Instability in road cut slopes is the most critical and common problem in the Northeast region of India. We conducted rockmass characterization of thirteen slopes from three regions, namely Lengpui, Phunchawng and Aizawl Zoo areas near the Aizawl city, on the basis of rock mass rating (RMR), geological strength index (GSI), kinematic analysis, and various slope mass rating techniques. Wedge failure was observed to be prominent in these regions, though some other modes of failure were present at the site. The stability of road cut slopes was found to vary from partially stable to completely unstable with regard to slope mass rating (SMR), Chinese slope mass rating (CSMR) and the continuous slope mass rating (CoSMR). A comparative analysis was also carried out among the findings of various rockmass characterization techniques to predict the stability of the road cut slopes along NH-44A highway.
      PubDate: 2019-03-22
  • Stability analysis of a group of underground anhydrite caverns used for
           crude oil storage considering rock tensile properties
    • Abstract: Tensile deformation and damage play an essential role in rock engineering problems. This paper presents a framework for evaluating the stability of a group of anhydrite caverns combining both experimental and numerical methods. In this study, the tensile Young’s modulus and Poisson’s ratio of anhydrite are determined based on the Brazilian disc splitting test. The tests show that the tensile Young’s modulus of anhydrite is less than the compressive Young’s modulus, with a ratio of approximately 0.58–0.91. The tensile Poisson’s ratio is greater than the compressive Poisson’s ratio, with a ratio of approximately 2.47–3.20. Based on the differences between the mechanical parameters (Young’s modulus, Poisson’s ratio) of anhydrite in the tensile and compressive states, a user-defined constitutive model is developed with the Hoek-Brown failure criterion, which describes the tensile and compressive behaviour at a laboratory scale. Finally, a large-scale three-dimensional (3D) anhydrite cavern group located in Anhui Province, China, which was formed by mining activity over the past 10 years, is used as a case study to illustrate the proposed framework. The model for the anhydrite cavern group is established in FLAC3D5.0, and the stability of the anhydrite cavern group used for underground oil storage is then analysed with this model. The simulation results indicate that after the exploitation is completed, there are few plastic zones and tensile elements in the surrounding rock near the cavern group. The maximum value of cavern roof settlement is approximately 5.54 mm. The maximum cavern bottom upheaval is approximately 6.11 mm, and the maximum ground subsidence is approximately 3.0 mm. The results indicate that the Anhui Hengtai anhydrite cavern group possesses good stability potential as an underground oil storage space.
      PubDate: 2019-03-21
  • Microscopic characterization of microcrack development in marble after
           cyclic treatment with high temperature
    • Abstract: Crack density of rocks is greatly affected by high temperature treatment and the induced thermal damage influences the strength and deformation characteristics of the rock. A good understanding of thermal cracking behavior is useful for geological evaluation of engineering structures associated with high temperature problems. This study investigates the characteristics of thermally-induced microcracks in a fine-grained dolomitic marble with different degrees of thermal damage using an optical microscope. Different degrees of thermal damage were first generated by treating the rock specimen with different heating and cooling cycles. Optical microscopy was then used to characterize the microcrack type and statistically examine the width, length, and anisotropy of thermally-induced microcracks. The results reveal that most of the generated microcracks induced by cyclic high temperature treatment are grain boundary microcracks. The width and length of microcracks significantly increases with an increasing number of heating and cooling cycles. It is also found that both grain boundary microcracks and intra-grain microcracks do not show predominant direction after thermal treatment. Finally, a quantitative relation is established to correlate the mechanical behavior of rocks (i.e., strength and modulus) with the crack density. The proposed relation is useful in understanding how the microstructure affects the properties of rocks after treatment with high temperature.
