for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2462 journals)
    - CHEMICAL ENGINEERING (209 journals)
    - CIVIL ENGINEERING (212 journals)
    - ELECTRICAL ENGINEERING (116 journals)
    - ENGINEERING (1290 journals)
    - ENGINEERING MECHANICS AND MATERIALS (398 journals)
    - HYDRAULIC ENGINEERING (57 journals)
    - INDUSTRIAL ENGINEERING (82 journals)
    - MECHANICAL ENGINEERING (98 journals)

ENGINEERING (1290 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 8)
3D Research     Hybrid Journal   (Followers: 20)
AAPG Bulletin     Hybrid Journal   (Followers: 8)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 5)
ACS Nano     Hybrid Journal   (Followers: 299)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 3)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 9)
Advanced Journal of Graduate Research     Open Access  
Advanced Nonlinear Studies     Hybrid Journal  
Advanced Science     Open Access   (Followers: 6)
Advanced Science Focus     Free   (Followers: 5)
Advanced Science Letters     Full-text available via subscription   (Followers: 11)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 4)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 28)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 14)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 23)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 29)
Advances in Nonlinear Analysis     Hybrid Journal  
Advances in Operations Research     Open Access   (Followers: 12)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 16)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 49)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 3)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 6)
AIChE Journal     Hybrid Journal   (Followers: 35)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access   (Followers: 1)
Al-Nahrain Journal for Engineering Sciences     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 10)
American Journal of Engineering Education     Open Access   (Followers: 11)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 25)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Pure and Applied Logic     Open Access   (Followers: 3)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Antarctic Science     Hybrid Journal   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 20)
Applied Clay Science     Hybrid Journal   (Followers: 6)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 13)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 6)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Basic and Applied Sciences     Open Access  
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 9)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Automotive Experiences     Open Access  
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 6)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 28)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Motor Trade Survey     Full-text available via subscription  
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 1)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Beyond : Undergraduate Research Journal     Open Access  
Bhakti Persada : Jurnal Aplikasi IPTEKS     Open Access  
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Bilge International Journal of Science and Technology Research     Open Access  
Biofuels Engineering     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 11)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering     Hybrid Journal   (Followers: 1)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 20)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 35)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomicrofluidics     Open Access   (Followers: 5)
BioNanoMaterials     Open Access   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 41)
Bitlis Eren University Journal of Science and Technology     Open Access  
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 13)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 14)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers Droit, Sciences & Technologies     Open Access  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 31)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 43)
Carbon Resources Conversion     Open Access   (Followers: 1)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Thermal Engineering     Open Access   (Followers: 6)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 7)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal  
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencia y Tecnología     Open Access  
Ciencias Holguin     Open Access   (Followers: 3)
CienciaUAT     Open Access   (Followers: 1)
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 13)
City, Culture and Society     Hybrid Journal   (Followers: 22)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
Clinical Science     Hybrid Journal   (Followers: 9)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 6)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 3)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 15)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Information Science and Management Engineering     Open Access   (Followers: 4)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 28)
Composite Interfaces     Hybrid Journal   (Followers: 7)
Composite Structures     Hybrid Journal   (Followers: 291)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 225)
Composites Part B : Engineering     Hybrid Journal   (Followers: 262)
Composites Science and Technology     Hybrid Journal   (Followers: 200)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access   (Followers: 1)
Computational Geosciences     Hybrid Journal   (Followers: 17)
Computational Optimization and Applications     Hybrid Journal   (Followers: 8)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Science and Engineering     Open Access   (Followers: 19)
Computers & Geosciences     Hybrid Journal   (Followers: 31)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 9)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 5)

