for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2266 journals)
    - CHEMICAL ENGINEERING (190 journals)
    - CIVIL ENGINEERING (183 journals)
    - ELECTRICAL ENGINEERING (99 journals)
    - ENGINEERING (1195 journals)
    - ENGINEERING MECHANICS AND MATERIALS (391 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (64 journals)
    - MECHANICAL ENGINEERING (89 journals)

ENGINEERING (1195 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Full-text available via subscription   (Followers: 5)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 216)
Acta Geotechnica     Hybrid Journal   (Followers: 6)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 1)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 4)
Advanced Science     Open Access   (Followers: 5)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 6)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 18)
Advances in Artificial Neural Systems     Open Access   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 18)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 13)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 35)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 29)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 5)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 6)
Applied Clay Science     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 3)
Applied Nanoscience     Open Access   (Followers: 7)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 4)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 8)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 2)
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 7)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 7)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
Batteries     Open Access   (Followers: 3)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 23)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 9)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 1)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription  
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Full-text available via subscription   (Followers: 13)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 40)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 7)
Case Studies in Thermal Engineering     Open Access   (Followers: 4)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 5)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 21)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 4)
Coatings     Open Access   (Followers: 2)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 23)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Composite Structures     Hybrid Journal   (Followers: 252)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 177)
Composites Part B : Engineering     Hybrid Journal   (Followers: 223)
Composites Science and Technology     Hybrid Journal   (Followers: 164)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 25)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 8)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 25)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 6)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 7)
Control Engineering Practice     Hybrid Journal   (Followers: 40)
Control Theory and Informatics     Open Access   (Followers: 7)
Corrosion Science     Hybrid Journal   (Followers: 24)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  
Current Applied Physics     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 | Last

Journal Cover Advances in Catalysis
  [SJR: 2.139]   [H-I: 42]   [5 followers]  Follow
    
   Full-text available via subscription Subscription journal  (Not entitled to full-text)
   ISSN (Print) 0360-0564
   Published by Elsevier Homepage  [3032 journals]
  • Chapter One Recent Advances in the Application of Mößbauer Spectroscopy
           in Heterogeneous Catalysis
    • Authors: Kuo Liu; Alexandre I. Rykov; Junhu Wang; Tao Zhang
      Pages: 1 - 142
      Abstract: Publication date: 2015
      Source:Advances in Catalysis, Volume 58
      Author(s): Kuo Liu, Alexandre I. Rykov, Junhu Wang, Tao Zhang
      Mößbauer spectroscopy is a high-resolution spectroscopic technique suitable for investigating solid catalysts that contain nuclei which exhibit the Mößbauer effect. As integral part of a solid, the Mößbauer nucleus plays the role of a probe that interacts, by virtue of its magnetic and electric moments, with the surrounding fields created by unpaired electrons and ionic charges. The Mößbauer effect can be used to quantitatively measure these hyperfine interactions with unprecedented energy resolution, and a series of gamma-resonance techniques are based on this effect. These techniques allow the determination of the catalyst phase, the particle size, the structure, and the oxidation state in the bulk and at the surface of the catalyst, and they provide additional information that is difficult to acquire with other techniques. In this review, the principles of Mößbauer spectroscopy, the observed effects and hyperfine interactions, and in situ techniques are presented in compact form. The search for correlations between catalytic behavior and the structure and composition of catalysts motivate Mößbauer measurements under in situ conditions. The recent advances made by application of Mößbauer spectroscopy in catalysis are summarized in detail, including results from energy catalysis, environmental catalysis, aerospace catalysis, petrochemistry, and photocatalysis. Finally, brief insight into biological catalysis is given by reviewing the latest applications of synchrotron radiation nuclear gamma-resonance elastic and inelastic scattering spectroscopies that have recently been implemented at synchrotron rings of the third generation.

