for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2291 journals)
    - CHEMICAL ENGINEERING (192 journals)
    - CIVIL ENGINEERING (187 journals)
    - ELECTRICAL ENGINEERING (105 journals)
    - ENGINEERING (1209 journals)
    - ENGINEERING MECHANICS AND MATERIALS (385 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (68 journals)
    - MECHANICAL ENGINEERING (90 journals)

ENGINEERING (1209 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 18)
AAPG Bulletin     Hybrid Journal   (Followers: 7)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 234)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 2)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 6)
Advanced Science     Open Access   (Followers: 5)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 8)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 8)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 9)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 29)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 12)
Advances in Polymer Science     Hybrid Journal   (Followers: 41)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 37)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 30)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access   (Followers: 1)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 17)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 6)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 16)
Applied Clay Science     Hybrid Journal   (Followers: 5)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 8)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 3)
Applied Sciences     Open Access   (Followers: 2)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 7)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 3)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 8)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
Batteries     Open Access   (Followers: 4)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 23)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 4)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 10)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 17)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 32)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 9)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 2)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 14)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 42)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 8)
Case Studies in Thermal Engineering     Open Access   (Followers: 3)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 7)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 8)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 22)
Clay Minerals     Full-text available via subscription   (Followers: 10)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 3)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 5)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 26)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Composite Structures     Hybrid Journal   (Followers: 260)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 183)
Composites Part B : Engineering     Hybrid Journal   (Followers: 285)
Composites Science and Technology     Hybrid Journal   (Followers: 177)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 14)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 28)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 10)
Computing and Visualization in Science     Hybrid Journal   (Followers: 5)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 30)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 7)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 9)
Control Engineering Practice     Hybrid Journal   (Followers: 42)
Control Theory and Informatics     Open Access   (Followers: 8)
Corrosion Science     Hybrid Journal   (Followers: 25)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  
Current Applied Physics     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 7 | Last

Journal Cover Biomedical Microdevices
  [SJR: 0.805]   [H-I: 66]   [9 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1572-8781 - ISSN (Online) 1387-2176
   Published by Springer-Verlag Homepage  [2352 journals]
  • Characterisation of human induced pluripotent stem cell-derived
           endothelial cells under shear stress using an easy-to-use microfluidic
           cell culture system
    • Authors: Rsituko Ohtani-Kaneko; Kenjiro Sato; Atsuhiro Tsutiya; Yuka Nakagawa; Kazutoshi Hashizume; Hidekatsu Tazawa
      Abstract: Abstract Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.
      PubDate: 2017-10-09
      DOI: 10.1007/s10544-017-0229-5
      Issue No: Vol. 19, No. 4 (2017)
       
  • Irreversible electroporation in the eradication of rabbit VX2 cervical
           tumors
    • Authors: Wei Chai; Ying Xu; Wenlong Zhang; Zhentong Wei; Jiannan Li; Jian Shi; Xiaomei Luo; Jianying Zeng; Manhua Cui; Lizhi Niu
      Abstract: Abstract The aim of this study was to evaluate the effects of irreversible electroporation (IRE) on the eradication of rabbit VX2 cervical tumors. A VX2 cervical cancer model was first made in 20 New Zealand rabbits. IRE ablation was performed for the cervical cancers of 15 rabbits when the diameter of the tumor was about 1.0–1.5 cm. The control group (n = 5) did not receive IRE ablation. The gross pathology, ultrasound, computed tomography, hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and proliferating cell nuclear antigen immunohistochemical staining were performed to evaluate the efficacy of IRE on cervical cancer. All the rabbits tolerated the IRE ablation without serious complications. The tumors treated by IRE slightly increased in size during the first two days, but decreased gradually. IRE caused tumor cell death efficiently, mainly through cell apoptosis; however, it did not induce complete tumor ablation in our study. The results suggested that IRE could eradicate rabbit VX2 cervical tumors efficiently. However, the optimal IRE parameters remain to be determined.
      PubDate: 2017-10-09
      DOI: 10.1007/s10544-017-0231-y
      Issue No: Vol. 19, No. 4 (2017)
       