        1 2 3 4 5 6 7 | Last

Journal Cover
Biomedical Microdevices
Journal Prestige (SJR): 0.538
Citation Impact (citeScore): 2
Number of Followers: 8  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1572-8781 - ISSN (Online) 1387-2176
Published by Springer-Verlag Homepage  [2349 journals]
  • Combined immunomagnetic capture coupled with ultrasensitive plasmonic
           detection of circulating tumor cells in blood
    • Authors: Weiyu Shen; Yi Song; Alison Burklund; Biao Le; Ru Zhang; Lijie Wang; Yong Xi; Kun Qian; Ting Shen; John X. J. Zhang
      Abstract: We demonstrate enhanced on-chip circulating tumor cell (CTC) detection through the incorporation of plasmonic-enhanced near-infrared (NIR) fluorescence screening. Specifically, the performance of plasmonic gold coated chips was evaluated on our previously reported immunomagnetic CTC capture system and compared to the performance of a regular chip. Three main performance metrics were evaluated: capture efficiency, capture reproducibility, and clinical efficacy. Use of the plasmonic chip to capture SK-BR-3 cells in PBS, resulted in a capture efficiency of 82%, compared to 76% with a regular chip. Both chips showed excellent capture reproducibility for all three cells lines evaluated (MCF-7, SK-BR-3, Colo 205) in both PBS and peripheral blood, with R2 values ranging from 0.983 to 0.996. Finally, performance of the plasmonic chip was evaluated on thirteen peripheral blood samples in patients with both breast and prostate cancer. The regular chip detected 2–8 cells per 5 mL of blood, while the plasmonic chip detected 8–85 cells per 5 mL of blood in parallel samples. In summary, we successfully demonstrate improved CTC capture and detection capabilities through use of plasmonic-enhanced near-infrared (NIR) fluorescence screening in both in vitro and ex vivo experiments. This work not only has the potential to improve clinical outcomes though improved CTC analysis, but also demonstrates successful interface design between plasmonic materials and cell capture for bioanalytical applications.
      PubDate: 2018-11-12
      DOI: 10.1007/s10544-018-0333-1
      Issue No: Vol. 20, No. 4 (2018)
       
  • PDMS-free microfluidic cell culture with integrated gas supply through a
           porous membrane of anodized aluminum oxide
    • Authors: Frank Bunge; Sander van den Driesche; Michael J. Vellekoop
      Abstract: Microfluidic cell cultures are often used in academic research but only rarely in pharmaceutical research because of unsuitable designs, inappropriate choice of materials or incompatibility with standard equipment. In particular, microfluidic cell cultures to control the gaseous microenvironment rely on PDMS despite its disadvantages. We present a novel concept for such a cell culture device that addresses these issues and is made out of hard materials instead of PDMS. Our device contains two microfluidic chambers that are separated by a porous membrane of anodized aluminum oxide. Because of the small pore sizes but high porosity, this design allows a gas supply from one chamber to the other while leakage of the medium is avoided. Furthermore, the cells can be cultured directly on the membrane which induces the same advantageous cell response as cultivation on very soft materials. Furthermore, the chip, made out of silicon and glass, is fabricated with clean-room technologies and thus allows mass production. The interfaces to the outer world are small reservoirs which are accessible with conventional pipettes so that the setup does not require any pump. The fabricated chip is characterized regarding its diffusion characteristics. HaCaT-cells are cultivated successfully up to 14 days inside the chip but can be also removed for further processes. The presented chip is a step to bring cell cultivation with controlled gas supply from academic to industrial applications.
      PubDate: 2018-11-10
      DOI: 10.1007/s10544-018-0343-z
      Issue No: Vol. 20, No. 4 (2018)
       
  • The effects of irreversible electroporation on the stomach wall after
           ablating hepatic tissues
    • Authors: Kai Zhang; Guangmeng Xu; Renna Qiu; Lizhe Wang; Jiannan Li; Feng Qian
      Abstract: This study aimed to evaluate the effect of irreversible electroporation (IRE) on the stomach wall after IRE was applied on liver tissues adjacent to the anterior wall of the stomach. IRE ablation was performed in eight Tibet mini-pigs with three lesions per pig. The IRE electrodes were inserted into the liver tissues situated close to the anterior wall of the stomach. As for the control group, the IRE electrodes were also inserted into the liver tissues for three lesions in four Tibet mini-pigs but did not turn on the current. Serum aminotransferase and WBC levels clearly increased in all the IRE ablated animals by Day 1 and decreased gradually thereafter. The gross postmortem examination at 7 days post-IRE revealed a whitish lesion with sharp demarcation on the serosal surface of the stomach, but we could not find any signs of ablation or just find a small, slightly reddish lesion at the Day-28 examination. On the Day-7 histopathological examination, inflammation and fibrosis were observed in the serosal layer of the stomach in each animal and mild inflammation of the myofibers was found in only two pigs. All the stomach layers returned to normalcy by 28 days post-IRE. Thus, IRE ablation of hepatic tissues situated close to the stomach wall cannot lead to stomach perforation. IRE is therefore a safe procedure for ablating hepatic tumors that are adjacent to the stomach.
      PubDate: 2018-11-08
      DOI: 10.1007/s10544-018-0345-x
      Issue No: Vol. 20, No. 4 (2018)
       