      PubDate: 2016-04-09T03:37:51Z
      DOI: 10.1016/bs.acat.2015.09.001
      Issue No: Vol. 58 (2016)
       
  • Chapter Two Zeolites and Zeotypes for Oil and Gas Conversion
    • Authors: Eelco T.C. Vogt; Gareth T. Whiting; Abhishek Dutta Chowdhury; Bert M. Weckhuysen
      Pages: 143 - 314
      Abstract: Publication date: 2015
      Source:Advances in Catalysis, Volume 58
      Author(s): Eelco T.C. Vogt, Gareth T. Whiting, Abhishek Dutta Chowdhury, Bert M. Weckhuysen
      Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid catalytic cracking and hydrocracking, and also a wide variety of important petrochemical processes, such as alkylation and isomerization. The fields of low-temperature zeolite-assisted methane activation and methanol-to-hydrocarbon conversion are also covered, as well as several zeolite-catalyzed organic reactions with the aim to synthesize fine chemicals and pharmaceutical intermediates. By reviewing the processes, a wide range of catalytic functionalities are discussed, including Brønsted and Lewis acid sites, basic sites as well as metal and redox sites. The chapter continues with a discussion of the effects of zeolite–binder interactions in commercial catalysts, where the zeolite is only part of the system. We show how modern microspectroscopy methods provide detailed insight into the complex structure of these catalyst materials. Finally, we present future directions, which may include new zeolite-based processes for chemicals production or energy conversion, while new synthetic and characterization tools are envisioned to contribute to the accelerated discovery of new zeolite framework structures.

      PubDate: 2016-04-09T03:37:51Z
      DOI: 10.1016/bs.acat.2015.10.001
      Issue No: Vol. 58 (2016)
       
  • Series Page
    • Abstract: Publication date: 2016
      Source:Advances in Catalysis, Volume 59


      PubDate: 2016-11-29T09:39:35Z
       
  • Multiscale Aspects in Hydrocracking: From Reaction Mechanism Over
           Catalysts to Kinetics and Industrial Application
    • Authors: J.W. Thybaut; G.B. Marin
      Abstract: Publication date: Available online 10 November 2016
      Source:Advances in Catalysis
      Author(s): J.W. Thybaut, G.B. Marin
      Hydroisomerization and hydrocracking are widely recognized as versatile reactions. They allow not only converting feeds of various origin and quality into high-value blendstocks but also identifying the opportunities brought about by different solid acids with characteristic framework structures to tailor activity and product selectivity. The bifunctional reaction mechanism is an essential feature in this respect. It comprises acid-catalyzed rearrangement and cracking in addition to metal-catalyzed (de)hydrogenation and is effective at relatively mild operating conditions. Innumerable combinations of metal and acid functions, ranging, respectively, from sulfided transition metals to noble ones and from crystalline, microporous to wider pore, amorphous materials are available for ensuring the required catalytic performance to convert the feed into the desired product slate. An adequate understanding of the detailed reaction mechanism represents a crucial element in this endeavor. Over the years an interesting evolution from simple, lumped model toward advanced ones accounting for all potentially occurring elementary steps could be discerned. Hydrocracking has been among the first reactions involved in hydrocarbon fuel production and regained popularity in the last years because of the processing of ever more heavy crudes. Its horizon, however, extends beyond the fossil era with applications in bio-fuel production and plastic waste valorization. It ensures a bright future for a historical and reliable conversion process.

      PubDate: 2016-11-15T16:56:26Z
      DOI: 10.1016/bs.acat.2016.10.001
       
  • Series Page
    • Abstract: Publication date: 2015
      Source:Advances in Catalysis, Volume 58