      PubDate: 2019-03-15
  • Surface subsidence prediction method of backfill-strip mining in coal
    • Abstract: Intensive and massive coal mining causes a series of geological hazards and environmental problems, especially surface subsidence. In recent years, backfill-strip mining has been applied to control mining subsidence in order to realize sustainable development of the mining environment. To accurately predict the surface subsidence of backfill-strip mining, a prediction method of subsidence superposition of backfill-strip mining is proposed on the basis of the traditional probability integral method prediction model. In analyzing the distribution of the actual subsidence space, the surface subsidence problem of backfill-strip mining can be regarded as the superposition of surface subsidence caused by backfill mining and strip mining. Then, the appropriate prediction parameters will be chosen, and the surface subsidence caused by the backfill mining and strip mining will be predicted separately. The surface subsidence values of the backfill-strip mining are equal to the superposition subsidence values predicted by the backfill mining and strip mining prediction method at the same surface location. A similar material model and a numerical simulation model have been built to verify the feasibility and accuracy of the superposition prediction method. The comparison results of the surface subsidence values show that the superposition surface subsidence prediction method is reasonable. The average relative error of this superposition prediction method is less than 6.7%, and its accuracy is 3.9%~11.4% higher than that of the conventional prediction method. The superposition prediction method can satisfy the precision requirement of engineering applications. This study provides a scientific technical reference for safe mining engineering design and surface disaster protection for backfill-strip mining.
      PubDate: 2019-03-15
  • Experimental study on the physical modeling of loess tunnel-erosion rate
    • Abstract: Loess tunnel erosion is a distinctive soil erosion pattern that commonly occurs in collapsible loess areas. The resulting soil erosion is a serious and complex problem. At present, most of the research methods on loess tunnel erosion are based on field investigation, and the knowledge obtained is, therefore, mostly qualitative. Erosion characteristics and erosion rates of loess tunnels are rarely revealed quantitatively by laboratory physical modeling or field investigation. In this paper, we report the results of a small model test based on three types of archetypal geological structures that are recognized by field investigation, i.e., vertical fractures, horizontal fractures, and round holes, These results reveal the effect of different initial flow cross sections on the erosion characteristics of loess tunnels. We found that, where water crosses an area of loess, waterfalls dominate initial erosion. We also studied the mud erosion rate to quantitatively reveal tunnel-erosion rates and their variation with time and found that tunnel erosion occurs in three stages: a rapid-erosion stage, an erosion slow-down stage, and a slow uniform-erosion stage. Using a model test to undertake quantitative studies into the relationship between the erosion rate of a loess tunnel and both initial dry density and initial water content, we demonstrated a significant linear negative correlation between these parameters. Through physical simulations combined with field investigation and analysis of survey results, we found that the erosion of loess tunnels occurs with a certain periodicity and that the tunnel-erosion base level plays a decisive role in the erosional features and final morphology of loess tunnels. By increasing our understanding of the internal mechanisms of loess tunnel erosion, our work will contribute to the prevention of cave erosion and reduction in the risks of associated disasters in the Loess Plateau of the Yellow River in China and in other loess-containing areas around the world. Our studies also provide a theoretical basis for carrying out soil and water conservation work in similar areas.
      PubDate: 2019-03-15
  • Decay of sandstone subjected to a combined action of repeated
           freezing–thawing and salt crystallization
    • Abstract: The weathering of rocks controls the shape of the Earth’s surface and affects their suitability as building stones. Frost weathering and crystallization of soluble salts are considered to be important factors in rock weathering. Although the crystallization of salts and ice presents obvious chemical differences, both of them produce crystallization pressure. Few studies seem to have been done on the effects of the combined action of repeated freezing–thawing and salt crystallization on the rocks. This paper studies the weathering of rocks under the combined effect of freezing–thawing cycle and salt crystallization cycle. The results show that, with the increase of freeze–thaw cycles, the samples soaked with MgSO4 solution tend to turn red and the surface particles fall off more seriously. The mass of the sandstone is increased at the beginning of the freeze–thaw cycle and then decreases. Roughness, residual moisture, and MgSO4 crystal affect the thermal conductivity. Samples soaked with 40% MgSO4 solution lost the most mass and have the lowest thermal conductivity. There are two main factors that cause damage to sandstone: (1) crystallization pressure of salt and (2) frost heave action of ice. Crystallization pressure of salt and frost heave action of ice can reduce the cohesive force between particles, making the particles fall off, which is the most important factor of sandstone damage.