  • The microfabrication of mold for polymer microfluidic devices with
           Zr-based metallic glass
    • Authors: Xiang Zhang; Haotong Li; Zhenxing Wang; Xueye Chen; Qian Li
      Abstract: Polymer microfluidic devices are used for many purposes such as microarrays and biochips. The key tool for manufacturing these chips in bulk is an appropriate mold. However, the popular material for making molds is nickel or nickel alloys, which have low stiffness and wear out easily. Zr-based metallic glass is a promising material for micro- or nanomolds because it has good mechanical properties and can be easily formed with high precision. In this paper, Zr-based metallic glass is proposed for use as micromold insert to make poly-(methyl methacrylate) (PMMA) microfluidic devices. Our experiments show that they have good feature integrity and replication quality. Microchannels we fabricated using these replicas did not leak and had good flow performance. Zr-based metallic glass can greatly ease the manufacture of plastic microfluidic devices for research and commercial applications.
      PubDate: 2018-11-06
      DOI: 10.1007/s10544-018-0342-0
      Issue No: Vol. 20, No. 4 (2018)
       
  • Microfluidic dielectrophoretic cell manipulation towards stable cell
           contact assemblies
    • Authors: Mohd Anuar Md Ali; Aminuddin Bin Ahmad Kayani; Leslie Y. Yeo; Adam F. Chrimes; Muhammad Zamharir Ahmad; Kostya Ostrikov; Burhanuddin Yeop Majlis
      Abstract: Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell–cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.
      PubDate: 2018-11-06
      DOI: 10.1007/s10544-018-0341-1
      Issue No: Vol. 20, No. 4 (2018)
       
  • A versatile and robust microfluidic device for capillary-sized simple or
           multiple emulsions production
    • Authors: E. Teston; V. Hingot; V. Faugeras; C. Errico; M. Bezagu; M. Tanter; O. Couture
      Abstract: Ultrasound-vaporizable microdroplets can be exploited for targeted drug delivery. However, it requires customized microfluidic techniques able to produce monodisperse, capillary-sized and biocompatible multiple emulsions. Recent development of microfluidic devices led to the optimization of microdroplet production with high yields, low polydispersity and well-defined diameters. So far, only few were shown to be efficient for simple droplets or multiple emulsions production below 5 μm in diameter, which is required to prevent microembolism after intravenous injection. Here, we present a versatile microchip for both simple and multiple emulsion production. This parallelized system based on microchannel emulsification was designed to produce perfluorocarbon in water or water within perfluorocarbon in water emulsions with capillary sizes (<5 μm) and polydispersity index down to 5% for in vivo applications such as spatiotemporally-triggered drug delivery using Ultrasound. We show that droplet production at this scale is mainly controlled by interfacial tension forces, how capillary and viscosity ratios influence droplet characteristics and how different production regimes may take place. The better understanding of droplet formation and its relation to applied pressures is supported by observations with a high-speed camera. Compared to previous microchips, this device opens perspectives to produce injectable and biocompatible droplets with a reasonable yield in order to realize preclinical studies in mice.
      PubDate: 2018-10-30
      DOI: 10.1007/s10544-018-0340-2
      Issue No: Vol. 20, No. 4 (2018)
       
