for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2266 journals)
    - CHEMICAL ENGINEERING (190 journals)
    - CIVIL ENGINEERING (181 journals)
    - ELECTRICAL ENGINEERING (100 journals)
    - ENGINEERING (1197 journals)
    - ENGINEERING MECHANICS AND MATERIALS (390 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (64 journals)
    - MECHANICAL ENGINEERING (89 journals)

ENGINEERING (1197 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Full-text available via subscription   (Followers: 5)
AASRI Procedia     Open Access   (Followers: 14)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 207)
Acta Geotechnica     Hybrid Journal   (Followers: 6)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 1)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 4)
Advanced Science     Open Access   (Followers: 4)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 4)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 6)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Artificial Neural Systems     Open Access   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 18)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 7)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 13)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 34)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 28)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access  
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 5)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 6)
Applied Clay Science     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 3)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 4)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 8)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 2)
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 7)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 9)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 7)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
Batteries     Open Access   (Followers: 3)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 24)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 8)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 1)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription  
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Full-text available via subscription   (Followers: 14)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 40)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 7)
Case Studies in Thermal Engineering     Open Access   (Followers: 4)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 3)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 5)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 4)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 10)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 13)
City, Culture and Society     Hybrid Journal   (Followers: 20)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Coastal Engineering     Hybrid Journal   (Followers: 10)
Coastal Engineering Journal     Hybrid Journal   (Followers: 3)
Coatings     Open Access   (Followers: 2)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 23)
Composite Interfaces     Hybrid Journal   (Followers: 5)
Composite Structures     Hybrid Journal   (Followers: 241)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 174)
Composites Part B : Engineering     Hybrid Journal   (Followers: 215)
Composites Science and Technology     Hybrid Journal   (Followers: 160)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 25)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 8)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 25)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 6)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 7)
Control Engineering Practice     Hybrid Journal   (Followers: 40)
Control Theory and Informatics     Open Access   (Followers: 7)
Corrosion Science     Hybrid Journal   (Followers: 24)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  
Current Applied Physics     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 | Last

Journal Cover Acta Geotechnica
  [SJR: 1.818]   [H-I: 22]   [6 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1861-1133 - ISSN (Online) 1861-1125
   Published by Springer-Verlag Homepage  [2335 journals]
  • Fully coupled hydro-mechanical numerical manifold modeling of porous rock
           with dominant fractures
    • Authors: Mengsu Hu; Yuan Wang; Jonny Rutqvist
      Pages: 231 - 252
      Abstract: Abstract Coupled hydro-mechanical (HM) processes are significant in geological engineering such as oil and gas extraction, geothermal energy, nuclear waste disposal and for the safety assessment of dam foundations and rock slopes, where the geological media usually consist of fractured rock masses. In this study, we developed a model for the analysis of coupled hydro-mechanical processes in porous rock containing dominant fractures, by using the numerical manifold method (NMM). In the current model, the fractures are regarded as different material domains from surrounding rock, i.e., finite-thickness fracture zones as porous media. Compared with the rock matrix, these fractured porous media are characterized with nonlinear behavior of hydraulic and mechanical properties, involving not only direct (poroelastic) coupling but also indirect (property change) coupling. By combining the potential energy associated with mechanical responses, fluid flow and solid–fluid interactions, a new formulation for direct HM coupling in porous media is established. For indirect coupling associated with fracture opening/closure, we developed a new approach implicitly considering the nonlinear properties by directly assembling the corresponding strain energy. Compared with traditional methods with approximation of the nonlinear constitutive equations, this new formulation achieves a more accurate representation of the nonlinear behavior. We implemented the new model for coupled HM analysis in NMM, which has fixed mathematical grid and accurate integration, and developed a new computer code. We tested the code for direct coupling on two classical poroelastic problems with coarse mesh and compared the results with the analytical solutions, achieving excellent agreement, respectively. Finally, we tested for indirect coupling on models with a single dominant fracture and obtained reasonable results. The current poroelastic NNM model with a continuous finite-thickness fracture zone will be further developed considering thin fractures in a discontinuous approach for a comprehensive model for HM analysis in fractured porous rock masses.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0495-z
      Issue No: Vol. 12, No. 2 (2017)
       