      PubDate: 2019-03-15
  • Shear velocity-based uncertainty quantification for rock joint shear
    • Abstract: The shear strength of rock joints is an important property required in order to analyze the stability of rock slopes and tunnels. However, estimation of the shear strength of rock joints for in situ conditions is a complex task due to various influencing factors present in the field. Among these factors, the shear velocity or the shear displacement rate along the rock joints are important parameters which are relatively less studied since their effect is considered to be of second order compared to other factors. However, some recent studies in the literature suggest that shear velocity has a significant influence on the shear strength of rock joints, and hence the shear strength of joints estimated at low shear velocities in laboratories cannot be used under in situ conditions where the possibility of higher shear velocities exist due to the presence of different factors, such as blasting, excavation, and thermal and seismic loads. In this paper, we have addressed these issues in three steps. In the first step, an experimental study on jointed rock specimens is presented to investigate the influence of the displacement rate on the shear strength of rock joints. In the second step, a probabilistic method is developed based on the experimental results and the compiled data from the literature to estimate the in situ shear strength of joints under higher displacement rate conditions, i.e., blasting, excavation, and seismic loads from laboratory-estimated shear strength at the International Society for Rock Mechanics suggested low displacement rates. In the third step, a case study of a Himalayan rock tunnel was used to demonstrate the described approach. It was observed that the shear strength of discontinuities reduced with ncreasing shear velocity and that the rate dependency was higher for low-density rocks and under high confining stress. Further, a considerable effect was observed on the probability of failure of the rock tunnel when the effect of shear velocity was considered in the stability analysis.
      PubDate: 2019-03-14
  • A hydraulic soil erosion model based on a weakly compressible smoothed
           particle hydrodynamics method
    • Abstract: Hydraulic soil erosion is one of the most important natural phenomena driving terrain changes over time. It is associated with a variety of geoenvironmental hazards such as coastline retreat, soil loss and debris flows, and can have severe consequences. In this work, an erosion criterion was introduced to analyze the water–sediment interaction, and a hydraulic soil erosion model was then established based on the smoothed particle hydrodynamics (SPH) method. Numerical simulations of dam-break flow on a mobile bed and sediment flushing were carried out, and the performance of the hydraulic erosion model was evaluated. The numerical results matched the experimental data well, thus verifying the reliability and validity of the proposed model.
      PubDate: 2019-03-14
  • Ground load on tunnels built using new Austrian tunneling method: study of
           a tunnel passing through highly weathered sandstone
    • Abstract: The ground load acting on a tunnel is an important issue in tunnel design, especially when the tunnel passes through highly weathered sandstone. A systematic field-monitoring campaign was performed to investigate the ground loads on a tunnel structure, the behavior of the composite support system, and the deformation of the tunnel boundaries. The monitoring results were analyzed and compared with those of various theories, such as the whole-soil column theory and those of Terzaghi, Bierbaumer, Xie Jiaxiu, and Protodyakonov. The ground load on a highway tunnel in highly weathered sandstone does not conform to current theoretical methodologies. It was confirmed that Terzaghi’s theory is suitable for estimating the peak magnitude of the vertical ground load, but differs from the field-monitoring results for ground load distribution profile. To facilitate tunnel design, a potential profile for ground loads is proposed, in which the vertical load component is ‘mountain’-shaped and the horizontal component adopts a ‘folded-line’ pattern. The roof rockbolts are subjected to compression and should be replaced by pipe grouting that is capable of providing enhanced reinforcement and accelerating the construction schedule. The bending moments acting on the lining were found to form a ‘butterfly’ shape. Supplementary finite-element modeling was undertaken to explore the mechanical behavior of the tunnel lining. These results indicated that steel rebar needs to be pre-installed in both the intrados of the lining roof and extrados of the spandrels to improve the lining tensile strength.