  • Microfluidic device for novel breast cancer screening by blood test using
           miRNA beacon probe
    • Authors: Bindu Salim; M. V. Athira; A. Kandaswamy; Madhulika Vijayakumar; T. Saravanan; Thiagarajan Sairam
      Abstract: Abstract Breast cancer is identified as the highest cause of death in women suffering from cancer. Early diagnosis is the key to increase the survival of breast cancer victims. Molecular diagnosis using biomarkers have advanced much in the recent years. The cost involved in such diagnosis is not affordable for most of the population. The concept being investigated here is to realize a simple diagnosis system for screening cancer by way of a blood test utilizing a miRNA based biomarker with a complementary molecular beacon probe. A microfluidic platform was designed and attached with a fluorescence reader, which is portable and cost effective. Experiments were performed with 51 blood samples of which 30 were healthy and 21 were positive for breast cancer, collected against institutional human ethical clearance, IHEC 16/180–7–9-2016. miRNA 21 was chosen as the biomarker because it is overexpressed 4-fold in the serum of breast cancer patients. This work involved design of an experiment to prove the concept of miRNA over expression followed by detection of miRNA 21 using the microfluidic platform attached with a fluorescence reader and validation of the results using quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results obtained from the microfluidic device concurred with qRT-PCR results. The device is suitable for point-of-care application in a mass-screening programme. The study also has revealed that the stage of the cancer could be indicated by this test, which will be further useful for deciding a therapeutic regime.
      PubDate: 2017-09-30
      DOI: 10.1007/s10544-017-0230-z
      Issue No: Vol. 19, No. 4 (2017)
       
  • Interventional magnetic resonance imaging guided carotid embolectomy using
           a novel resonant marker catheter: demonstration of preclinical feasibility
           
    • Authors: Jeffrey K. Yang; Andre M. Cote; Caroline D. Jordan; Sravani Kondapavulur; Aaron D. Losey; David McCoy; Andrew Chu; Jay F. Yu; Teri Moore; Carol Stillson; Fabio Settecase; Matthew D. Alexander; Andrew Nicholson; Daniel L. Cooke; Maythem Saeed; Dave Barry; Alastair J. Martin; Mark W. Wilson; Steven W. Hetts
      Abstract: Abstract To assess the visualization and efficacy of a wireless resonant circuit (wRC) catheter system for carotid artery occlusion and embolectomy under real-time MRI guidance in vivo, and to compare MR imaging modality with x-ray for analysis of qualitative physiological measures of blood flow at baseline and after embolectomy. The wRC catheter system was constructed using a MR compatible PEEK fiber braided catheter (Penumbra, Inc, Alameda, CA) with a single insulated longitudinal copper loop soldered to a printed circuit board embedded within the catheter wall. In concordance with IACUC protocol (AN103047), in vivo carotid artery navigation and embolectomy were performed in four farm pigs (40–45 kg) under real-time MRI at 1.5T. Industry standard clots were introduced in incremental amounts until adequate arterial occlusion was noted in a total of n=13 arteries. Baseline vasculature and restoration of blood flow were confirmed via MR and x-ray imaging, and graded by the Thrombolysis in Cerebral Infarction (TICI) scale. Wilcoxon signed-rank tests were used to analyze differences in recanalization status between DSA and MRA imaging. Successful recanalizations (TICI 2b/3) were compared to clinical rates reported in literature via binomial tests. The wRC catheter system was visible both on 5° sagittal bSSFP and coronal GRE sequence. Successful recanalization was demonstrated in 11 of 13 occluded arteries by DSA analysis and 8 of 13 by MRA. Recanalization rates based on DSA (0.85) and MRA (0.62) were not significantly different from the clinical rate of mechanical aspiration thrombectomy reported in literature. Lastly, a Wilcoxon signed rank test indicated no significant difference between TICI scores analyzed by DSA and MRA. With demonstrated compatibility and visualization under MRI, the wRC catheter system is effective for in vivo endovascular embolectomy, suggesting progress towards clinical endovascular interventional MRI.
      PubDate: 2017-09-25
      DOI: 10.1007/s10544-017-0225-9
      Issue No: Vol. 19, No. 4 (2017)
       
