for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2270 journals)
    - CHEMICAL ENGINEERING (191 journals)
    - CIVIL ENGINEERING (183 journals)
    - ELECTRICAL ENGINEERING (99 journals)
    - ENGINEERING (1199 journals)
    - ENGINEERING MECHANICS AND MATERIALS (390 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (64 journals)
    - MECHANICAL ENGINEERING (89 journals)

ENGINEERING (1199 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Full-text available via subscription   (Followers: 5)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 215)
Acta Geotechnica     Hybrid Journal   (Followers: 6)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 2)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 4)
Advanced Science     Open Access   (Followers: 4)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Artificial Neural Systems     Open Access   (Followers: 4)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 19)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 23)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 12)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 35)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 28)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 8)
Applied Clay Science     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 3)
Applied Nanoscience     Open Access   (Followers: 7)
Applied Network Science     Open Access  
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 3)
Applied Sciences     Open Access   (Followers: 2)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 7)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 2)
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 7)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 7)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
Batteries     Open Access   (Followers: 3)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 23)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 9)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 3)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 1)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription  
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Full-text available via subscription   (Followers: 13)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 40)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 7)
Case Studies in Thermal Engineering     Open Access   (Followers: 3)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 5)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 21)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 4)
Coatings     Open Access   (Followers: 2)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 23)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Composite Structures     Hybrid Journal   (Followers: 252)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 176)
Composites Part B : Engineering     Hybrid Journal   (Followers: 223)
Composites Science and Technology     Hybrid Journal   (Followers: 165)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 25)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 8)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 25)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 6)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 8)
Control Engineering Practice     Hybrid Journal   (Followers: 41)
Control Theory and Informatics     Open Access   (Followers: 7)
Corrosion Science     Hybrid Journal   (Followers: 24)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  

        1 2 3 4 5 6 | Last

Journal Cover Biomedical Microdevices
  [SJR: 0.805]   [H-I: 66]   [8 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-8781 - ISSN (Online) 1387-2176
   Published by Springer-Verlag Homepage  [2329 journals]
  • Lipid nanoparticles for administration of poorly water soluble neuroactive
           drugs
    • Authors: Elisabetta Esposito; Markus Drechsler; Paolo Mariani; Federica Carducci; Michela Servadio; Francesca Melancia; Patrizia Ratano; Patrizia Campolongo; Viviana Trezza; Rita Cortesi; Claudio Nastruzzi
      Abstract: This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.
      PubDate: 2017-05-19
      DOI: 10.1007/s10544-017-0188-x
      Issue No: Vol. 19, No. 3 (2017)
       
  • A generic label-free microfluidic microobject sorter using a magnetic
           elastic diverter
    • Authors: Jiachen Zhang; Onaizah Onaizah; Amir Sadri; Eric Diller
      Abstract: Cell sorters play important roles in biological and medical applications, such as cellular behavior study and disease diagnosis and therapy. This work presents a label-free microfluidic sorter that has a downstream-pointing magnetic elastic diverter. Different with most existing magnetic sorters, the proposed device does not require the target microobjects to be intrinsically magnetic or coated with magnetic particles, giving users more flexibility in sorting criteria. The diverter is wirelessly deformed by an applied magnetic field, and its deformation induces a fluid vortex that sorts incoming microobjects, e.g., cells, to the collection outlet. The diverter does not touch samples in this process, reducing the sample contamination and damage risks. This sorter uses a magnetic field generated by off-chip electromagnetic coils that are centimeters away from the device. With simple structure and no on-chip circuits or coils, this device can be integrated with other lab-on-a-chip instruments in a sealed chip, ameliorating the safety concerns in handling hazardous samples. The parallel and independent control of two such diverters on a single chip were demonstrated, showing the potential of doubling the overall throughput or forming a two-stage cascaded sorter. The sorter was modeled based on the Euler-Bernoulli beam theory and its reliability was demonstrated by achieving a raw success rate of 96.68% in sorting 1506 registered microbeads. With a simple structure, the sorter is easy and cheap to fabricate. The advantages of the proposed sorter make it a promising multi-purpose sorting tool in both academic and industrial applications.
      PubDate: 2017-05-09
      DOI: 10.1007/s10544-017-0183-2
      Issue No: Vol. 19, No. 2 (2017)
       