      PubDate: 2019-03-14
  • Spatiotemporal evolution of the El Biar landslide (Algiers): new field
           observation data constrained by ground-penetrating radar investigations
    • Abstract: A better understanding of the spatiotemporal evolution of landslides in urban zones is a key factor in assessing the risk of future slides within these areas. The El Biar landslide, located around the center of Algiers city, is one of the most important landslides in the region. It occurs mostly within a high strategic zone between schools, embassies and security buildings, thus causing a real risk for the population since it covers an area of 40 ha. The detection of various landslide-breaking surfaces leads to a better understanding of the mechanism of the spatiotemporal evolution of ground movement. In this work, we have combined two methods in order to provide strong evidence of its spatiotemporal evolution. The first method is based on field investigations to map old scarps related to the activity of the landslide. To better constrain our field investigations, most recent field observations were complemented by a second geophysical method using ground-penetrating radar with two different antennae which propagate under the two frequencies of 30 MHz and 100 MHz. As a result, we have reviewed this sliding area in detail and presented a new map of the whole affected zone. We have also delimited the affected zone by drawing a new map of the landslide. Combining field observations and the geophysical survey, we have highlighted the main discontinuity surfaces that lead us to suggest plausible realistic scenarios concerning the landslide’s evolution.
      PubDate: 2019-03-13
  • The effect of scale on the water leakage from the reservoir and abutment
           of Beheshtabad Dam
    • Abstract: Dam construction on karstic carbonate formations usually involves leakage problems from their abutments and reservoirs. Constructing a dam in such formations can lead to reservoir leakage to downstream or adjacent basins. In karstic areas, hydraulic conductivity has a direct correlation with scale. In other words, hydraulic conductivity is far lower in sub-local scales (Slug test and Lugeon test) in comparison with local scales (pumping test) and large scales (dye tracing test and recession curve). The present study was conducted to investigate the scale effect on water leakage from the reservoir and abutment of Beheshtabad Dam. This dam is located approximately at the end of an anticline axis named Sangvil, which is mainly composed of dolomite-limestone with a thickness of about 700 m. The righthand side of the reservoir is in contact with this formation. Several methods have been used for the evaluation of hydraulic conductivity and for determining the reservoir leakage in the righthand side of the dam, including Lugeon tests, Uranine tracer, a gradient approach, and spring recession curves. Also, a pumping test was carried out by considering pumping well assumptions. The results showed a range of hydraulic conductivity values for the rock mass from 2.1×10−6 m/s at the sub-local scale (Slug test) to 1.7 × 10−4 m/s at the regional scale (dye tracing test). In such a context, reservoir leakage is calculated at approximately 0.1 l/s iayn the sub-local scale to 2.7 l/s at a regional scale. By considering that reservoir scale is correlated with regional scale, leakage in the righthand side of Beheshtabad dam is calculated according to a regional scale, and the leakage amount was predicted to be within the range of 5.4 to 7.8 m3/s.
      PubDate: 2019-03-11
  • Experimental and numerical study of the water inrush mechanisms of
           underground tunnels due to the proximity of a water-filled karst cavern
    • Abstract: The mechanism of lagging water inrush in underground tunnel constructions due to the proximity of a karst cavern with confined water is investigated via large-scale physical three-dimensional (3D) model testing and 3D numerical simulations. A new method is proposed for the preparation of modeled karst caverns filled with confined water. The physical 3D model testing is divided into two stages: tunnel excavation and hydraulic pressure loading. Multivariate information is obtained at the two stages using multiple measurement techniques. The results indicate that the displacement, hydraulic pressure, and the developmental trend of the damage zone in the tunnel excavation process are related. It is evident from the physical 3D model testing results that the process of water inrush can be divided into three stages, which include the initiation of group cracks, the formation of a water inrush channel, and the complete collapse of the water-resistant slab. The 3D model testing in conjunction with the 3D numerical simulations reveal that the disturbance due to excavation has an obvious impact on water inrush channel formation. However, an increasing hydraulic pressure in the karst cavern has a greater impact on the collapse of the water-resistant slab. These test results can provide support and guidance for tunnel construction under conditions that are susceptible to water inrush events.