  • A robust numerical framework for simulating localized failure and fracture
           propagation in frictional materials
    • Authors: D. A. Weed; C. D. Foster; M. H. Motamedi
      Pages: 253 - 275
      Abstract: Abstract A computationally robust framework for simulating geomaterial failure patterns is presented in this paper. Finite element simulations which feature the use of embedded discontinuities to track material failure are known to suffer from convergence issues due to a lack of robustness. Oftentimes, complex time step-cutting schemes or arc-length methods are required in order to achieve convergence. This may invariably limit the complexity of constitutive models available for use in tracking nonlinear material behavior. To this end, we use an implicit–explicit integration scheme [Impl–Ex (Oliver et al. in Comput Methods Appl Mech Eng 195(52):7093–7114, 2006)] coupled with a novel constitutive model which allows for combined opening and shearing displacement in tension, as well as frictional sliding in compression. We show that this framework is suitable for capturing complex fracture patterns in geomaterial structures without the need for elaborate continuance schemes.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0474-4
      Issue No: Vol. 12, No. 2 (2017)
       
  • A numerical formulation with unified unilateral boundary condition for
           unsaturated flow problems in porous media
    • Authors: Ran Hu; Yi-Feng Chen; Chuang-Bing Zhou; Hui-Hai Liu
      Pages: 277 - 291
      Abstract: Abstract This paper proposed a numerical formulation for unsaturated flow problems with nonlinear boundaries of seepage face and soil–atmosphere interface via the concept of parabolic variational inequality (PVI) method. A unified unilateral boundary condition was first proposed to represent the conditions on the seepage face and soil–atmosphere interface boundaries within the partial differential equation (PDE) formulation. A PVI formulation mathematically equivalent to the PDE formulation was then proposed, which automatically transforms the flux part of the unified unilateral boundary condition into the natural boundary condition and eliminates the singularity at seepage points. By discretizing the PVI formulation, a finite element procedure together with an iterative algorithm was suggested. An existing experiment of unsaturated flow in a layered hillside and a laboratory test of unsaturated flow through sand flume performed in this study were used to validate the proposed method, with a good agreement between the measured and computed results and a satisfactory balance of mass being maintained during the simulations. The numerical results also indicated that the problem of mesh dependence associated with unsaturated flow simulations is well addressed with the proposed numerical method. Finally, the process of unsaturated flow in a soil slope with layers of horizontal drains subjected to rainfall/evaporation was further examined. The numerical results reveal that the deployment of drains in a soil slope can significantly lower the pore water pressure around the drains, with the bottom layer drains being most effective in controlling the seepage flow.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0475-3
      Issue No: Vol. 12, No. 2 (2017)
       
  • Experimental and analytical studies of the parameters influencing the
           action of TBM disc tools in tunnelling
    • Authors: Marilena Cardu; Giorgio Iabichino; Pierpaolo Oreste; Andrea Rispoli
      Pages: 293 - 304
      Abstract: Abstract The use of tunnel boring machines (TBMs) is increasingly popular in tunnelling. One of the most important aspects in the use of these machines is to assess with certain accuracy the effectiveness of the action of the discs on the cutter-head in the different rock types to be excavated. A specific machine, called an intermediate linear cutting machine (ILCM), has been developed at the Politecnico di Torino in order to study, on a reduced scale in detail in the laboratory, the interaction between the discs of the TBM and the rock: this machine allows a series of grooves to be cut on a rock sample of 0.5 × 0.3 × 0.2 m, through the rolling of a 6.5-in. disc, and evaluation, during testing, of the parameters associated with the action of the cutting tool. The parameters measured during the tests were compared with the results obtained employing two analytical methods widely used for predicting the performance of TBMs: the Colorado School of Mines (CSM) model and the Norwegian University of Science and Technology (NTNU) model. The latter showed a greater ability to reproduce tests conducted using the ILCM. However, as with the CSM model, it does not allow the optimal excavation condition (the ratio, which minimizes the specific energy of excavation, between the groove spacing and the penetration of the disc), necessary for the correct design of the TBM cutter-head, to be identified. An example, based on a real case of a tunnel in Northern Italy, allowed a demonstration of how the NTNU model provides results in line with the measurements taken during the excavation and represents, therefore, a model that is able to reliably simulate both laboratory tests and the action of a TBM on site. The NTNU model, together with the results of the tests with ILCM targeted on the identification of the optimal conditions of excavation, may allow the correct dimensioning of the TBM cutter-head to be attained in order to effectively implement the excavation.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0453-9
      Issue No: Vol. 12, No. 2 (2017)
       