  • Remote magnetic switch off microgate for nanofluidic drug delivery
           implants
    • Authors: Marco Farina; Andrea Ballerini; Gianluca Torchio; Giulia Rizzo; Danilo Demarchi; Usha Thekkedath; Alessandro Grattoni
      Abstract: In numerous pathologies, implantable drug delivery devices provide advantages over conventional oral or parenteral approaches. Based on the site of implantation and release characteristics, implants can afford either systemic delivery or local administration, whereby the drug is delivered at or near the site of intended action. Unfortunately, current implantable drug delivery systems provide limited options for intervention in the case of an adverse reaction to the drug or the need for dosage adjustment. In the event that drug delivery must be terminated, an urgent surgical retrieval may be the only reliable option. This could be a time sensitive and costly effort, requiring access to trained professionals and emergency medical facilities. To address such limitations, here we demonstrate, in vitro and ex vivo, a novel microsystem for the rapid and effective switch off of drug delivery from an implantable nanofluidic system, by applying a safe external electromagnetic field in the FDA approved dose range. This study represents a proof of concept for a technology with potential for broad applicability to reservoir-based delivery implants for both complete interruption or remote titration of drug administration.
      PubDate: 2017-05-08
      DOI: 10.1007/s10544-017-0180-5
      Issue No: Vol. 19, No. 2 (2017)
       
  • Monoolein aqueous dispersions as a delivery system for quercetin
    • Authors: Rita Cortesi; Enrica Cappellozza; Markus Drechsler; Catia Contado; Anna Baldisserotto; Paolo Mariani; Federica Carducci; Alessandra Pecorelli; Elisabetta Esposito; Giuseppe Valacchi
      Abstract: This study describes the preparation, characterization and in vitro release of monoolein aqueous dispersions (MAD) encapsulating quercetin (QT). As emulsifier, sodium cholate was employed at two different concentrations, namely 0.15% and 0.25% with respect to the total weight of the formulation. Cryogenic Transmission electron microscopy and X-ray analysis indicated that MAD015 are a mixture of vesicles and cubic structures, whilst MAD025 are mainly characterized by unilamellar vesicular structures. Photon correlation spectroscopy (PCS) and Sedimentation Field Flow Fractionation (SdFFF) showed a MAD size higher than 300 nm that over 100 days from analysis reduces up to 200 nm. In vitro Franz cell experiments showed that the two systems had a similar behaviour in the release of QT. Experiments on antioxidant activity of MAD containing QT demonstrated that their activity parallel with the content of encapsulated QT within the MAD formulations produced. Taken together these results allow us to conclude that MAD can be potentially proposed for the delivery of QT.
      PubDate: 2017-05-08
      DOI: 10.1007/s10544-017-0185-0
      Issue No: Vol. 19, No. 2 (2017)
       
  • A microfluidic diode for sorting and immobilization of Caenorhabditis
           elegans
    • Authors: Lijie Yang; Tao Hong; Yin Zhang; Jose Guillermo Sanchez Arriola; Brian L. Nelms; Richard Mu; Deyu Li
      Abstract: Caenorhabditis elegans (C. elegans) is a powerful model organism extensively used in studies of human aging and diseases. Despite the numerous advantages of C. elegans as a model system, two biological characteristics may introduce complexity and variability to most studies: 1. it exhibits different biological features, composition and behaviors at different developmental stages; 2. it has very high mobility. Therefore, synchronization and immobilization of worm populations are often required. Conventionally, these processes are implemented through manual and chemical methods, which can be laborious, time-consuming and of low-throughput. Here we demonstrate a microfluidic design capable of simultaneously sorting worms by size at a throughput of 97±4 worms per minute, and allowing for worm collection or immobilization for further investigations. The key component, a microfluidic diode structure, comprises a curved head and a straight tail, which facilitates worms to enter from the curved end but prevents them from translocating from the straight side. This design remarkably enhances the efficiency and accuracy of worm sorting at relatively low flow rates, and hence provides a practical approach to sort worms even with the presence of egg clusters and debris. In addition, we show that well-sorted worms could be immobilized, kept alive and identically orientated, which could facilitate many C. elegans-based studies.
      PubDate: 2017-05-02
      DOI: 10.1007/s10544-017-0175-2
      Issue No: Vol. 19, No. 2 (2017)
       