      PubDate: 2019-03-08
  • Shallow unloading deformation analysis on Baihetan super-high arch dam
    • Abstract: The Baihetan super-high arch dam is the largest hydropower station in the world under construction. Columnar jointed basalt (CJB) is widely distributed at the Baihetan dam foundation, and the many closely spaced joints pose potential risks on the unloading quality of the foundation surface. In this study, typical unloading cracking and relaxation features of CJB based on field survey and the acoustic wave test are revealed during foundation excavation. Considering the large-scale joints in category-I CJB, an equivalent continuum constitutive model was proposed for describing anisotropic deformation and the unloading relaxation modes and the mechanism of columnar joints are further analysed. Both monitoring and numerical results show that: 1) the unloading behaviours include shallow relaxation of columnar joints and combined rebound deformation of columnar joints and shear belts; 2) the relaxation range of columnar joints mainly occurs at the shallow foundation surface with the maximum depth of 3~4 m, and the relaxation degree is obviously exaggerated owing to the sliding of shear belts; 3) the unloading relaxation mode at the shallow foundation mainly belongs to rebound deformation and relaxation of oral joints. The tensile failure occurs in steep joints, and both tensile and shear failure occur in gentle joints. The proposed model can be applied to effectively simulate the unloading relaxation processes of dam foundation excavation.
      PubDate: 2019-03-07
  • The role of active faults and sliding mechanism analysis of the 2017
           Maoxian postseismic landslide in Sichuan, China
    • Abstract: A giant, high-position rockslide occurred in Xinmo village of Maoxian County, Sichuan, China, on June 24, 2017. It was the largest rockslide recorded since the 2008 Wenchuan earthquake, and caused great loss. We use field survey data and relevant information to describe the geometric and zoning of the Maoxian landslide, and we discuss its sliding mechanism and the role of active faults in its formation. The sliding mode of the Maoxian landslide involves a plane failure mechanism (sliding rupture), while the slipping process can be divided into two stages: a rock cracking and deterioration stage, and a high-speed sliding stage. The role of active faults (earthquake and fault movement) is probably the most important factor in the Maoxian landslide formation, while lithology played a catalytic role and rainfall acted as an inducing factor. The fault vertical combination model (“back thrust” dynamic model) proposed in this paper provides a reasonable explanation for the different distribution of the coseismic landslides caused by the 1933 M 7.5 Diexi earthquake. We consider that a steep slope near the active fault, especially where the active fault intersects, just like the “locked segment” of a fault, is the uppermost area to develop a large landslide.
      PubDate: 2019-03-06
  • Quantitative evaluation of rock brittleness based on crack initiation
           stress and complete stress–strain curves
    • Abstract: Brittleness is an important rock material property, and its accurate evaluation has guiding significance in construction as well as in disaster prevention and reduction. Considering the limitations of the existing brittleness indices, a new brittleness index based on the overall stress–strain process of a rock mass is established that considers both the stress growth rate between the peak stress and the crack initiation stress before the peak, as well as the stress descent rate after the peak. Uniaxial and triaxial compression tests were conducted to evaluate the new index. The results of the tests show that the new index can accurately determine the rock brittleness according to the prepeak stress–strain curve under uniaxial loading system conditions, which compensates for the limitation of inaccurate postpeak curves for brittle rock. Under triaxial compression conditions, the new index more clearly represents the influence of the confining pressure on the brittleness of marble. The reliability and comprehensiveness of the new index are verified, and these research results may improve the existing evaluation of rock brittleness.
