for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2312 journals)
    - CHEMICAL ENGINEERING (196 journals)
    - CIVIL ENGINEERING (192 journals)
    - ELECTRICAL ENGINEERING (104 journals)
    - ENGINEERING (1213 journals)
    - ENGINEERING MECHANICS AND MATERIALS (389 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (70 journals)
    - MECHANICAL ENGINEERING (93 journals)

ENGINEERING (1213 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Hybrid Journal   (Followers: 7)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 258)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 2)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 6)
Advanced Science     Open Access   (Followers: 5)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 9)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 7)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 18)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 6)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 27)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 11)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 22)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 27)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 10)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 30)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 12)
Advances in Polymer Science     Hybrid Journal   (Followers: 41)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 40)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 2)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 6)
AIChE Journal     Hybrid Journal   (Followers: 32)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access   (Followers: 1)
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 17)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 8)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 18)
Applied Clay Science     Hybrid Journal   (Followers: 5)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 3)
Applied Sciences     Open Access   (Followers: 2)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 8)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 8)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 6)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 24)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 4)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 10)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 14)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 18)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 34)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 9)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 14)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 30)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 44)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 8)
Case Studies in Thermal Engineering     Open Access   (Followers: 4)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 7)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 24)
Clay Minerals     Full-text available via subscription   (Followers: 10)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 5)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 2)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 27)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Composite Structures     Hybrid Journal   (Followers: 272)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 200)
Composites Part B : Engineering     Hybrid Journal   (Followers: 256)
Composites Science and Technology     Hybrid Journal   (Followers: 194)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 15)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Science and Engineering     Open Access   (Followers: 19)
Computers & Geosciences     Hybrid Journal   (Followers: 30)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 7)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 5)
Computers and Geotechnics     Hybrid Journal   (Followers: 11)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 33)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 8)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 9)
Control Engineering Practice     Hybrid Journal   (Followers: 43)
Control Theory and Informatics     Open Access   (Followers: 8)
Corrosion Science     Hybrid Journal   (Followers: 25)
Corrosion Series     Full-text available via subscription   (Followers: 6)
CT&F Ciencia, Tecnologia y Futuro     Open Access   (Followers: 1)

        1 2 3 4 5 6 7 | Last

Journal Cover Biomedical Microdevices
  [SJR: 0.805]   [H-I: 66]   [9 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-8781 - ISSN (Online) 1387-2176
   Published by Springer-Verlag Homepage  [2355 journals]
  • Finite element analysis of hollow out-of-plane HfO 2 microneedles for
           transdermal drug delivery applications
    • Authors: Yong-hua Zhang; Stephen A. Campbell; Sreejith Karthikeyan
      Abstract: Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO2) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO2 is described, and the finite element analysis of the microneedles based on ANSYS software is also presented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3 × 3 HfO2 microneedle array applied on the skin well explains the “bed of nail” effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO2 microneedles used for TDD applications.
      PubDate: 2018-02-17
      DOI: 10.1007/s10544-018-0262-z
      Issue No: Vol. 20, No. 1 (2018)
       
  • Design and validation of an osteochondral bioreactor for the screening of
           treatments for osteoarthritis
    • Authors: Derek A. Nichols; Inderbir S. Sondh; Steven R. Litte; Paolo Zunino; Riccardo Gottardi
      Abstract: Bioreactors are systems that can be used to monitor the response of tissues and cells to candidate drugs. Building on the experience developed in the creation of an osteochondral bioreactor, we have designed a new 3D printed system, which allows optical access to the cells throughout testing for in line monitoring. Because of the use of 3D printing, the fluidics could be developed in the third dimension, thus maintaining the footprint of a single well of a typical 96 well plate. This new design was optimized to achieve the maximum fluid transport through the central chamber, which corresponds to optimal nutrient or drug exposure. This optimization was achieved by altering each dimension of the bioreactor fluid path. A physical model for optimized drug exposure was then created and tested.
      PubDate: 2018-02-14
      DOI: 10.1007/s10544-018-0264-x
      Issue No: Vol. 20, No. 1 (2018)
       
  • Correction to: Development of micro mechanical device having
           two-dimensional array of micro chambers for cell stretching
    • Authors: K. Minami; T. Hayashi; K. Sato; T. Nakahara
      Abstract: The original article has been corrected. Instances of the character "μ" should be replaced by the term "micro".
      PubDate: 2018-02-09
      DOI: 10.1007/s10544-018-0258-8
      Issue No: Vol. 20, No. 1 (2018)
       