  • Viscosity of rock mass at different structural levels
    • Authors: Chengzhi Qi; Chen Haoxiang; Jiping Bai; Jilin Qi; Kairui Li
      Pages: 305 - 320
      Abstract: Abstract This paper examines viscosity of rock mass at different structural hierarchies. The study shows that viscosity and characteristic strain rate of rock mass vary at different structural levels. There exists one-to-one correspondence between characteristic scale level and strain rate. High viscosity with low characteristic strain rate occurs under macro-level, while meso- and micro-levels are characterized by low viscosity with high characteristic strain rate. Generally, with the increase in strain rate, deformation and fracture take place at decreasing scale levels, and viscosity gradually decreases. With high characteristic strain rate at meso- and micro-levels, viscosity is inversely proportional to strain rate at these levels. Based on the analysis on viscosity at different structural levels, a unified description of viscosity is suggested and applied to the description of the strength–strain rate sensitivity of rock mass.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0449-5
      Issue No: Vol. 12, No. 2 (2017)
       
  • Application of statistical methods for predicting uniaxial compressive
           strength of limestone rocks using nondestructive tests
    • Authors: Abdolazim Azimian
      Pages: 321 - 333
      Abstract: Abstract Uniaxial compressive strength (UCS) of an intact rock is an important geotechnical parameter for engineering applications. Using standard laboratory tests to determine UCS is a difficult, expensive and time-consuming task. The main purpose of this study is to develop a general model for predicting UCS of limestone samples and to investigate the relationships among UCS, Schmidt hammer rebound and P-wave velocity (V P). For this reason, some samples of limestone rocks were collected from the southwestern Iran. In order to evaluate a correlation, the measured and predicted values were examined utilizing simple and multivariate regression techniques. In order to check the performance of the proposed equation, coefficient of determination (R 2), root-mean-square error, mean absolute percentage error, variance accounts for (VAF %), Akaike Information Criterion and performance index were determined. The results showed that the proposed equation by multivariate regression could be applied effectively to predict UCS from its combinations, i.e., ultrasonic pulse velocity and Schmidt hammer hardness. The results also showed that considering high prediction performance of the models developed, they can be used to perform preliminary stages of rock engineering assessments. It was evident that such prediction studies not only provide some practical tools but also contribute to better understanding of the main controlling index parameters of UCS of rocks.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0467-3
      Issue No: Vol. 12, No. 2 (2017)
       
  • Evaluation of an anisotropic elastoplastic–viscoplastic bounding
           surface model for clays
    • Authors: Jianhong Jiang; Hoe I. Ling; Victor N. Kaliakin; Xiangyong Zeng; Ching Hung
      Pages: 335 - 348
      Abstract: Abstract An anisotropic time-dependent bounding surface model for clays is developed by generalizing a previous time-independent model that adopts a flexible bounding surface. It is based on the framework for coupled elastoplasticity–viscoplasticity for clays and Perzyna’s overstress theory. Three viscoplastic parameters were introduced and explained in detail. The model was validated against undrained creep tests for both isotropically and anisotropically consolidated clays, undrained and drained stress relaxation tests on some undisturbed clays, and undrained triaxial tests with varying strain rates on natural Hong Kong marine deposit clay. The general agreement between the model simulations and test results was satisfactory. The varying effects of lower-level parameters were discussed on the undrained multistage stress relaxation response for normally consolidated soils which had been ignored in literature. The flexibility of the model in capturing the shear strengths, which is the unique feature of the current model, was shown in the simulations of time-dependent triaxial tests on Taipei silty clay. All the simulations show that the proposed model is a relatively practical model considering both anisotropy and time dependency of clays.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0471-7
      Issue No: Vol. 12, No. 2 (2017)
       
  • Numerical simulation of lumpy soils using a hypoplastic model
    • Authors: X. S. Shi; I. Herle
      Pages: 349 - 363
      Abstract: Abstract The lumpy soil is a by product of the open-pit mining. A composite-lumpy material (in which, the lumps are randomly distributed in the reconstituted soil) is being created due to the degradation of the initial granular structure. In the present study, the compression and failure behaviour of an artificial lumpy material with randomly distributed inclusions are investigated using the finite element method. The computation results show that the stress ratio, defined as the ratio of the volume average stress between the lumps and the reconstituted soil within the inter-lump voids, is significantly affected by both the volume fraction and the preconsolidation pressure of the lumps under an isotropic compression path, while the volume fraction of the lumps plays a minor role under a triaxial compression path. Based on the simulation results, a homogenization law was proposed utilizing the secant stiffnesses.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0447-7
      Issue No: Vol. 12, No. 2 (2017)
       