  • Fabrication of cyclo olefin polymer microfluidic devices for trapping and
           culturing of yeast cells
    • Authors: Sevde Puza; Elif Gencturk; Irem E. Odabasi; Emre Iseri; Senol Mutlu; Kutlu O. Ulgen
      Abstract: A microfluidic platform is designed and fabricated to investigate the role of uncharacterized YOR060C (Sld7) protein in aging in yeast cells for the first time. Saccharomyces cerevisiae yeast cells are trapped in the series of C-shaped regions (0.5 nL) of COP (cyclo olefin polymer), PMMA (poly methylmethacrylate), or PS (polystyrene) microbioreactors. The devices are fabricated using hot embossing and thermo-compression bonding methods. Photolithography and electrochemical etching are used to form the steel mold needed for hot embossing. The cell cycle processes are investigated by monitoring green fluorescent protein (GFP) tagged Sld7 expressions under normal as well as calorie restricted conditions. The cells are loaded at 1 μL/min flowrate and trapped successfully within each chamber. The medium is continuously fed at 0.1 μL/min throughout the experiments. Fluorescent signals of the low abundant Sld7 proteins could be distinguished only on COP devices. The background fluorescence of COP is found 1.22 and 7.24 times lower than that of PMMA, and PS, respectively. Hence, experiments are continued with COP, and lasted for more than 40 h without any contamination. The doubling time of the yeast cells are found as 72 min and 150 min, and the growth rates as 9.63 × 10−3 min−1 and 4.62 × 10−3 min−1, in 2% glucose containing YPD and YNB medium, respectively. The product concentration (Sld7p:GFP) increased in accordance with cell growth. The dual role of Sld7 protein in both cell cycle and chronological aging needs to be further investigated following the preliminary experimental results.
      PubDate: 2017-05-02
      DOI: 10.1007/s10544-017-0182-3
      Issue No: Vol. 19, No. 2 (2017)
       
  • Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless
           sorting of high-concentration paramagnetic microparticles
    • Authors: Vikash Kumar; Pouya Rezai
      Abstract: Sorting cells, microorganisms and particles from a solution is of paramount importance in many biological applications. An ideal sorting device should work at high throughput, involve simple design, avoid energy consumption, operate without a diluting sheath flow and perform separation with high purity. However, currently available sorting methods such as pinched flow fractionation, hydrodynamic filtration, magnetophoresis and deterministic lateral displacement meet only a few of the above-mentioned characteristics. In this paper, we report a hybrid technique combining magnetic focusing of particles in a thin microchannel and their hydrodynamic fractionation at a downstream expansion region, to devise a sheathless and high-throughput Magneto-Hydrodynamic Fractionation (MHF) method. First, sheathless magnetic focusing of 11 μm microparticles against the wall of the thin microchannel was investigated over a wide range of flow rates (0.5–5 mL h−1). Then, a mixture of 5 μm and 11 μm paramagnetic particles was injected into the device at a flow rate of 5 mL h−1 to demonstrate their sorting. Both of these magnetic particles were aligned along the wall of the channel and hence focused in the device, however their centers were lying on different streamlines due to their different sizes. Therefore, they were separated into distinct streamlines upon entering into the expansion region. Using this device, we achieved a high throughput sorting of more than 104 particles per second with an approximate on-chip fractionation purity of 98%. This technique has a great potential for separation of more than two magnetic particles for application in immunomagnetic affinity-based sorting of multiple biological substances.
      PubDate: 2017-05-02
      DOI: 10.1007/s10544-017-0178-z
      Issue No: Vol. 19, No. 2 (2017)
       