  • Passive, wireless transduction of electrochemical impedance across
           thin-film microfabricated coils using reflected impedance
    • Authors: Alex Baldwin; Lawrence Yu; Madelina Pratt; Kee Scholten; Ellis Meng
      Abstract: Abstract A new method of wirelessly transducing electrochemical impedance without integrated circuits or discrete electrical components was developed and characterized. The resonant frequency and impedance magnitude at resonance of a planar inductive coil is affected by the load on a secondary coil terminating in sensing electrodes exposed to solution (reflected impedance), allowing the transduction of the high-frequency electrochemical impedance between the two electrodes. Biocompatible, flexible secondary coils with sensing electrodes made from gold and Parylene C were microfabricated and the reflected impedance in response to phosphate-buffered saline solutions of varying concentrations was characterized. Both the resonant frequency and impedance at resonance were highly sensitive to changes in solution conductivity at the secondary electrodes, and the effects of vertical separation, lateral misalignment, and temperature changes were also characterized. Two applications of reflected impedance in biomedical sensors for hydrocephalus shunts and glucose sensing are discussed.
      PubDate: 2017-09-25
      DOI: 10.1007/s10544-017-0226-8
      Issue No: Vol. 19, No. 4 (2017)
       
  • All-in-one low-intensity pulsed ultrasound stimulation system using
           piezoelectric micromachined ultrasonic transducer (pMUT) arrays for
           targeted cell stimulation
    • Authors: Wonjun Lee; Seungjun Yoo; Joontaek Jung; Woojin Kang; Wei Wang; Cheil Moon; Hongsoo Choi
      Abstract: Abstract A novel cell-stimulation system was fabricated using 10 × 29 piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted ultrasonic cell stimulation. Both the diameter of a single pMUT element and the edge-to-edge gap were 120 μm, and the size of a pMUT array was 2.27 × 6.84 mm, to be placed at the bottom of a Transwell. The measured resonance frequency of a single pMUT element was 1.48 ± 0.13 MHz and the measured acoustic intensity of the pMUT array was 0.15 ± 0.03 MPa at 1 mm away from the transducer. A pMUT array was mounted on a print circuit board (PCB), which was designed in accordance with the size of a 12-well Transwell. The Transwell was placed on the PCB and wire bonding was performed to electrically connect the PCB and pMUT arrays. After wiring, the PCB and pMUT arrays were coated with 2.6-μm thick parylene-C to ensure biocompatibility and waterproofing. PC12 cells were used for ultrasonic cell stimulation tests to examine the proposed all-in-one low-intensity pulsed ultrasound stimulation system. Various stimulation times and duty cycles were used simultaneously for cell proliferation in a confined cell culture environment. All stimulation groups showed increased cell proliferation rates, in the range 138–166%, versus the proliferation rate of the control group.
      PubDate: 2017-09-19
      DOI: 10.1007/s10544-017-0228-6
      Issue No: Vol. 19, No. 4 (2017)
       