  • An improved version of barodesy for clay
    • Authors: Gertraud Medicus; Wolfgang Fellin
      Pages: 365 - 376
      Abstract: Abstract Barodesy is a constitutive model based on proportional paths and the asymptotic behaviour of soil. It was originally developed for sand in 2009 by Kolymbas, and a version for clay was introduced in 2012. A shortcoming of former barodetic models was that tensile stresses can occur for certain dilative deformations. In this article, an improved version of barodesy for clay and a simplified calibration procedure are proposed. Basic features are shown, and simulations of element tests are compared with experimental data of several clay types.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0458-4
      Issue No: Vol. 12, No. 2 (2017)
       
  • A fractional order creep constitutive model of warm frozen silt
    • Authors: Mengke Liao; Yuanming Lai; Enlong Liu; Xusheng Wan
      Pages: 377 - 389
      Abstract: Abstract A series of triaxial creep tests were conducted on warm frozen silts extracted from Qinghai–Tibet Plateau at temperature of −1.5 °C under confining pressures of 0.5, 1.0, and 2.0 MPa, respectively. The applied test stress levels were 30, 50, 60, and 70% of triaxial shear strength, respectively. The test results indicate that the creep strain increases with the increase in applied stress level and there is a stress threshold, based on which the test results can be classified into two types of creep strain curves. The creep strain curve only includes primary and secondary creep stages when the stress level is less than the threshold value. When the stress level exceeds the threshold value, the creep strain velocity gradually increases and the specimen quickly fails in tertiary creep stage. Based on the creep test results, a fractional order rheological element model is established for warm frozen silt, which is also generalized from uniaxial stress state to the three-dimensional stress state. From the analysis on the features of the stress threshold, a creep strength criterion is also proposed simultaneously. Comparing the calculated results of the warm frozen silt with the tested ones, it is found that the predicted results of the proposed model are in good agreement with the test results. In the proposed fractional order model, the relationship between the damage factor and time is established to describe the damage degree of the specimen. Compared with the existing creep constitutive model of frozen soil, the proposed fractional order model has advantages of fewer model parameters, higher simulation precision and wider applicability in analyzing the mechanical properties of warm frozen silt.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0466-4
      Issue No: Vol. 12, No. 2 (2017)
       
  • Shear deformation and strength of the interphase between the soil–rock
           mixture and the benched bedrock slope surface
    • Authors: Duofeng Cen; Da Huang; Feng Ren
      Pages: 391 - 413
      Abstract: Abstract A series of benched excavations were typically carried out on the bedrock slope surface to improve the stability of the soil–rock mixture (S–RM) fill slope. It is difficult to devise an in situ, large-scale direct shear test for the interphase between the S–RM fill and the benched bedrock slope surface. This study introduced a comprehensive approach to investigate the shear deformation and strength of the interphase. First the soil–rock distribution characteristics were analyzed by test pitting, image analysis, and sieve test. Then the PFC2D random structure models with different rock block size distributions were built, and large-scale numerical shear tests for the interphase were performed after calibrating model parameters through laboratory tests. The stress evolution, damage evolution and failure, deformation localization (based on a principle proposed in this paper), rotation of rock blocks, and shear strength were systematically investigated. It was found that as the rock block proportion and rock block size (rock block proportion of 50 %) increase, the fluctuations of the post-peak shear stress–displacement curves of the interphase become more obvious, and the shear band/localized failure path network becomes wider. Generally, smaller rock blocks are of greater rotation angles in the shear band. The peak shear stress and internal friction angle of the interphase increase, while the cohesion decreases with growth of the rock block proportion. However, all these three parameters increase as the rock block size (rock block proportion of 50 %) increases.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0468-2
      Issue No: Vol. 12, No. 2 (2017)
       