  • Dose calculation of radioactive nanoparticles: first considerations for
           the Design of Theranostic Agents
    • Authors: Ralph Santos-Oliveira; Michael G. Stabin
      Abstract: The use of radioactive nanoparticles as imaging and therapeutic agents is increasing globally. Indeed, the use of these nanoparticles as perfect theranostic agent is highly anticipated in the pharmaceutical market. Among the radioactive nanoparticles, liposomes, solid lipid nanoparticles and polymeric nanoparticles are the most studied. However little information among adverse reactions, absorbed dose and correct dose to achieve the theranostic goal in a translational application is available. We developed a radioactive polymeric nanoparticle and calculated the absorbed dose in animal model (Wistar rats) using the OLINDA/EXM program. The results showed that some nanoparticle were uptake in five organs and minor elimination through the gastrointestinal and urinary pathways. The data corroborates the safe use in terms of blood-brain barrier and did not show high uptake by liver. The dosimetry data support the safe use of radioactive nanoparticles as theranostic agent. Graphical abstract ᅟ
      PubDate: 2018-10-29
      DOI: 10.1007/s10544-018-0338-9
      Issue No: Vol. 20, No. 4 (2018)
       
  • Micromachined optical flow cell for sensitive measurement of droplets in
           tubing
    • Authors: Sammer-ul Hassan; Adrian M. Nightingale; Xize Niu
      Abstract: Here a micromachined flow cell with enhanced optical sensitivity is presented that allows high-throughput analysis of microdroplets. As a droplet flows through multiple concatenated measurement points, the rate of enzymatic reaction in the droplet can be fully characterized without stopping the flow. Since there is no cross-talk between the droplets, the flow cell is capable of continuously measuring biochemical assays in a droplet flow and thus is suitable to be used for continuous point-of-care diagnostics monitoring. This paper describes the design and operation of the device and its validation by application to the accurate and continuous quantification of glucose concentrations using an oxidase enzymatic assay. The flow cell forms an important component in the miniaturization of chemical and bio analyzers into portable or wearable devices.
      PubDate: 2018-10-29
      DOI: 10.1007/s10544-018-0337-x
      Issue No: Vol. 20, No. 4 (2018)
       
  • An automated microfluidic chemiluminescence immunoassay platform for
           quantitative detection of biomarkers
    • Authors: Xiaoping Min; Da Fu; Jianzhong Zhang; Juntian Zeng; Zhenyu Weng; Wendi Chen; Shiyin Zhang; Dongxu Zhang; Shengxiang Ge; Jun Zhang; Ningshao Xia
      Abstract: A rapid, sensitive and quantitative biomarker detection platform is of great importance to the small clinic or point-of-care (POC) diagnosis. In this work, we realize that an automated diagnostic platform mainly includes two components: (1) an instrument that can complete all steps of the chemiluminescence immunoassay automatically and (2) an integrated microfluidic chip which is disposable and harmless. In the instrument, we adopt vacuum suction cups which are driven by linear motor to realize a simple, effective and convenient control. The method of acridine esterification chemiluminescence is adopted to achieve a quantitative detection, and a photomultiplier tube is used to detect photons from acridine ester producing in alkaline conditions. We use the laser cutting machine and hot press machine to accomplish the product of microfluidic chips. The automated microfluidics-based system is demonstrated by implementation of a chemiluminescence immunoassay for quantitative detection of ferritin. We observe alinear relationship between CL intensity and the concentration of ferritin from 5.1 to 1300 ng mL −1and the limit of detection (LoD) is 2.55 ng mL −1. At the same time, we also used the automated microfluidics-based system to test clinical serum samples. The whole process of chemiluminescence experiment can complete within 45 min. We realize that this lab-on-a-chip chemiluminescence immunoassay platform with features of automation and quantitation provides a promising strategy for POC diagnosis.
      PubDate: 2018-10-25
      DOI: 10.1007/s10544-018-0331-3
      Issue No: Vol. 20, No. 4 (2018)
       