  • Microfluidic gut-on-a-chip with three-dimensional villi structure
    • Authors: Kyu-Young Shim; Dongwook Lee; Jeonghun Han; Nam-Trung Nguyen; Sungsu Park; Jong Hwan Sung
      Abstract: Current in vitro gut models lack physiological relevance, and various approaches have been taken to improve current cell culture models. For example, mimicking the three-dimensional (3D) tissue structure or fluidic environment has been shown to improve the physiological function of gut cells. Here, we incorporated a collagen scaffold that mimics the human intestinal villi into a microfluidic device, thus providing cells with both 3D tissue structure and fluidic shear. We hypothesized that the combined effect of 3D structure and fluidic shear may provide cells with adequate stimulus to induce further differentiation and improve physiological relevance. The physiological function of our ‘3D gut chip’ was assessed by measuring the absorptive permeability of the gut epithelium and activity of representative enzymes, as well as morphological evaluation. Our results suggest that the combination of fluidic stimulus and 3D structure induces further improvement in gut functions. Our work provides insight into the effect of different tissue environment on gut cells.
      PubDate: 2017-04-27
      DOI: 10.1007/s10544-017-0179-y
      Issue No: Vol. 19, No. 2 (2017)
       
  • An integrated microsystem with dielectrophoresis enrichment and impedance
           detection for detection of Escherichia coli
    • Authors: Renjie Wang; Yi Xu; Haitao Liu; Jinlan Peng; Joseph Irudayaraj; Feiyun Cui
      Abstract: An integrated microsystem device with matched interdigitated microelectrode chip was fabricated for enrichment and detection of Escherichia coli O157:H7. The microsystem has integrated with positive dielectrophoresis (pDEP) enrichment and in situ impedance detection, whose total volume is only 3.0 × 10−3 m3, and could provide impedance testing voltages of 0 ~ 10 V, detection frequencies of 1 KHz ~ 1 MHz, DEP excitation signals with amplitude of 0 ~ 10 Vpp and frequencies of 1KHz ~ 1 MHz, which fully meets the demands of pDEP enrichment and impedance detection for bacteria. The microfluidic chip with interdigitated microelectrodes was manufactured by microfabrication methods. The interdigital microelectrode array has sufficient contact area with a bacterial suspension to improve enrichment efficiency and detection sensitivity. Bacteria in the interdigital microelectrode area of the microfluidic chip were firstly captured and enriched by pDEP. Then, in situ impedance detection of the enriched bacteria was realized by switching test conditions. Using the self-assembly microsystem, a novel quantitative detection method was established and demonstrated to detect Escherichia coli O157:H7. Experimental results showed that the detection limits of Escherichia coli O157:H7 was 5 × 104 cfu mL−1, and testing time was only 6 min under the optimized detection voltage of 100 mV and frequency of 500 KHz. The method was successfully used to detect Escherichia coli O157:H7 in synthetic chicken synthetic samples.
      PubDate: 2017-04-21
      DOI: 10.1007/s10544-017-0167-2
      Issue No: Vol. 19, No. 2 (2017)
       
  • A portable battery powered microfluidic impedance cytometer with
           smartphone readout: towards personal health monitoring
    • Authors: Niloy Talukder; Abbas Furniturewalla; Tuan Le; Matthew Chan; Shreyas Hirday; Xinnan Cao; Pengfei Xie; Zhongtian Lin; Azam Gholizadeh; Steve Orbine; Mehdi Javanmard
      Abstract: We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 μm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 μm diameter particles in a 300 μm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm2. The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.
      PubDate: 2017-04-21
      DOI: 10.1007/s10544-017-0161-8
      Issue No: Vol. 19, No. 2 (2017)
       