  • End bearing capacity comparison of screw pile with straight pipe pile
           under similar ground conditions
    • Authors: Adnan Anwar Malik; Jiro Kuwano; Shinya Tachibana; Tadashi Maejima
      Pages: 415 - 428
      Abstract: Abstract In the present study, the end bearing capacity of screw and straight pipe pile under similar pile tip area and ground conditions were investigated. The effect of increasing overburden pressure was also considered in this research. Pile load tests on close-ended screw and straight pipe piles were conducted in the small scale. Dry Toyoura sand was used to develop the model ground. The sand was compacted at relative density of 70, 80 and 92 %. It was observed that in case of straight pipe pile, load settlement curve plunges downward without increase in load around settlement equals to 10 % of pile tip diameter, whereas in case of screw pile, the load settlement curve plunges around settlement equals to 15 % of pile tip diameter. Moreover, the screw piles having helix-to-shaft diameter ratio 2–4.1 showed 2–12 times higher end bearing capacity than straight pipe piles with similar pile shaft diameter. It was also observed from the test results that the end bearing capacity of single-helix screw pile was in average 16.25 % less than straight pipe pile with similar pile tip area and ground conditions irrespective of the effect of increasing overburden pressure.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0482-4
      Issue No: Vol. 12, No. 2 (2017)
       
  • The effect of sidewall roughness on the shaft resistance of rock-socketed
           piles
    • Authors: Guoliang Dai; F. ASCE; Rodrigo Salgado; Weiming Gong; Mingxing Zhu
      Pages: 429 - 440
      Abstract: Abstract Piles socketed into rock are increasingly used to support loads from large-span bridges and heavy buildings. Peak side resistance is typically related to unconfined compressive strength, sidewall roughness and rock mass quality. This paper presents the results of tests on piles socketed in a weak, artificial rock made of sand, cement, gypsum powder and water. The test results are compared with methods of estimation in which the roughness of the pile–rock interface is modeled explicitly by assuming sinusoidal undulations along the interface. The testing program includes 10 model piles. Some of these piles have nonzero base resistance; others are unsupported at the base. The results indicate that both the degree of roughness of the socket sidewall and the base stiffness are of major importance to the load response of rock-socketed piles. The ultimate unit side resistance was observed to increase substantially with both increasing sidewall roughness and increasing base stiffness, but there is an upper limit to socket roughness beyond which very little increase in side resistance can be obtained. Most of the available correlations used to predict the ultimate side resistance of rock-socketed piles produced conservative estimates for the test piles in this study.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0470-8
      Issue No: Vol. 12, No. 2 (2017)
       
  • Influence of physico-chemical components on the consolidation behavior of
           soft kaolinites
    • Authors: Sudhakar Rao; G. B. Deepak; P. Raghuveer Rao; P. Anbazhagan
      Pages: 441 - 451
      Abstract: Abstract Pore solution salinity has important bearing on engineering behavior of marine sediments as they influence electrochemical stress (A–R) and differential osmotic stress (∆π) of the salt-enriched clays. The electrochemical stress (A–R) is contributed by van der Waals (A) attraction and diffuse ion layer repulsion (R) , while the differential osmotic stress (∆π) is governed by the differences in dissolved salt concentrations in solutions separated by osmotic membrane. The paper examines the relative influence of differential osmotic stress (Δπ) and electrochemical stress (A–R) on the consolidation behavior of slurry consolidated kaolinite specimens, which are known to be encountered in recent alluvial marine sediments. Methods are described to evaluate the magnitudes of these physico-chemical components and their incorporation in true effective stress. Results of the study demonstrate that differential osmotic stress finitely contributes to true effective stress. The contribution from differential osmotic stress enables kaolinite specimens to sustain larger void ratio during consolidation.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0478-0
      Issue No: Vol. 12, No. 2 (2017)
       
  • A closed-form solution for seismic passive earth pressure behind a
           retaining wall supporting cohesive–frictional backfill
    • Authors: Yu-liang Lin; Xiao Yang; Guo-lin Yang; Yun Li; Lian-heng Zhao
      Pages: 453 - 461
      Abstract: Abstract The evaluation of seismic passive earth pressure is an important aspect in designing safe retaining walls. In this paper, a slice analysis method is adopted to study the nonlinear distribution of seismic passive earth pressure while considering most of the possible parameters. The closed-form expressions for the resultant force of seismic passive earth pressure, earth pressure distribution, and its application position are obtained. The explicit solution for the critical failure angle of seismic passive earth pressure is proposed by simplifying the relation between the resultant force and the failure angle based on a graphical analysis method. Under certain conditions, the present method correlates with classical passive earth pressure theories. By comparing the present method with test results and previously published solutions, the results are found to be consistent. The influence of the seismic coefficients on seismic passive earth pressure is also studied.
      PubDate: 2017-04-01
      DOI: 10.1007/s11440-016-0472-6
      Issue No: Vol. 12, No. 2 (2017)
       