  • Proliferation arrest, selectivity, and chemosensitivity enhancement of
           cancer cells treated by a low-intensity alternating electric field
    • Authors: Kin Fong Lei; Shao-Chieh Hsieh; Andrew Goh; Rei-Lin Kuo; Ngan-Ming Tsang
      Abstract: Elimination of serious side effects is a desired feature of cancer therapy. Alternating electric field treatment is one approach to the non-invasive treatment of cancer. The efficacy and safety of this novel therapy are confirmed for the treatment of glioblastoma multiforme. In the current study, we co-cultured cancer cells and normal cells to investigate the selectivity and chemosensitivity enhancement of an electric field treatment. Cancer cells (cell line: HeLa and Huh7) and fibroblasts (cell line: HEL299) were cultured in an in-house–developed cell culture device embedded with stimulating electrodes. A low-intensity alternating electric field was applied to the culture. The field significantly induced proliferation arrest of the cancer cells, while had limited influence on the fibroblasts. Moreover, in combination with the anti-cancer drug, damage to the cancer cells was enhanced by the electric field. Thus, a lower dosage of the drug could be applied to achieve the same treatment effectiveness. This study provides evidence that low-intensity electric field treatment selectively induced proliferation arrest and enhanced the chemosensitivity of the cancer cells. This electro-chemotherapy could be developed and applied as a regional cancer therapy with minimal side effects.
      PubDate: 2018-10-22
      DOI: 10.1007/s10544-018-0339-8
      Issue No: Vol. 20, No. 4 (2018)
       
  • Paper-based graphene oxide biosensor coupled with smartphone for the
           quantification of glucose in oral fluid
    • Authors: Yuan Jia; Hao Sun; Xiao Li; Dongke Sun; Tao Hu; Nan Xiang; Zhonghua Ni
      Abstract: Rapid, disposable, point-of-care (POC) oral fluid testing has gained considerable attention in recent years as saliva contains biomarker and components of the serum proteome that offer important information on both oral and systemic disease. Microfluidic paper-based analytical devices (μPADs) coupled with smartphone reflectance sensing systems have long been considered to be an effective POC tool for the diagnostics of biomarkers in oral fluid. However, the existing portable systems are limited by the poor color distribution in the detection area as well as not being universally applicable. Therefore, using the properties of nanomaterials to our advantage, we present a simple, universally applicable approach that features graphene oxide (GO) coated μPADs coupled with smartphone-based colorimetric detection for the direct quantification of glucose. An integrated portable system is used to implement the approach. Owing to the enhanced reagents absorptivity, reactive efficiency and homogeneity of color distribution from the deposition of GO, the glucose assay performance was improved. Also, by using a self-developed app, the glucose concentrations in physiological range can be automatically quantified. Finally, the approach is universally applicable as the modification of μPADs with GO can be achieved without the use of any linker, binder or retention aid, which avoids possible enzyme cross contamination. The system was first calibrated by standard glucose buffer solutions, and the limit of detection as well as the linear dynamic range were found to be 0.02 mM and 0~1 mM, respectively, which are appropriate for analyzing glucose concentrations in a clinically relevant range. Finally, the system was used for quantifying glucose concentrations in artificial saliva and the results obtained using our portable system showed reasonable agreement with the actual use concentrations. Thus, the utility of the system in sensitively quantifying glucose concentrations in a portable, and repeatable manner is demonstrated.
      PubDate: 2018-10-12
      DOI: 10.1007/s10544-018-0332-2
      Issue No: Vol. 20, No. 4 (2018)
       
  • Combination therapy comprising irreversible electroporation and
           hydroxycamptothecin loaded electrospun membranes to treat rabbit VX2
           subcutaneous cancer
    • Authors: Lizhe Wang; Jian Chang; Yaqin Qu; Renna Qiu
      Abstract: Irreversible electroporation (IRE) is a kind of promising cancer treatment technology. However, local recurrence still occurs because of incomplete ablation. The aim of this study was to investigate the combined therapy of IRE and a hydroxycamptothecin loaded electrospun membrane (EM/HCPT) to treat rabbit VX2 subcutaneous cancer. HCPT loaded membranes were developed by electrospinning. Mechanical test and in vitro drug release study of EM/HCPT were performed. 24 rabbits with subcutaneous VX2 tumor were randomly divided into four groups: the control group, the EM/HCPT group, the IRE ablation group, and the IRE + EM/HCPT group. The tumor cells were ablated by IRE first, followed by subcutaneous implantation of EM/HCPT to release HCPT constantly in order to damage the residual cancer cells. The tumor inhibition efficacy was assessed by the tumor real-time monitoring, histological and immunofluorescent analyses, and transmission electron microscopy (TEM) examination. Assessment of the release from EM/HCPT showed that HCPT release lasted for about 7 days. The in vivo antitumor efficacy assessment, histological and immunofluorescent analyses, and TEM examination showed that IRE + EM/HCPT had the best tumor inhibition ability. In addition, the biochemical analyses and hematoxylin and eosin (H&E) staining of normal organs indicated that IRE + EM/HCPT treatment was safe. Our study provided a new concept in cancer treatment and might promote the application of IRE.
      PubDate: 2018-10-11
      DOI: 10.1007/s10544-018-0336-y
      Issue No: Vol. 20, No. 4 (2018)
       