  • Effectiveness of nanoencapsulated methotrexate against osteosarcoma cells:
           in vitro cytotoxicity under dynamic conditions
    • Authors: O. Mitxelena-Iribarren; C. L. Hisey; M. Errazquin-Irigoyen; Y. González-Fernández; E. Imbuluzqueta; M. Mujika; M. J. Blanco-Prieto; S. Arana
      Abstract: Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. Current treatments including preoperative chemotherapy, surgery and postoperative chemotherapy produce several side effects with limited effectiveness. The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment. However, in vitro validation of these vehicles is limited due to fluid stagnation in current techniques, in which nanoparticles sediment onto the bottom of the wells killing the cells by asphyxiation. In the current series of experiments, results obtained with methotrexate-lipid nanoparticles under dynamic assay conditions are presented as a promising alternative to current free drug based therapies. Effects on the viability of the U-2 OS osteosarcoma cell line of recirculation of cell media, free methotrexate and blank and methotrexate containing lipid nanoparticles in a 11 μM concentration were successfully assessed. In addition, several designs for the microfluidic platform used were simulated using COMSOL-Multiphysics, optimized devices were fabricated using soft-lithography and simulated parameters were experimentally validated. Nanoparticles did not sediment to the bottom of the platform, demonstrating the effectiveness of the proposed system. Moreover, encapsulated methotrexate was the most effective treatment, as after 72 h the cell population was reduced nearly 40% while under free methotrexate circulation the cell population doubled. Overall, these results indicate that methotrexate-lipid nanoparticles are a promising targeted therapy for osteosarcoma treatment.
      PubDate: 2017-04-21
      DOI: 10.1007/s10544-017-0177-0
      Issue No: Vol. 19, No. 2 (2017)
       
  • Label-free okadaic acid detection using growth of gold nanoparticles in
           sensor gaps as a conductive tag
    • Authors: Yuxiang Pan; Zijian Wan; Longjie Zhong; Xueqin Li; Qi Wu; Jun Wang; Ping Wang
      Abstract: Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H2O2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.
      PubDate: 2017-04-20
      DOI: 10.1007/s10544-017-0162-7
      Issue No: Vol. 19, No. 2 (2017)
       
  • Energy harvesting from cerebrospinal fluid pressure fluctuations for
           self-powered neural implants
    • Authors: Levent Beker; Arnau Benet; Ali Tayebi Meybodi; Ben Eovino; Albert P. Pisano; Liwei Lin
      Abstract: In this paper, a novel method to generate electrical energy by converting available mechanical energy from pressure fluctuations of the cerebrospinal fluid within lateral ventricles of the brain is presented. The generated electrical power can be supplied to the neural implants and either eliminate their battery need or extend the battery lifespan. A diaphragm type harvester comprised of piezoelectric material is utilized to convert the pressure fluctuations to electrical energy. The pressure fluctuations cause the diaphragm to bend, and the strained piezoelectric materials generate electricity. In the framework of this study, an energy harvesting structure having a diameter of 2.5 mm was designed and fabricated using microfabrication techniques. A 1:1 model of lateral ventricles was 3D–printed from raw MRI images to characterize the harvester. Experimental results show that a maximum power of 0.62 nW can be generated from the harvester under similar physical conditions in lateral ventricles which corresponds to energy density of 12.6 nW/cm2. Considering the available area within the lateral ventricles and the size of harvesters that can be built using microfabrication techniques it is possible to amplify to power up to 26 nW. As such, the idea of generating electrical energy by making use of pressure fluctuations within brain is demonstrated in this work via the 3D–printed model system.
      PubDate: 2017-04-19
      DOI: 10.1007/s10544-017-0176-1
      Issue No: Vol. 19, No. 2 (2017)
       