      PubDate: 2016-04-09T03:37:51Z
       
  • Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over
           Cu-SSZ-13 and Cu-SAPO-34
    • Authors: C. Paolucci; J.R. Di Iorio; F.H. Ribeiro; R. Gounder; W.F. Schneider
      Pages: 1 - 107
      Abstract: Publication date: Available online 15 November 2016
      Source:Advances in Catalysis
      Author(s): C. Paolucci, J.R. Di Iorio, F.H. Ribeiro, R. Gounder, W.F. Schneider
      Copper-exchanged, small-pore chabazite (CHA) zeolites were commercialized in 2009 for the selective catalytic reduction (SCR) of NO x compounds with ammonia, as an emissions control strategy in diesel automotive exhaust aftertreatment. Here, we review the fundamental scientific advances that have since been made in the molecular-level understanding of the active sites and mechanisms responsible for NO x SCR with NH3 on Cu-CHA catalysts. A large body of experimental and theoretical characterization has identified that these “single-site” catalysts contain Cu sites of different local coordinations and structures, influenced by synthetic and environmental factors. The speciation of isolated Cu ions is inextricably linked to the support composition and the conditions of exposure. We make new and unifying connections among the seemingly disparate findings of experimental investigations of Cu-CHA catalysts that differ in origin and treatment history, using ex situ and in situ characterizations, and operando characterization during catalysis. We discuss theory-based studies, in conjunction with multiple experimental spectroscopic methods performed on model Cu-CHA catalysts, that provide precise molecular assignments across a wide range of catalysts and conditions. We highlight how molecular-level descriptions of the active sites and mechanisms can provide insight into the chemical factors that influence practical SCR performance and behavior, including the onset of low-temperature NO x conversion, and the critical role of NH3 solvation of Cu active sites for low-temperature activity. Finally, we describe how the fundamental heterogeneous catalysis science approaches used to interrogate Cu-CHA catalysts used for NO x SCR with NH3 can be used to elucidate the molecular-level details of chemistry that occurs on other single-site catalysts.

      PubDate: 2016-11-22T07:40:04Z
      DOI: 10.1016/bs.acat.2016.10.002
       
  • Series Page
    • Abstract: 2012
      Publication year: 2012
      Source:Advances in Catalysis, Volume 55



      PubDate: 2012-12-15T09:29:21Z
       
  • Michel Boudart 1924–2012
    • Abstract: 2012
      Publication year: 2012
      Source:Advances in Catalysis, Volume 55



      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter One Heterogeneous Catalysis by Gold
    • Abstract: 2012
      Publication year: 2012
      Source:Advances in Catalysis, Volume 55

      Gold can be deposited as nanoparticles (NPs) with diameters of 2–5nm and clusters with diameters less than 2nm on a variety of materials such as oxides, carbides, and sulfides of transition metals, carbons, and organic polymers. Such supported gold NPs and clusters exhibit surprisingly high catalytic activities for many reactions, with both gas- and liquid-phase reactants, in particular, at temperatures below 573K. Until now, more than 10 techniques have been developed for depositing gold as NPs and clusters. The atomic scale structures of supported NPs and clusters have been extensively and intensively investigated with a high-resolution transmission electron microscopy. The mechanisms of catalysis by supported gold NPs have recently been elucidated by using real powder catalysts and model single-crystal catalysts for the low-temperature oxidation of CO. Another simple reaction that has recently been investigated is dihydrogen dissociation, for which gold NP catalysts are still poorly active. Both of these reactions have been demonstrated to take place at perimeter interfaces around the gold NPs. This result means that there is a great chance for gold to exhibit high catalytic activity for hydrogenation reactions by an appropriate choice of metal oxide supports and by minimizing the diameters of gold particles. The catalytic nature of gold clusters has also been investigated theoretically in relation to the effect of cluster size and the influence of organic ligands and polymers. The catalytic performance of gold NPs and clusters has been explored extensively for reactions of both gases and liquids. Supported gold catalysts are useful for air cleaning at room temperature, and they are valuable for green production of bulk and fine chemicals. Supported gold clusters are expected to open new doors for simple chemistry for the selective manufacture of needed products. Size and structure specificity are expected to present opportunities for selective conversions. It is recommended that researchers explore the magic numbers and structures of gold and suitable support materials for selected target reactions.

      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter Two Ordered Mesoporous Materials as Catalysts
    • Abstract: 2012
      Publication year: 2012
      Source:Advances in Catalysis, Volume 55

      After their discovery in the early 1990s, ordered mesoporous materials have become one of the most widely investigated classes of materials, and applications have been considered in many areas, in particular in catalysis. They have attracted attention because of their unique properties such as high surface areas, controllable compositions, crystallinity, thermal and chemical stability, tailored porosities, narrow pore size distributions, concave surface curvatures, surface functionalities, as well as the opportunities they offer for incorporation of catalytically active and selective species. This chapter is focused on the properties of ordered mesoporous solids that distinguish them from more conventional porous catalytic materials. Emphasis is placed on history, development, and methods of synthesis of ordered mesoporous materials.