  • Evaluation of silicon membranes for extracorporeal membrane oxygenation
           (ECMO)
    • Authors: Emily N. Abada; Benjamin J. Feinberg; Shuvo Roy
      Abstract: While extracorporeal membrane oxygenation (ECMO) is a valuable therapy for patients with lung or heart failure, clinical use of ECMO remains limited due to hemocompatibility concerns with pro-coagulatory hollow fiber membrane geometries. Previously, we demonstrated the feasibility of silicon nanopore (SNM) and micropore (SμM) membranes for transport between two liquid-phase compartments in blood-contacting devices. Herein, we investigate various pore sizes of SNM and SμM membranes – alone or with a polydimethylsiloxane (PDMS) protective coating – for parameters that determine suitability for gas exchange. We characterized the bubble or rupture point of these membranes to determine sweep gas pressures at which gas emboli would form. The smallest pore size SNM and the SμM with PDMS coating could be pressurized in excess of 260 cmHg without rupture, which is comparable to hollow fiber sweep gas pressures. Oxygen flux for the SμM with and without PDMS was insignificantly different at 0.0306 ± 0.0028 and 0.0297 ± 0.0012 mL/min, respectively, while SNM flux was significantly lower at 0.0149 ± 0.0040 mL/min. However, the area-normalized mass transfer coefficient of the SNM was 338 ± 54 mL O2 m−2 min−1 cmHg−1 – an order of magnitude higher than that of the SμM with and without PDMS (57.3 ± 5.5 and 55.6 ± 2.2 mL O2 m−2 min−1 cmHg−1). Ultimately, we conclude that SμM-PDMS may make effective membranes for ECMO, since they are both mechanically robust and capable of high oxygen flux.
      PubDate: 2018-10-05
      DOI: 10.1007/s10544-018-0335-z
      Issue No: Vol. 20, No. 4 (2018)
       
  • Silicon membrane filter designed by fluid dynamics simulation and
           near-field stress analysis for selective cell enrichment
    • Authors: Yo-Chang Jang; Hyun-Ju Park; Ayoung Woo; Kyu-Sung Lee; Hui-Sung Moon; Jin Ho Oh; Min-Young Lee
      Abstract: Selective cell enrichment technologies can play an important role in both diagnostic and therapeutic areas. However, currently used cell sorting techniques have difficulties in rapidly isolating only the desired target cells from a large volume of body fluids. In this work, we developed a filtering system that can quickly separate and highly concentrate cells from a large volume of solution, depending on their size, using a silicon membrane filter. To overcome the problems caused by material limitations of the brittle silicon, we designed a novel membrane filter with various pore designs. From these designs, the most optimal design with high pore density, while preventing crack formation was derived by applying fluid dynamics simulation and near-field stress analysis. The membrane filter system using the selected design was fabricated, and cell filtration performance was evaluated. The LNCaP cell in horse blood was recovered up to 86% and enriched to 187-fold compared to initial cell populations after filtration at a flow rate of 5 mL/min. The results demonstrate that the filter presented in this study can rapidly and selectively isolate target cells from a large volume of body fluid sample.
      PubDate: 2018-10-05
      DOI: 10.1007/s10544-018-0334-0
      Issue No: Vol. 20, No. 4 (2018)
       