      PubDate: 2019-03-02
  • Comments on “Analysis of the effect of freeze-thaw cycles on the
           degradation of mechanical parameters and slope stability”
    • PubDate: 2019-03-01
  • Reply to comments by Zoran Berisavljević on “Analysis of the effect of
           freeze–thaw cycles on the degradation of mechanical parameters and slope
           stability”, Bulletin of Engineering Geology and the Environment, DOI:
    • PubDate: 2019-03-01
  • Recension de l’ouvrage «Mécanique des sols et des roches» par Laurent
           Vulliet, Lyesse Laloui et Jian Zhao
    • PubDate: 2019-03-01
  • Determination of the embedded length of stabilizing piles in colluvial
           landslides with upper hard and lower weak bedrock based on the deformation
           control principle
    • Abstract: Several colluvial landslides have developed in the Jurassic strata region of Zigui County, a major landslide-prone region in the Three Gorges Reservoir Region of China. The bedrock in which stabilizing piles are placed in the landslide-prone Zigui region can be generally characterized as upper sandstone and lower silty mudstone. A site investigation of the Majiagou No. 1 landslide indicated that the pile heads were displaced horizontally by approximately 15.0 cm. This paper presents a novel model for determining the reasonable embedded length for stabilizing piles in colluvial landslides with upper hard and lower weak bedrock based on the deformation control principle. A negative power function relationship between the horizontal displacement of the pile head and the reasonable embedded ratio for stabilizing piles is proposed on the basis of the allowable pile deformation according to industrial standards. Furthermore, the lower limit on the horizontal displacement of the pile head is deduced to obtain the maximum reasonable embedded ratio of stabilizing piles. Reasonable embedded length ratio models of stabilizing piles are analyzed based on various influencing factors. The results show that (1) increasing the embedded length of the piles can significantly reduce both the horizontal displacement and the maximum absolute value of the shear force on the piles, (2) the increase in the maximum bending moment of the pile with increasing embedded pile length is insignificant, and (3) increasing the thickness of the upper hard rock and the coefficients of subgrade reaction of the upper hard and lower weak rock and reducing the driving force of the landslide help to reduce the reasonable embedded length of the piles. Consequently, it is suggested that stabilizing piles should be set in stronger and thicker upper hard rock in regions with low landslide driving force in order to minimize the reasonable embedded length of the piles.
      PubDate: 2019-03-01
  • A revised, geotechnical classification GSI system for tectonically
           disturbed heterogeneous rock masses, such as flysch
    • Abstract: Use of the geological strength index (GSI) rock mass classification system and the associated m, s and a parameter relationships linking GSI with the Hoek–Brown failure criterion provides a demonstrated, effective and reliable approach for prediction of rock mass strength for surface and underground excavation design and for rock support selection for most “normal” rock masses. One of the key advantages of the index is that it allows characterization of rock masses difficult to describe, such as flysch, and the geological reasoning it embodies, allowing adjustments to be made to its ratings to cover a wide range of rock masses and conditions compared to a typical engineering approach. Flysch, having high heterogeneity in its petrographic nature and a tectonically disturbed structure, forms very weak rock masses in many cases and needs a particular geotechnical classification according to the engineering geological characteristics it presents. After a decade of application of the GSI for the classification of heterogeneous rock masses (Marinos and Hoek 2001), this paper attempts to re-evaluate or verify the original values and to contribute to the appropriate selection of the index for various conditions. A revised GSI diagram for heterogeneous rock masses, such as flysch, is presented, where a certain range of GSI values for every rock mass type is proposed according to the siltstone-sandstone participation and their tectonic disturbance. Data from the design and construction of a large number of tunnels in a variety of geological conditions were assessed for this purpose. In addition to the GSI values, the selection of the appropriate “intact” rock properties for this type of heterogeneous rock mass is also discussed, where characteristic σci, Ei and modulus ratio (MR) values are proposed.
      PubDate: 2019-03-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-