      PubDate: 2012-12-15T09:29:21Z
       
  • Series Page
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54



      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter 1 Designing Molecular Catalysts with Enhanced Lewis Acidity
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54

      One of the key challenges in catalysis is the generation of catalytically active metal centers that are highly Lewis acidic so that the metal center can easily bind with a nucleophilic monomer to initiate a catalytic process. With this goal in mind, we pursued the designed synthesis of catalytically active metal centers with enhanced Lewis acidity, adopting two different synthetic strategies. One is the introduction of oxygen between two different metal atoms, and the other is the chemical attachment of highly electronegative fluorine around the catalytically active metal center. The attachment of the oxygen between the two metal centers also brings the metals into close proximity at the molecular level, resulting in a pronounced chemical communication between the metals. The compounds with different metals have often modified the fundamental properties of the individual metal atoms through the well-known “cooperative interaction” that is otherwise difficult to achieve. The synthetic strategy takes advantage of the Brønsted acidic character of the M(OH) moiety in building up a new class of heterometallic complexes. Further, the discovery of Me3SnF as one of the most useful fluorinating reagents for organometallic complexes leads to the successful preparation of organometallic fluorides of Group-4 metals. This synthetic development has resulted in the availability of catalysts of a new class bearing enhanced Lewis acidic metal centers resulting either from oxygen bridging or from the attachment of a highly electronegative fluorine to a catalytically active metal center. In many cases, these complexes have proved to be excellent candidates for olefin polymerization, ring-opening polymerization of caprolactone, olefin epoxidation, and olefin hydroformylation. The improvement in the catalytic properties is a result of the presence of a more electrophilic metal center, which is essential for the catalysis.

      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter 2 Modern Strategies in Supramolecular Catalysis
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54

      This chapter summarizes the main achievements in the area of supramolecular catalysis in the past decade. Supramolecular chemistry emerged 40 years ago. The initial focus was host–guest chemistry, and one target application was the use of such interactions to bring catalyst and substrate together. Examples in the first part of this chapter illustrate how rates of reactions, selectivities, regioselectivities, and enantioselectivities may change through assemblies designed as models for enzymes. In the beginning, natural host molecules such as cyclodextrins and modified cyclodextrins received most attention, but later a plethora of synthetic hosts were developed. More recently, the construction of host molecules was facilitated enormously by the introduction of supramolecular “tools”; according to this principle, large entities are constructed by bringing together smaller building blocks via noncovalent forces, such as hydrogen bonding, ionic bonding, metal–ligand coordination bonding, fluorophilic interactions, etc. A large number of host molecules were reported in the past decade, and most of them do not function merely as hosts but instead are containers that can host more than one molecule and have catalytic functions incorporated. A variety of names are used for these entities, such as capsule, cavitand, nanoreactor, nanocontainer, cage molecule, and receptor molecule. Large changes in selectivities and rates of catalytic reactions relative to those of bare catalytic sites have been reported. The second part of this chapter deals with the supramolecular construction of ligands or entire catalyst assemblies. This modular construction has enabled the synthesis of large catalyst libraries, which are useful for catalyst optimization and catalyst screening. In this way, new catalysts were developed, and new ways to control rates and selectivities of catalytic reactions were recognized. Biomacromolecules (and modified variants) have been used, particularly as sources of chirality in catalytic transformations, via supramolecular interactions with homogeneous catalysts. The last part of the chapter shows that supramolecular interactions can be used successfully for the immobilization of homogeneous catalysts. By its nature, the bonding is reversible, and the developments have led to a new reactor configuration for use of homogeneous catalysts, termed reverse-flow adsorption.

      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter 3 Mechanistic Issues in Fischer–Tropsch Catalysis
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54

      Computational studies have recently generated important information regarding reaction intermediates and activation barriers of elementary reaction steps that are part of the Fischer–Tropsch synthesis. We use these results to analyze various mechanistic options that have been proposed for the Fischer–Tropsch synthesis. The computational results do not support the Pichler–Schulz chain-growth mechanism, which postulates chain growth by CO insertion. Rather, the results are in agreement with the Sachtler–Biloen mechanism, which postulates chain growth via adsorbed “C1” species; furthermore, the Gaube chain-growth mechanism, which closely resembles that proposed by Maitlis, is found to be preferred over the initially assumed Brady–Pettit mechanism. The various elementary steps are discussed, and the values that their relative rates must assume for successful Fischer–Tropsch chain growth are outlined. Within the Sachtler–Biloen kinetics scheme, a high chain-growth probability is obtained when chain termination is rate limiting. Consequently, CO dissociation has to be facile. The “C1” species that is incorporated into the growing chain appears to be “CH” or “CH2”; thus, these species must be present in high surface concentrations. Brønsted–Evans–Polanyi relationships are used to link activation energies to surface reactivity. The structure sensitivity of the elementary reaction steps, specifically, initiation, chain growth, and termination, is analyzed. On the basis of these considerations, one can understand why particular metals are suitable Fischer–Tropsch catalysts.