  • Embryonic body culturing in an all-glass microfluidic device with
           laser-processed 4 μm thick ultra-thin glass sheet filter
    • Authors: Y. Yalikun; N. Tanaka; Y. Hosokawa; T. Iino; Y. Tanaka
      Abstract: Abstract In this paper, we report the development and demonstration of a method to fabricate an all-glass microfluidic cell culturing device without circulation flow. On-chip microfluidic cell culturing is an indispensable technique for cellular replacement therapies and experimental cell biology. Polydimethylsiloxane (PDMS) have become a popular material for fabricating microfluidic cell culture devices because it is a transparent, biocompatible, deformable, easy-to-mold, and gas-permeable. However, PDMS is also a chemically and physically unstable material. For example, PDMS undergoes aging easily even in room temperature conditions. Therefore, it is difficult to control long term experimental culturing conditions. On the other hand, glass is expected to be stable not only in physically but also chemically even in the presence of organic solvents. However, cell culturing still requires substance exchanges such as gases and nutrients, and so on, which cannot be done in a closed space of a glass device without circulation flow that may influence cell behavior. Thus, we introduce a filter structure with micropores onto a glass device to improve permeability to the cell culture space. Normally, it is extremely difficult to fabricate a filter structure on a normal glass plate by using a conventional fabrication method. Here, we demonstrated a method for fabricating an all-glass microfluidic cell culturing device having filters structure. The function of this all-glass culturing device was confirmed by culturing HeLa, fibroblast and ES cells. Compared with the closed glass devices without a filter structure, the numbers of cells in our device increased and embryonic bodies (EBs) were formed. This method offers a new tool in microfluidic cell culture technology for biological analysis and it expands the field of microfluidic cell culture.
      PubDate: 2017-09-19
      DOI: 10.1007/s10544-017-0227-7
      Issue No: Vol. 19, No. 4 (2017)
       
  • Analyzing polymeric matrix for fabrication of a biodegradable microneedle
           array to enhance transdermal delivery
    • Authors: Kuo-Yuan Hwa; Vincent H. S. Chang; Yao-Yi Cheng; Yue-Da Wang; Pey-Shynan Jan; Boopathi Subramani; Min-Ju Wu; Bo-Kai Wang
      Abstract: Abstract Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the “all-in-one” fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.
      PubDate: 2017-09-19
      DOI: 10.1007/s10544-017-0224-x
      Issue No: Vol. 19, No. 4 (2017)
       
  • A flexible cell concentrator using inertial focusing
    • Authors: Chunglong Tu; Jian Zhou; Yitao Liang; Bobo Huang; Yifeng Fang; Xiao Liang; Xuesong Ye
      Abstract: Abstract Cell concentration adjustment is intensively implemented routinely both in research and clinical laboratories. Centrifuge is the most prevalent technique for tuning biosample concentration. But it suffers from a number of drawbacks, such as requirement of experienced operator, high cost, low resolution, variable reproducibility and induced damage to sample. Herein we report on a cost-efficient alternative using inertial microfluidics. While the majority of existing literatures concentrate on inertial focusing itself, we identify the substantial role of the outlet system played in the device performance that has long been underestimated. The resistances of the outlets virtually involve in defining the cutoff size of a given inertial filtration channel. Following the comprehensive exploration of the influence of outlet system, we designed an inertial device with selectable outlets. Using both commercial microparticles and cultured Hep G2 cells, we have successfully demonstrated the automated concentration modification and observed several key advantages of our device as compared with conventional centrifuge, such as significantly reduced cell loss (only 4.2% vs. ~40% of centrifuge), better preservation of cell viability and less processing time as well as the increased reproducibility due to absence of manual operation. Furthermore, our device shows high effectiveness for concentrated sample (e.g., 1.8 × 106 cells/ml) as well. We envision its promising applications in the circumstance where repetitive sample preparation is intensely employed.
      PubDate: 2017-09-11
      DOI: 10.1007/s10544-017-0223-y
      Issue No: Vol. 19, No. 4 (2017)
       