  • Liquid marbles as bioreactors for the study of three-dimensional cell
           interactions
    • Authors: Raja K. Vadivelu; Harshad Kamble; Ahmed Munaz; Nam-Trung Nguyen
      Abstract: Liquid marble as a bioreactor platform for cell-based studies has received significant attention, especially for developing 3D cell-based assays. This platform is particularly suitable for 3D in-vitro modeling of cell-cell interactions. For the first time, we demonstrated the interaction of olfactory ensheathing cells (OECs) with nerve debris and meningeal fibroblast using liquid marbles. As the transplantation of OECs can be used for repairing nerve injury, degenerating cell debris within the transplantation site can adversely affect the survival of transplanted OECs. In this paper, we used liquid marbles to mimic the hostile 3D environment to analyze the functional behavior of the cells and to form the basis for cell-based therapy. We show that OECs interact with debris and enhanced cellular aggregation to form a larger 3D spheroidal tissue. However, these spheroids indicated limitation in biological functions such as the inability of cells within the spheroids to migrate out and adherence to neighboring tissue by fusion. The coalescence of two liquid marbles allows for analyzing the interaction between two distinct cell types and their respective environment. We created a microenvironment consisting of 3D fibroblast spheroids and nerve debris and let it interact with OECs. We found that OECs initiate adherence with nerve debris in this 3D environment. The results suggest that liquid marbles are ideal for developing bioassays that could substantially contribute to therapeutic applications. Especially, insights for improving the survival and adherence of transplanted cells.
      PubDate: 2017-04-18
      DOI: 10.1007/s10544-017-0171-6
      Issue No: Vol. 19, No. 2 (2017)
       
  • A multistage-dialysis microdevice for extraction of cryoprotectants
    • Authors: Lili Zou; Shibo Li; Yufeng Kang; Juanjuan Liu; Liqun He; Sijie Sun; Dayong Gao; Bensheng Qiu; Weiping Ding
      Abstract: In this study, we present a multistage-dialysis microdevice (MDM) for extraction of cryoprotectants (CPAs) from a CPA-laden cell suspension. We confirmed the functions of the key designs of the MDM using a fluorescence solution, we assessed the performance of the MDM by using the MDM to unload glycerin from glycerin-loaded swine erythrocytes, and we investigated the effects of the cell suspension flow rate, glycerin concentration, cell density, and membrane pore size on the clearance efficiency of glycerin (CG), the survival rate of cells (SC), and the recovery rate of cells (RC). Under the designed conditions, CG, SC, and RC reached ~60%, ~90%, and ~70%, respectively. In addition, a high flow rate causes high SC and RC but a low CG. For a low glycerin concentration, CG, SC, and RC are all high. If a low cell density or a large pore membrane is used, CG is high, whereas both SC and RC are low. This work provides insight into the development of microfluidic devices for the inline extraction of cryoprotectants from a small volume of cryopreserved cells prior to the use of the cells in lab-on-a-chip applications.
      PubDate: 2017-04-18
      DOI: 10.1007/s10544-017-0174-3
      Issue No: Vol. 19, No. 2 (2017)
       
  • Impact of surface roughness on Dielectrophoretically assisted
           concentration of microorganisms over PCB based platforms
    • Authors: Geeta Bhatt; Rishi Kant; Keerti Mishra; Kuldeep Yadav; Deepak Singh; Ramanathan Gurunath; Shantanu Bhattacharya
      Abstract: This article presents a PCB based microfluidic platform for performing a dielectrophoretic capture of live microorganisms over inter-digitated electrodes buried under layers of different surface roughness values. Although dielectrophoresis has been extensively studied earlier over silicon and polymer surfaces with printed electrodes the issue of surface roughness particularly in case of buried electrodes has been seldom investigated. We have addressed this issue through a layer of spin coated PDMS (of various surface roughness) that is used to cover the printed electrodes over a printed circuit board. The roughness in the PDMS layer is generally defined by the roughness of the FR4 base which houses the printed electrodes as well as other structures. Possibilities arising out of COMSOL simulations have been well validated experimentally in this work.
      PubDate: 2017-04-17
      DOI: 10.1007/s10544-017-0172-5
      Issue No: Vol. 19, No. 2 (2017)
       