      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter 4 Vanadium Phosphate Materials as Selective Oxidation Catalysts
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54

      Vanadium phosphates have been established as selective hydrocarbon oxidation catalysts for more than 40 years. Their primary use commercially has been in the production of maleic anhydride (MA) from n-butane. During this period, improvements in the yield of MA have been sought. Strategies to achieve these improvements have included the addition of secondary metal ions to the catalyst, optimization of the catalyst precursor formation, and intensification of the selective oxidation process through improved reactor technology. The mechanism of the reaction continues to be an active subject of research, and the role of the bulk catalyst structure and an amorphous surface layer are considered here with respect to the various V–P–O phases present. The active site of the catalyst is considered to consist of V4+ and V5+ couples, and their respective incidence and roles are examined in detail here. The complex and extensive nature of the oxidation, which for butane oxidation to MA is a 14-electron transfer process, is of broad importance, particularly in view of the applications of vanadium phosphate catalysts to other processes. A perspective on the future use of vanadium phosphate catalysts is included in this review.

      PubDate: 2012-12-15T09:29:21Z
       
  • Chapter 5 Monolithic Catalysts and Reactors High Precision with Low Energy
           Consumption
    • Abstract: 2011
      Publication year: 2011
      Source:Advances in Catalysis, Volume 54

      Structured catalysts and reactors offer high precision in catalysis at all relevant scales of the catalytic process, from that of the catalytic species up to that of the reactor. Monoliths are the prime example of such catalysts because of their wide practical applications. Thus, monoliths are emphasized in this review, but most of the text is also relevant to all structured reactors, including microreactors. Conceptually, monoliths exhibit more degrees of freedom in design than conventional reactors, such as fixed-bed and slurry reactors. The flow in monoliths is laminar, and as a consequence, they are associated with high efficiency and minimum chaotic characteristics. The hydrodynamics of single-phase and multiphase flow reactors are remarkably simple. Under most conditions in multiphase systems, Taylor flow (segmented flow) prevails, associated with high rates of mass transfer notwithstanding low energy consumption, but under other conditions, the film flow regime can be realized either in cocurrent or in countercurrent flow of gas and liquid streams, making the monolith a good structure for novel technologies such as catalytic distillation. Monoliths offer freedom in the design of reactor configuration. Examples are loop reactors for strong exo- and endothermic reactions, which allow a combination with separate heat exchange without the penalty of a large energy consumption, which otherwise is usually unavoidable for the large recycle ratios needed. For applications in fine chemistry and in the laboratory, a convenient monolithic stirred reactor is presented. The principal bottleneck for practical application of monolith reactors is the synthesis rather than the design of the catalytic monolith. When a monolith reactor is considered as an alternative to a fixed-bed reactor packed with commercially available catalyst particles, the grim reality is that a development program is needed to producing the catalytic monolith. Therefore, preparation methods including synthesis of various coating layers and the deposition of active catalytic species are described in detail here. This chapter also includes an exhaustive review of practical applications of monolith reactors. In applications in which high gas flow rates have to be accommodated, monoliths monoliths are the state of the art in many cases, exemplified by automobile exhaust abatement reactors—because of the popularity of automobiles, more monolithic reactors are being used than fixed-bed reactors. Applications in processes with liquid-phase and gas–liquid-phase reactants are scarce, but one well-known commercial process (the reduction step in the production of hydrogen peroxide) shows the feasibility of monoliths. Several processes are in the development stage. Included in the review are an assessment of the impact of these reactors on process intensification and applications in biotechnology and photocatalysis.

      PubDate: 2012-12-15T09:29:21Z
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.224.207.13
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016