  • Simulative design in macroscale for prospective application to
           micro-catheters
    • Authors: Cheol Woo Ha
      Abstract: In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.
      PubDate: 2018-02-09
      DOI: 10.1007/s10544-018-0259-7
      Issue No: Vol. 20, No. 1 (2018)
       
  • Rapid enumeration of CD4 + T lymphocytes using an integrated
           microfluidic system based on Chemiluminescence image detection at
           point-of-care testing
    • Authors: Xianbo Qiu; Shuo Yang; Di Wu; Dong Wang; Shan Qiao; Shengxiang Ge; Ningshao Xia; Duli Yu; Shizhi Qian
      Abstract: An integrated microfluidic system has been developed for rapid enumeration of CD4 + T lymphocytes at point-of-care (POC) settings. A concise microfluidic chip, which consists of three separate chambers, respectively, for reaction, detection and waste storage, is developed to automate CD4 detection. To simplify CD4 + T lymphocyte enumeration, a single polycarbonate bead immobilized with CD4 antibody is adopted by the microfluidic chip to capture the CD4 antigen in the lysed testing sample. Desired performance is achieved by actuating the single bead for efficient mixing, as well as transferring it between different reaction chambers to reduce non-specific reaction. A controllable external magnetic field is applied to drive the single bead with a built-in ferrous core for different purposes. Chemiluminescence reaction is implemented in an independent chamber to reduce non-specific binding of enzyme. A simple flow control strategy is adopted to conveniently release the waste reagent into the waste storage chamber by just opening the vent hole without actively pumping. A sensitive CCD camera is used to collect the reaction signal by taking picture from the single bead, and then the signal intensity is further analyzed for CD4 + T lymphocyte enumeration. Experimental results show that rapid, convenient, accurate and low-cost CD4 + T lymphocyte enumeration can be obtained with the developed microfluidic system at POC test.
      PubDate: 2018-02-08
      DOI: 10.1007/s10544-018-0263-y
      Issue No: Vol. 20, No. 1 (2018)
       
  • Portable low-power thermal cycler with dual thin-film Pt heaters for a
           polymeric PCR chip
    • Authors: Sangdo Jeong; Juhun Lim; Mi-Young Kim; JiHye Yeom; Hyunmin Cho; Hyunjung Lee; Yong-Beom Shin; Jong-Hyun Lee
      Abstract: Polymerase chain reaction (PCR) has been widely used for major definite diagnostic tool, but very limited its place used only indoor such as hospital or diagnosis lab. For the rapid on-site detection of pathogen in an outdoor environment, a low-power cordless polymerase chain reaction (PCR) thermal cycler is crucial module. At this point of view, we proposed a low-power PCR thermal cycler that could be operated in an outdoor anywhere. The disposable PCR chip was made of a polymeric (PI/PET) film to reduce the thermal mass. A dual arrangement of the Pt heaters, which were positioned on the top and bottom of the PCR chip, improved the temperature uniformity. The temperature sensor, which was made of the same material as the heater, utilized the temperature dependence of the Pt resistor to ensure simple fabrication of the temperature sensor. Cooling the PCR chip using dual blower fans enabled thermal cycling to operate with a lower power than that of a Peltier element with a high power consumption. The PCR components were electrically connected to a control module that could be operated with a Li-ion battery (12 V), and the PCR conditions (temperature, time, cycle, etc.) were inputted on a touch screen. For 30 PCR cycles, the accumulated power consumption of heating and cooling was 7.3 Wh, which is easily available from a compact battery. Escherichia coli genomic DNA (510 bp) was amplified using the proposed PCR thermal cycler and the disposable PCR chip. A similar DNA amplification capability was confirmed using the proposed portable and low-power thermal cycler compared with a conventional thermal cycler.
      PubDate: 2018-01-29
      DOI: 10.1007/s10544-018-0257-9
      Issue No: Vol. 20, No. 1 (2018)
       