  • Irreversible electroporation for the treatment of rabbit VX2 breast cancer
    • Authors: Wenlong Zhang; Wei Chai; Jianying Zeng; Jibing Chen; Liqi Bi; Lizhi Niu
      Abstract: Irreversible electroporation (IRE) is considered predominantly as a non-thermal ablative technique that uses electrical fields to permeabilize cell membranes and lead to cell death. In this study, we evaluated the efficacy of IRE in the rabbit VX2 breast cancer model. Thirty-five female New Zealand white rabbits were inoculated against VX2 breast cancer cells. The rabbits were randomly divided into two groups: a control group of 15 rabbits and an IRE treatment group of 20 rabbits. Treatment and treatment outcome were evaluated by computerized tomography (CT) scan (plain or contrast enhanced), tumor growth curves and pathological examination including H&E, TUNEL, PCNA and CD31 staining. All rabbits in the IRE treatment group experienced successful IRE without obvious complications except for thoracic major muscle injury. A focused, complete and well-defined ablation zone where tumor cells have been thoroughly eradicated was detected by H&E staining, along with increasing TUNEL staining. The expression of PCNA and CD31 was down-regulated at the periphery of the ablation region. As of the last follow-up, 10 rabbits (67%) in IRE group demonstrated disease is under control; 2 rabbits (13%) are in stable condition; 3 rabbits (20%) suffered from disease progression; the remaining 5 rabbits were sacrificed for pathological examination halfway through the study. Overall, the efficacy of IRE was demonstrated by the creation of a complete ablation region, with increased apoptosis in the ablation zone and decreased proliferation and microvessel density of tumor tissue at the periphery. IRE is a promising local treatment for breast cancer.
      PubDate: 2017-04-17
      DOI: 10.1007/s10544-017-0173-4
      Issue No: Vol. 19, No. 2 (2017)
       
  • Droplet-based non-faradaic impedance sensors for assessment of
           susceptibility of Escherichia coli to ampicillin in 60 min
    • Authors: Aida Ebrahimi; Muhammad A. Alam
      Abstract: Direct antibiotic susceptibility tests (AST) are essential for rapid detection of bacterial infection and administration of appropriate antibiotics. Conventional AST systems are usually slow as they rely on cell growth for an indirect assessment of antibiotics’ effectiveness. Therefore, a faster method is desirable, especially for emergency cases. In this work, we studied the performance of label-free, droplet-based impedance sensors for rapid characterization of the effects of ampicillin (Amp) on Escherichia coli. Ampicillin damages cell wall integrity and makes cells permeable (leaky). The leakage results in significant increase of the electrical conductance measured directly by the microfabricated sensing unit. We studied the conductance signal as a function of both antibiotic treatment time and dosage and demonstrated susceptibility testing within 60 min. These findings demonstrate the potential of droplet-based electrical chips for the realization of electrical antibiotic susceptibility testing (e-AST) for early-stage diagnostic/treatment, and consequently, preventing antibiotic misuse/overuse.
      PubDate: 2017-04-12
      DOI: 10.1007/s10544-017-0165-4
      Issue No: Vol. 19, No. 2 (2017)
       