  • Three-dimensional DEM investigation of critical state and dilatancy
           behaviors of granular materials
    • Authors: Wei Zhou; Jiaying Liu; Gang Ma; Xiaolin Chang
      Abstract: Abstract The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.
      PubDate: 2017-03-17
      DOI: 10.1007/s11440-017-0530-8
       
  • Tide-induced hydraulic response in a semi-infinite seabed with a
           subaqueous drained tunnel
    • Authors: Hongwei Ying; Chengwei Zhu; Xiaonan Gong
      Abstract: Abstract In this study, analytical solutions for tide-induced pore pressure, seepage force and water inflow into a subaqueous drained tunnel are developed. The results are compared with numerical solutions from a commercial software. The effects of the soil permeability, shear modulus, lining thickness and buried depth of the tunnel on tide-induced pore pressure, seepage force and water inflow are discussed. Larger tide-induced pore pressure and seepage force are obtained for smaller tunnel depth and higher soil permeability. The phase lags of the maximal tide-induced pore pressure at different depths are determined and investigated.
      PubDate: 2017-03-15
      DOI: 10.1007/s11440-017-0525-5
       
  • A generalized nonlinear failure criterion for frictional materials
    • Authors: Shunchuan Wu; Shihuai Zhang; Chao Guo; Liangfeng Xiong
      Abstract: Abstract A generalized nonlinear failure criterion formulated in terms of stress invariants is proposed for describing the failure characteristics of different frictional materials. This failure criterion combines a power function and a versatile function in the meridian and deviatoric plane, respectively, which is a generalization of several classic criteria, including the Tresca, Drucker–Prager, Mohr–Coulomb, Lade–Duncan and Matsuoka–Nakai failure criterion. The procedure for determination of the strength parameters was demonstrated in detail. Comparisons between the failure criterion and experimental results were presented for uncemented/cemented Monterey sand, normally consolidated Fujinomori clay, rockfill, concrete, Mu-San sandstone and granite, which reveal that the proposed failure criterion captures experimental trend quite well.
      PubDate: 2017-03-13
      DOI: 10.1007/s11440-017-0532-6
       
  • Stress–strain behavior of cement-improved clays: testing and
           modeling
    • Authors: Allison J. Quiroga; Zachary M. Thompson; Kanthasamy K. Muraleetharan; Gerald A. Miller; Amy B. Cerato
      Abstract: Abstract The results of a series of laboratory tests on unimproved and cement-improved specimens of two clays are presented, and the ability of a bounding surface elastoplastic constitutive model to predict the observed behavior is investigated. The results of the oedometer, triaxial compression, extension, and cyclic shear tests demonstrated that the unimproved soil behavior is similar to that of soft clays. Cement-improved specimens exhibited peak/residual behavior and dilation, as well as higher strength and stiffness over unimproved samples in triaxial compression. Two methods of accounting for the artificial overconsolidation effect created by cement improvement are detailed. The apparent preconsolidation pressure method is considerably easier to use, but the fitted OCR method gave better results over varied levels of confining stresses. While the bounding surface model predicted the monotonic behavior of unimproved soil very well, the predictions made for cyclic behavior and for improved soils were only of limited success.
      PubDate: 2017-03-10
      DOI: 10.1007/s11440-017-0529-1
       
  • Analysis of size effects on the geomechanical parameters of intact granite
           samples under unconfined conditions
    • Authors: J. Quiñones; J. Arzúa; L. R. Alejano; F. García-Bastante; D. Mas Ivars; G. Walton
      Abstract: Abstract A total of 28 uniaxial compressive strength tests were performed on cylindrical Blanco Mera granite samples with diameters ranging between 14 and 100 mm, with results indicating that this granite undergoes a significant reverse size effect: the UCS increases as sample diameter increases up to 54 mm, but thereafter decreases. It was also found that the results tend to be more scattered for smaller sample diameters. We also found an apparent correlation between Young’s modulus and sample diameter. It was not possible to draw any clear conclusions regarding the variability in Poisson’s ratio with sample size. With respect to crack initiation and crack damage stresses, the behaviour of the tested samples also indicates a reverse effect. This research would suggest that the traditionally assumed decrease in strength as sample size increases does not hold for granite samples with diameters below 54 mm.
      PubDate: 2017-03-07
      DOI: 10.1007/s11440-017-0531-7
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.157.239.93
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016