  • Stromalized microreactor supports murine hematopoietic progenitor
           enrichment
    • Authors: Danika Khong; Matthew Li; Amy Singleton; Ling-Yee Chin; Biju Parekkadan
      Abstract: There is an emerging need to process, expand, and even genetically engineer hematopoietic stem and progenitor cells (HSPCs) prior to administration for blood reconstitution therapy. A closed-system and automated solution for ex vivo HSC processing can improve adoption and standardize processing techniques. Here, we report a recirculating flow bioreactor where HSCs are stabilized and enriched for short-term processing by indirect fibroblast feeder coculture. Mouse 3 T3 fibroblasts were seeded on the extraluminal membrane surface of a hollow fiber micro-bioreactor and were found to support HSPC cell number compared to unsupported BMCs. CFSE analysis indicates that 3 T3-support was essential for the enhanced intrinsic cell cycling of HSPCs. This enhanced support was specific to the HSPC population with little to no effect seen with the Lineagepositive and Lineagenegative cells. Together, these data suggest that stromal-seeded hollow fiber micro-reactors represent a platform to screening various conditions that support the expansion and bioprocessing of HSPCs ex vivo.
      PubDate: 2018-01-20
      DOI: 10.1007/s10544-017-0255-3
      Issue No: Vol. 20, No. 1 (2018)
       
  • 2DEP cytometry: distributed dielectrophoretic cytometry for live cell
           dielectric signature measurement on population level
    • Authors: P. Fikar; V. Georgiev; G. Lissorgues; M. Holubova; D. Lysak; D. Georgiev
      Abstract: In this work, a novel force equilibrium method called distributed dielectrophoretic cytometry (2DEP cytometry) was developed. It uses a dielectrophoresis (DEP)-induced vertical translation of live cells in conjunction with particle image velocimetry (PIV) in order to measure probabilistic distribution of DEP forces acting on an entire cell population. The method is integrated in a microfluidic device. The bottom of the microfluidic channel is lined with an interdigitated electrode array. Cells passing through the micro-channel are acted on by sedimentation forces, while DEP forces either oppose sedimentation, support sedimentation, or neither, depending on the dielectric (DE) signatures of the cells. The heights at which cells stabilize correspond to their DE signature and are measured indirectly using PIV, which enables simultaneous and high-throughput collection of hundreds of single-cell responses in a single PIV frame. The system was validated using polystyrene micro-particles. Preliminary experimental data quantify the DE signatures of immortalized myelogenous leukemia cell lines K562 and KG1. We show DEP-induced cell translation along the parabolic velocity profile can be measured by PIV with sub-micron precision, enabling identification of individual cell DE signatures. DE signatures of the selected cell lines are distinguishable. Throughput of the method enables measurement of DE signatures at 10 different frequencies in almost real time.
      PubDate: 2018-01-08
      DOI: 10.1007/s10544-017-0253-5
      Issue No: Vol. 20, No. 1 (2018)
       
  • Development of micro mechanical device having two-dimensional array of
           micro chambers for cell stretching
    • Authors: K. Minami; T. Hayashi; K. Sato; T. Nakahara
      Abstract: This paper presents a novel cell stretching micro device having two-dimensional array of micro chambers. It enables an in situ time-lapse observation of stretched cell by using an optical microscope with high measurement efficiency. The presented device consists of a cell culture dish and the array of micro chambers made of silicone elastomer and extension structures made of photocurable resin, and is fabricated with MEMS technology. The fabrication process of the thin micro chamber array combines photoresist mold and lift-off process based on conventional photolithography. The fabricated device has 134micro chambers in 5μm or less thickness. It was demonstrated that the fabricated micro device could be used to make in-situ time-lapse observation of cell responses to stretching under optical microscopy. In addition, the influence of the chamber thickness to the quality of the microscope image observed was evaluated. It is confirmed that the proposed device having two-dimensional array of the thin micro chambers makes it possible to observe cell response for stretch stimuli with high quality and efficiency.
      PubDate: 2018-01-05
      DOI: 10.1007/s10544-017-0256-2
      Issue No: Vol. 20, No. 1 (2018)
       