  • Parylene scaffold for cartilage lesion
    • Authors: Carlos Eduardo da Silveira Franciozi; Carleton Thomas Vangsness; James Eugene Tibone; Juan Carlos Martinez; Damien Rodger; Tzu-Chieh Chou; Yu-Chong Tai; Rodrigo Brant; Ling Wu; Rene Jorge Abdalla; Bo Han; Denis Evseenko; Mark Humayun
      Abstract: Evaluate parylene scaffold feasibility in cartilage lesion treatment, introducing a novel paradigm combining a reparative and superficial reconstructive procedure. Fifteen rabbits were used. All animals had both knees operated and the same osteochondral lesion model was created bilaterally. The parylene scaffold was implanted in the right knee, and the left knee of the same animal was used as control. The animals were euthanized at different time points after surgery: four animals at three weeks, three animals at six weeks, four animals at nine weeks, and four animals at 12 weeks. Specimens were analyzed by International Cartilage Repair Society (ICRS) macroscopic evaluation, modified Pineda histologic evaluation of cartilage repair, and collagen II immunostaining. Parylene knees were compared to its matched contra-lateral control knees of the same animal using the Wilcoxon matched-pairs signed rank. ICRS mean ± SD values for parylene versus control, three, six, nine and twelve weeks, respectively: 7.83 ± 1.85 versus 4.42 ± 1.08, p = 0.0005; 10.17 ± 1.17 versus 6.83 ± 1.17, p = 0.03; 10.89 ± 0.60 versus 7.33 ± 2.18, p = 0.007; 10.67 ± 0.78 versus 7.83 ± 3.40, p = 0.03. Modified Pineda mean ± SD values for parylene versus control, six, nine and twelve weeks, respectively: 3.37 ± 0.87 versus 6.94 ± 1.7, p < 0.0001; 5.73 ± 2.05 versus 6.41 ± 1.7, p = 0.007; 3.06 ± 1.61 versus 6.52 ± 1.51, p < 0.0001. No inflammation was seen. Parylene implanted knees demonstrated higher collagen II expression via immunostaining in comparison to the control knees. Parylene scaffolds are a feasible option for cartilage lesion treatment and the combination of a reparative to a superficial reconstructive procedure using parylene scaffolds led to better results than the reparative procedure alone.
      PubDate: 2017-04-08
      DOI: 10.1007/s10544-017-0170-7
      Issue No: Vol. 19, No. 2 (2017)
       
  • Density-gradient-assisted centrifugal microfluidics: an approach to
           continuous-mode particle separation
    • Authors: Yoshiaki Ukita; Takayuki Oguro; Yuzuru Takamura
      Abstract: Centrifugal microfluidics has been recognized as a promising pumping method in microfluidics because of its simplicity, easiness of automation, and parallel processing. However, the patterning of stripe flow in centrifugal microfluidics is challenging because a fluid is significantly affected by the Coriolis force, which produces an intrinsic secondary flow. This paper reports a technical and design strategy for centrifugal microfluidics called “density-gradient-assisted centrifugal microfluidics.” The flow behavior is observed with the presence of a density gradient and without a density gradient in two concentrically traveling phase flows. As a result, clear stripe flow pattern is observed with a density difference of 0.05 g/cm3 between water and a percoll solution at a flow rate of 11.8 μl/s (7 ml/10 min) and spinning speed of 3000 rpm. In contrast, without a density gradient, it is necessary to reduce the flow rate and spinning speed to 0.1 μl/s and 1000 rpm, respectively. This paper also presents the use of a density gradient to assist in focusing resin (polystyrene) particles on the boundary of a stripe flow pattern that consists of water and percoll with different densities. Moreover, the density-based separation and sorting of particles in a mixed particle suspension is demonstrated. Polystyrene is selectively focused on the boundary, but silica particles are separated from the focused trajectory due to a difference in density. The separated particles are continuously sorted into different reservoirs with polystyrene and silica separation efficiencies of 96.5% and 98.5%, respectively. The pumping, stripe flow pattern formation, particle concentration, and sorting are simultaneously realized by applying a density gradient and centrifugal force. Therefore, this principle can realize a very simple technique for label-free particle separation by just spinning a disk device and can be applied in other applications by the use of the density-gradient assistance.
      PubDate: 2017-04-04
      DOI: 10.1007/s10544-017-0158-3
      Issue No: Vol. 19, No. 2 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 23.20.157.174
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016