  • An exploration of the reflow technique for the fabrication of an in vitro
           microvascular system to study occlusive clots
    • Authors: Yang Li; Chuer Pan; Yunfeng Li; Eugenia Kumacheva; Arun Ramachandran
      Abstract: Abstract Embolic ischemia and pulmonary embolism are health emergencies that arise when a particle such as a blood clot occludes a smaller blood vessel in the brain or the lungs, and restricts flow of blood downstream of the vessel. In this work, the reflow technique (Wang et al. Biomed. Microdevices 2007, 9, 657) was adapted to produce a microchannel network that mimics the occlusion process. The technique was first revisited and a simple geometrical model was developed to quantitatively explain the shapes of the resulting microchannels for different reflow parameters. A critical modification was introduced to the reflow protocol to fabricate nearly circular microchannels of different diameters from the same master, which is not possible with the traditional reflow technique. To simulate the phenomenon of occlusion by clots, a microchannel network with three generations of branches with different diameters and branching angles was fabricated, into which fibrin clots were introduced. At low constant pressure drop (ΔP), a clot blocked a branch entrance only partially, while at higher ΔP, the branch was completely blocked. Instances of simultaneous blocking of multiple channels by clots, and the consequent changes in the flow rates in the unblocked branches of the network, were also monitored. This work provides the framework for a systematic study of the distribution of clots in a network, and the rate of dissolution of embolic clots upon the introduction of a thrombolytic drug into the network.
      PubDate: 2017-09-08
      DOI: 10.1007/s10544-017-0213-0
      Issue No: Vol. 19, No. 4 (2017)
       
  • Development of a shear stress-free microfluidic gradient generator capable
           of quantitatively analyzing single-cell morphology
    • Authors: David Barata; Giulia Spennati; Cristina Correia; Nelson Ribeiro; Björn Harink; Clemens van Blitterswijk; Pamela Habibovic; Sabine van Rijt
      Abstract: Abstract Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
      PubDate: 2017-09-07
      DOI: 10.1007/s10544-017-0222-z
      Issue No: Vol. 19, No. 4 (2017)
       
  • Development of a novel intra-abdominal pressure transducer for large scale
           clinical studies
    • Authors: Stefan Niederauer; Johanna de Gennaro; Ingrid Nygaard; Tomasz Petelenz; Robert Hitchcock
      Abstract: Abstract Intra-abdominal pressure may be one of the few modifiable risk factors associated with developing a pelvic floor disorder. With one in eight women having surgery to correct a pelvic floor disorder in their lifetimes, intra-abdominal pressure may be a key to understanding the disease etiology and how to mitigate its occurrence and progression. Many traditional methods of intra-abdominal pressure measurement have limitations in data quality, environment of use, and patient comfort. We have modified a previously reported intravaginal pressure transducer that has been shown to overcome other intra-abdominal pressure measurement technique limitations (Coleman et al. 2012). Our modifications to the intravaginal pressure transducer make it easier to use, less costly, and more reliable than previous designs, while maintaining accuracy, integrity, and quality of data. This device has been used in over 400 participants to date as part of one of the most comprehensive studies examining the relationship between intra-abdominal pressure and pelvic floor disorders.
      PubDate: 2017-08-26
      DOI: 10.1007/s10544-017-0211-2
      Issue No: Vol. 19, No. 4 (2017)
       
  • Development of a biodegradable flow resisting polymer membrane for a novel
           glaucoma microstent
    • Authors: Stefan Siewert; Karen Falke; Frank Luderer; Thomas Reske; Wolfram Schmidt; Sylvia Pfensig; Michael Stiehm; Ulf Hinze; Boris Chichkov; Niels Grabow; Rudolf Guthoff; Klaus-Peter Schmitz
      Abstract: Abstract Within this paper we analyzed the technical feasibility of a novel microstent for glaucoma therapy. For lowering of intraocular pressure, the flexible polyurethane (PUR) implant is designed to drain aqueous humour from the anterior chamber of the eye into subconjunctival, or alternatively suprachoroidal, space. The microstent includes a biodegradable, flow resisting polymer membrane serving as temporary flow resistance for the prevention of early postoperative hypotony. A biodegradable local drug delivery (LDD)-device was designed to prevent fibrous encapsulation. Biodegradable components were made of flexible, nonwoven membranes of Poly(4-hydroxybutyrate) (P(4HB)). Polymer samples and microstent prototypes were manufactured by means of dip coating, electrospinning and femtosecond-laser micromachining and characterized in vitro with regard to structural and fluid mechanical properties, degradation behavior and drug release. Bending stiffness of PUR-tubing (62.53 ± 7.57 mN mm2) is comparable to conventional glaucoma drainage devices in a tube-plate design. Microstent prototypes yield a flow resistance of 2.4 ± 0.6 mmHg/μl min−1 which is close to the aspired value corresponding to physiological pressure (15 mmHg) and aqueous humour flow (2 μl min−1) conditions inside the eye. Degradation of electrospun P(4HB) specimens was found to be almost completely finished after six months in vitro. Within this time frame, flow capacity of the microstent increases, which is beneficial to compensate potentially increasing flow resistance of fibrous tissue in vivo. Fast drug release of the LDD-device was found. One microstent prototype was implanted into a porcine eye ex vivo. Future preclinical studies will allow further information about Microstent performance.
      PubDate: 2017-08-26
      DOI: 10.1007/s10544-017-0218-8
      Issue No: Vol. 19, No. 4 (2017)
       