  • Finite element modeling to analyze TEER values across silicon
           nanomembranes
    • Authors: Tejas S. Khire; Barrett J. Nehilla; Jirachai Getpreecharsawas; Maria E. Gracheva; Richard E. Waugh; James L. McGrath
      Abstract: Silicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies. In conventional practice with commercial systems, raw resistance values are multiplied by the area of the membrane supporting cell growth to normalize TEER measurements. We demonstrate that under most circumstances, this multiplication does not ‘normalize’ TEER values as is assumed, and that the assumption is worse if applied to nanomembrane chips with a limited active area. To compare the TEER values from nanomembrane devices to those obtained from conventional polymer track-etched (TE) membranes, we develop finite element models (FEM) of the electrical behavior of the two membrane systems. Using FEM and parallel cell-culture experiments on both types of membranes, we successfully model the evolution of resistance values during the growth of endothelial monolayers. Further, by exploring the relationship between the models we develop a ‘correction’ function, which when applied to nanomembrane TEER, maps to experiments on conventional TE membranes. In summary, our work advances the the utility of silicon nanomembranes as substrates for barrier tissue models by developing an interpretation of TEER values compatible with conventional systems.
      PubDate: 2018-01-05
      DOI: 10.1007/s10544-017-0251-7
      Issue No: Vol. 20, No. 1 (2018)
       
  • Structuring a multi-nodal neural network in vitro within a novel design
           microfluidic chip
    • Authors: Rosanne van de Wijdeven; Ola Huse Ramstad; Ulrich Stefan Bauer; Øyvind Halaas; Axel Sandvig; Ioanna Sandvig
      Abstract: Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.
      PubDate: 2018-01-02
      DOI: 10.1007/s10544-017-0254-4
      Issue No: Vol. 20, No. 1 (2018)
       
  • Two-photon fabrication of hydrogel microstructures for excitation and
           immobilization of cells
    • Authors: Nils Frederik Hasselmann; Michael Jona Hackmann; Wolfgang Horn
      Abstract: We investigate in vitro fabrication of hydrogel microstructures by two photon laser lithography for single cell immobilization and excitation. Fluorescent yeast cells are embedded in water containing the hydrogel precursor mixtures and cross-linking is used to selectively immobilize a particular cell. Cell viability within the hydrogel precursor is estimated using a life/dead assay and elastic and stiff hydrogel structures are fabricated, immobilizing cells in a microfluidic environment. Additionally, we demonstrate the illumination of cells by on-the-fly fabricated hydrogel waveguide networks connected to an external light source, thereby exciting a fluorescence signal in a single immobilized cell.
      PubDate: 2017-12-29
      DOI: 10.1007/s10544-017-0252-6
      Issue No: Vol. 20, No. 1 (2017)
       
  • Lab-on-a-chip device made by autohesion-bonded polymers
    • Authors: Firas Awaja; Tsz-ting Wong; Benedicta Arhatari
      Abstract: Polymers have the obvious advantages of flexibility in design and cost effectiveness to fabricate a lab-on-a-chip (LOC) device. Polyether ether ketone (PEEK) in particular is very attractive choice as it adds biocompatibility in addition to the possibility of hematic sealing in a 3D design. Hereby, we extend our previous successful technology of autohesive hermetic bonding of medical implants into lab-on-a-chip devices. We explore a conceptual 3D micro channels design with hermetic potential using PEEK and PS sheets. A hermetic and mechanically strong (through tensile test) 3D multilayer device was obtained using plasma treatment with oxygen and methane as precursors followed by pressing at temperature near of Tg + 20 of the polymer with the lowest Tg (PS). This nanotexturing technique is also used to facilitate thermal and mechanical stability of the microchannels for microfluidic applications. X-ray tomography measurements showed that 3D polymer made chips, at certain plasma and press bonding conditions, have structural integrity and no deformation were detected in channels shape post thermal pressing process. The dimension stability of channels and reservoirs and the rigid interfacial region at PEEK-PS make this chip design attractive and feasible for advanced lab-on-a-chip applications.
      PubDate: 2017-12-18
      DOI: 10.1007/s10544-017-0250-8
      Issue No: Vol. 20, No. 1 (2017)
       