  • Direct application of mechanical stimulation to cell adhesion sites using
           a novel magnetic-driven micropillar substrate
    • Authors: Kazuaki Nagayama; Takuya Inoue; Yasuhiro Hamada; Shukei Sugita; Takeo Matsumoto
      Abstract: Cells change the traction forces generated at their adhesion sites, and these forces play essential roles in regulating various cellular functions. Here, we developed a novel magnetic-driven micropillar array PDMS substrate that can be used for the mechanical stimulation to cellular adhesion sites and for the measurement of associated cellular traction forces. The diameter, length, and center-to-center spacing of the micropillars were 3, 9, and 9 μm, respectively. Sufficient quantities of iron particles were successfully embedded into the micropillars, enabling the pillars to bend in response to an external magnetic field. We established two methods to apply magnetic fields to the micropillars (Suresh 2007). Applying a uniform magnetic field of 0.3 T bent all of the pillars by ~4 μm (Satcher et al. 1997). Creating a magnetic field gradient in the vicinity of the substrate generated a well-defined local force on the pillars. Deflection of the micropillars allowed transfer of external forces to the actin cytoskeleton through adhesion sites formed on the pillar top. Using the magnetic field gradient method, we measured the traction force changes in cultured vascular smooth muscle cells (SMCs) after local cyclic stretch stimulation at one edge of the cells. We found that the responses of SMCs were quite different from cell to cell, and elongated cells with larger pre-tension exhibited significant retraction following stretch stimulation. Our magnetic-driven micropillar substrate should be useful in investigating cellular mechanotransduction mechanisms.
      PubDate: 2018-09-26
      DOI: 10.1007/s10544-018-0328-y
      Issue No: Vol. 20, No. 4 (2018)
       
  • Correction to: Microtissue size and cell-cell communication modulate cell
           migration in arrayed 3D collagen gels
    • Authors: Jacob A. M. Nuhn; Shenmin Gong; Xiangchen Che; Long Que; Ian C. Schneider
      Abstract: The original version of this article unfortunately contained a mistake. One line indicating statistical significance was improperly placed in Fig. 5.
      PubDate: 2018-09-18
      DOI: 10.1007/s10544-018-0330-4
      Issue No: Vol. 20, No. 4 (2018)
       
  • A simple pyramid-shaped microchamber towards highly efficient isolation of
           circulating tumor cells from breast cancer patients
    • Authors: Feng Liu; Shuibing Wang; Zhigang Lu; Yumei Sun; Chaogang Yang; Qiongwei Zhou; Shaoli Hong; Shengxiang Wang; Bin Xiong; Kan Liu; Nangang Zhang
      Abstract: Isolation and detection of circulating tumor cells (CTCs) has showed a great clinical impact for tumor diagnosis and treatment monitoring. Despite significant progresses of the existing technologies, feasible and cost-effective CTC isolation techniques are more desirable. In this study, a novel method was developed for highly efficient isolation of CTCs from breast cancer patients based on biophysical properties using a pyramid-shaped microchamber. Through optimization tests, the outlet height of 6 μm and the flow rate of 200 μL/min were chosen as the optimal conditions. The capture efficiencies of more than 85% were achieved for cancer cell lines (SKBR3, BGC823, PC3, and H1975) spiked in DMEM and healthy blood samples without clogging issue. In clinic assay, the platform identified CTCs in 13 of 20 breast cancer patients (65%) with an average of 4.25 ± 4.96 CTCs/2 mL, whereas only one cell was recognized as CTC in 1 of 15 healthy blood samples. The statistical analyses results demonstrated that both CTC positive rate and CTC counts were positive correlated with TNM stage (p < 0.001; p = 0.02, respectively). This microfluidic platform successfully demonstrated the clinical feasibility of CTC isolation and would hold great potential of clinical application in predicting and monitoring the prognosis of cancer patients.
      PubDate: 2018-09-17
      DOI: 10.1007/s10544-018-0326-0
      Issue No: Vol. 20, No. 4 (2018)
       
  • Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug
           screening
    • Authors: Qian Wu; Xinwei Wei; Yuxiang Pan; Yingchang Zou; Ning Hu; Ping Wang
      Abstract: To perform the drug screening, planar cultured cell models are commonly applied to test efficacy and toxicity of drugs. However, planar cultured cells are different from the human 3D organs or tissues in vivo. To simulate the human 3D organs or tissues, 3D spheroids are developed by culturing a small aggregate of cells which reside around the extracellular matrix and interact with other cells in liquid media. Here we apply lung carcinoma cell lines to engineer the 3D lung cancer spheroid-based biosensor using the interdigitated electrodes for drug efficacy evaluation. The results show 3D spheroid had higher drug resistance than the planar cell model. The anticarcinogen inhibition on different 3D lung cancer spheroid models (A549, H1299, H460) can be quantitatively evaluated by electric impedance sensing. Besides, we delivered combination of anticarcinogens treatments to A549 spheroids which is commonly used in clinic treatment, and found the synergistic effect of cisplatin plus etoposide had higher drug response. To simultaneously test the drug efficacy and side effects on multi-organ model with circulatory system, a connected multiwell interdigitated electrode arraywas applied to culture different organoid spheroids. Overall, the organization of 3D cancer spheroids-based biosensor, which has higher predictive value for drug discovery and personalized medicine screening, is expected to be well applied in the area of pharmacy and clinical medicine.
      PubDate: 2018-09-15
      DOI: 10.1007/s10544-018-0329-x
      Issue No: Vol. 20, No. 4 (2018)
       
  • Elucidating the mechanism governing cell rotation under DEP using the
           volumetric polarization and integration method
    • Authors: Yu Zhao; Jozef Brcka; Jacques Faguet; Guigen Zhang
      Abstract: Cell rotation can be achieved by utilizing rotating electric fields through which torques are generated due to phase difference between the dipole moment of cells and the external electric field. While reports of cell rotation under non-rotating electrical fields, such as dielectrophoresis (DEP), are abound, the underlying mechanism is not fully understood. Because of this, contradicting arguments remain regarding if a single cell can rotate under conventional DEP. What’s more, the current prevailing DEP theory is not adequate for identifying the cause for such disagreements. In this work we applied our recently developed Volumetric Polarization and Integration (VPI) method to investigate the possible causes for cell rotation under conventional DEP. Three-dimensional (3D) computer models dealing with a cell in a DEP environment were developed to quantify the force and torque imparted on the cell by the external DEP field using COMSOL Multiphysics software. Modeling results suggest that eccentric inclusions with low conductivity inside the cell will generate torques (either in clockwise or counter-clockwise directions) sufficient to cause cell rotation under DEP. For validation of modeling predictions, experiments with rat adipose stem cells containing large lipid droplets were conducted. Good agreement between our modeling and experimental results suggests that the VPI method is powerful in elucidating the underlying mechanisms governing the complicated DEP phenomena.
      PubDate: 2018-09-08
      DOI: 10.1007/s10544-018-0327-z
      Issue No: Vol. 20, No. 3 (2018)
       
  • Engineered 3D tumour model for study of glioblastoma aggressiveness and
           drug evaluation on a detachably assembled microfluidic device
    • Authors: Jingyun Ma; Na Li; Yachen Wang; Liang Wang; Wenjuan Wei; Liming Shen; Yu Sun; Yang Jiao; Weigong Chen; Jing Liu
      Abstract: 3D models of tumours have emerged as an advanced technique in pharmacology and tumour cell biology, in particular for studying malignant tumours such as glioblastoma multiforme (GBM). Herein, we developed a 3D GBM model on a detachably assembled microfluidic device, which could be used to study GBM aggressiveness and for anti-GBM drug testing. Fundamental characteristics of the GBM microenvironment in terms of 3D tissue organisation, extracellular matrices and blood flow were reproduced in vitro by serial manipulations in the integrated microfluidic device, including GBM spheroid self-assembly, embedding in a collagen matrix, and continuous perfusion culture, respectively. We could realize multiple spheroids parallel manipulation, whilst, compartmentalized culture, in a highly flexible manner. This method facilitated investigations into the viability, proliferation, invasiveness and phenotype transition of GBM in a 3D microenvironment and under continuous stimulation by drugs. Anti-invasion effect of resveratrol, a naturally isolated polyphenol, was innovatively evaluated using this in vitro 3D GBM model. Temozolomide and the combination of resveratrol and temozolomide were also evaluated as control. This scalable model enables research into GBM in a more physiologically relevant microenvironment, which renders it promising for use in translational or personalised medicine to examine the impact of, or identify combinations of, therapeutic agents.
      PubDate: 2018-09-06
      DOI: 10.1007/s10544-018-0322-4
      Issue No: Vol. 20, No. 3 (2018)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.90.185.120
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-