  • A Ra dial Pi llar D evice (RAPID) for continuous and high-throughput
           separation of multi-sized particles
    • Authors: Ninad Mehendale; Oshin Sharma; Claudy D’Costa; Debjani Paul
      Abstract: Pillar-based microfluidic sorting devices are preferred for isolation of rare cells due to their simple designs and passive operation. Dead-end pillar filters can efficiently capture large rare cells, such as, circulating tumor cells (CTCs), nucleated red blood cells (NRBCs), CD4 cells in HIV patients, etc., but they get clogged easily. Cross flow filters are preferred for smaller rare particles (e.g. separating bacteria from blood), but they need additional buffer inlets and a large device footprint for efficient operation. We have designed a new microparticle separation device i.e. Ra dial Pi llar D evice (RAPID) that combines the advantages of dead-end and cross flow filters. RAPID can simultaneously isolate both large and small rare particles from a mixed population, while functioning for several hours without clogging. We have achieved simultaneous separation of 10 μ m and 2 μ m polystyrene particles from a mixture of 2 μ m, 7 μ m and 10 μ m particles. RAPID achieved average separation purity and recovery in excess of ∼90%. The throughput of our device (∼3ml/min) is 10 and 100 times higher compared to cross flow and dead-end filters respectively, thereby justifying the name RAPID.
      PubDate: 2017-11-28
      DOI: 10.1007/s10544-017-0246-4
      Issue No: Vol. 20, No. 1 (2017)
       
  • Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles
           using of Chelidonium majus extract
    • Authors: Renata Dobrucka; Jolanta Dlugaszewska; Mariusz Kaczmarek
      Abstract: The basic goal of this study was to synthesize zinc oxide nanoparticles using the Chelidonium majus extract and asses their cytotoxic and antimicrobial properties. The synthesized ZnO NPs were characterized by UV-Vis, Scanning Electron Microscopy (SEM) with EDS profile, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The aforementioned methods confirmed that the size of synthesized ZnO nanoparticles was at the range of 10 nm. The antimicrobial activity of ZnO nanoparticles synthesized using the Ch. majus extract was tested against standard strains of bacteria (Staphylococcus aureus NCTC 4163, Pseudomonas aeruginosa NCTC 6749, Escherichia coli ATCC 25922), yeast (Candida albicans ATCC 10231), filamentous fungi (molds: Aspergillus niger ATCC 16404, dermatophytes: Trichophyton rubrum ATCC 28188), clinical strains of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and yeast (Candida albicans). The study showed that zinc oxide nanoparticles were excellent antimicrobial agents. What is more, biologically synthesized ZnO nanoparticles demonstrate high efficiency in treatment of human non-small cell lung cancer A549.
      PubDate: 2017-11-27
      DOI: 10.1007/s10544-017-0233-9
      Issue No: Vol. 20, No. 1 (2017)
       
  • A novel fabrication method of carbon electrodes using 3D printing and
           chemical modification process
    • Authors: Pan Tian; Chaoyang Chen; Jie Hu; Jin Qi; Qianghua Wang; Jimmy Ching-Ming Chen; John Cavanaugh; Yinghong Peng; Mark Ming-Cheng Cheng
      Abstract: Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.
      PubDate: 2017-11-23
      DOI: 10.1007/s10544-017-0247-3
      Issue No: Vol. 20, No. 1 (2017)
       
  • A novel photodynamic therapy-based drug delivery system layered on a stent
           for treating cholangiocarcinoma
    • Authors: Po-Chin Liang; Kai-Wen Huang; Chien-Chih Tung; Ming-Chu Chang; Fuh-Yu Chang; Jau-Min Wong; Yu-Ting Chang
      Abstract: This study aimed to investigate the drug delivery efficacy and bio-effectiveness of a novel photodynamic therapy (PDT)-matrix drug delivery system for cholangiocarcinoma (CCA). Metallic stents were coated with polyurethane (PU) as the first layer. A 2-hydroxyethyl methacrylate (2-HEMA)/ethylene glycol dimethacrylate (EGDMA)/benzoyl peroxide (BPO) layer and a poly(ethylene-co-vinyl acetate) (PEVA)/poly(n-butyl methacrylate) (PBMA)/polyvinylpyrrolidone K30 (K30) layer containing various concentrations of Photofrin were then incorporated onto the stent as the second and third layers. After incubating the layered membranes with cultured CCA cell line, the release of Photofrin, cell viability, the intracellular uptake of Photofrin, reactive oxygen species (ROS) generation, and apoptosis were determined. Using a single-layer diffusion model, the maximum release of Photofrin from the 5 to 10% K30 formulas was 80 and 100%, respectively, after 24 h. When using the multiple-layer diffusion model, the released Photofrin showed an initial burst of the loading dose from the PEVA/PBMA/K30 layer. In the immobilized model, less than 5% of the Photofrin from the 2-HEMA/EGDMA/BPO layer was released over the 24-h period. Cell viability decreased linearly with increasing Photofrin concentrations, and ROS generation and apoptosis were shown to increase significantly with increasing Photofrin concentrations, until the concentration of Photofrin reached a saturation point of 1.5 μg/ml. This new, multiple-layered, PDT-based stent with dual-release mechanisms is a promising treatment for CCA and cancer-related ductal stenosis.
      PubDate: 2017-11-22
      DOI: 10.1007/s10544-017-0249-1
      Issue No: Vol. 20, No. 1 (2017)
       
  • Molybdenum coated SU-8 microneedle electrodes for transcutaneous
           electrical nerve stimulation
    • Authors: Ramin Soltanzadeh; Elnaz Afsharipour; Cyrus Shafai; Neda Anssari; Behzad Mansouri; Zahra Moussavi
      Abstract: Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.
      PubDate: 2017-11-21
      DOI: 10.1007/s10544-017-0241-9
      Issue No: Vol. 20, No. 1 (2017)
       
  • Full-wafer in-situ fabrication and packaging of microfluidic flow
           cytometer with photo-patternable adhesive polymers
    • Authors: Koen de Wijs; Chengxun Liu; Bivragh Majeed; Karolien Jans; John M. O’Callaghan; Josine Loo; Erik Sohn; Sara Peeters; Ruben Van Roosbroeck; Tomokazu Miyazaki; Kenji Hoshiko; Isao Nishimura; Katsuhiko Hieda; Liesbet Lagae
      Abstract: Integration of microelectronics with microfluidics enables sophisticated lab-on-a-chip devices for sensing and actuation. In this paper, we investigate a novel method for in-situ microfluidics fabrication and packaging on wafer level. Two novel photo-patternable adhesive polymers were tested and compared, PA-S500H and DXL-009. The microfluidics fabrication method employs photo lithographical patterning of spin coated polymer films of PA or DXL and direct bonding of formed microfluidics to a top glass cover using die-to-wafer level bonding. These new adhesive materials remove the need for additional gluing layers. With this approach, we fabricated disposable microfluidic flow cytometers and evaluated the performance of those materials in the context of this application. DXL-009 exhibits lower autofluorescence compared to PA-S500H which improves detection sensitivity of fluorescently stained cells. Results obtained from the cytotoxicity test reveals that both materials are biocompatible. The functionality of these materials was demonstrated by detection of immunostained monocytes in microfluidic flow cytometers. The flexible, fully CMOS compatible fabrication process of these photo-patternable adhesive materials will simplify prototyping and mass manufacturing of sophisticated microfluidic devices with integrated microelectronics.
      PubDate: 2017-11-21
      DOI: 10.1007/s10544-017-0243-7
      Issue No: Vol. 20, No. 1 (2017)
       
  • Irreversible electroporation of the uterine cervix in a rabbit model
    • Authors: Wei Chai; Wenlong Zhang; Zhentong Wei; Ying Xu; Jian Shi; Xiaomei Luo; Jianying Zeng; Manhua Cui; Jiannan Li; Lizhi Niu
      Abstract: The aim of this study was to evaluate the effects of irreversible electroporation (IRE) on the uterine cervix in a rabbit model. IRE ablation was performed in the cervices of 48 New Zealand rabbits, with one ablation lesion in each animal. Gross pathology, transmission electron microscopy, hematoxylin and eosin (H&E), Masson’s trichrome (MT) stain, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed at pre-set time points (0 h, 12 h, 1 d, 2 d, 4 d, 7 d, 14 d, and 28 d post-IRE). All the rabbits tolerated the IRE ablation without serious complications. IRE caused complete cell death of the ablated cervix via cell apoptosis. However, fast recovery of the cervix was observed from 7 d post-IRE, with the signs of collagen fibers hyperplasia, the disappearance of the necrotic cells and muscle fibers, and regeneration and extension of the cervical epithelium. At 28 d post-IRE, the ablated cervices recovered to almost normal. Our study suggested that IRE might be an efficient and safe technology to treat cervical tumors, without causing serious cervical damage.
      PubDate: 2017-11-14
      DOI: 10.1007/s10544-017-0248-2
      Issue No: Vol. 19, No. 4 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 50.19.34.255
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-