  • Wireless induction coils embedded in diamond for power transfer in medical
           implants
    • Authors: Md. Kabir Uddin Sikder; James Fallon; Mohit N. Shivdasani; Kumaravelu Ganesan; Peter Seligman; David J. Garrett
      Abstract: Abstract Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
      PubDate: 2017-08-26
      DOI: 10.1007/s10544-017-0220-1
      Issue No: Vol. 19, No. 4 (2017)
       
  • Polymer-based interconnection cables to integrate with flexible
           penetrating microelectrode arrays
    • Authors: Keonghwan Oh; Donghak Byun; Sohee Kim
      Abstract: Abstract There have been various types of interconnection methods for neural interfacing electrodes, such as silicon ribbon cables, wire bonding and polymer-based cables. In this study, interconnection cables were developed for integration with a Flexible Penetrating Microelectrode Array (FPMA) that was previously developed for neural signal recording or stimulation. Polyimide and parylene C were selected as base materials for the interconnection cables as both materials can preserve the flexibility of the FPMA better than other interconnection methods such as silicon ribbon cable or wire bonding. We conducted durability tests to determine if the interconnection cables were suitable for in-vivo implantation, by long-term soaking of the cables in phosphate buffered saline solution. We measured the changes in impedance over time, and equivalent circuit models were used to analyze the electrochemical phenomena on the surface of the cables. Lastly, we implanted the cable-integrated electrodes device onto rabbit’s sciatic nerve and recorded neural signals to prove the feasibility of the developed FPMA integration system.
      PubDate: 2017-08-25
      DOI: 10.1007/s10544-017-0217-9
      Issue No: Vol. 19, No. 4 (2017)
       
  • PDMS based multielectrode arrays for superior in-vitro retinal stimulation
           and recording
    • Authors: Satarupa Biswas; Debdeep Sikdar; Debanjan Das; Manjunatha Mahadevappa; Soumen Das
      Abstract: Abstract Understanding of the neural response to electrical stimulation requires simultaneous recording from the various neurons of retina. Electrodes form the physical interface with the neural or retinal tissue. Successful retinal stimulation and recording demands conformal integration of these electrodes with the soft tissue to ensure establishment of proper electrical connection with the excitable tissue. Mechanical impedance of polydimethylsiloxane (PDMS) being compliant with that of retinal tissue, offers excellent potential as a substrate for metal electrodes. In this paper, Cr/Au micro electrodes with 200 μm diameter were fabricated on rigid and flexible PDMS substrates under crack free condition. Spontaneous buckling of thin films over PDMS substrates improved electrode performance circumventing the fabrication issues faced over a buckled surface. Individual electrodes from the multielectrode arrays (MEAs) were examined with electrochemical impedance spectroscopy and cyclic voltammetry. Controlled fabrication process as described here generates buckles in the metal films leading to increased electrode surface area that increases the charge storage capacity and decreases the interface impedance of the metal electrodes. At 1 kHz, impedance was reduced from 490 ± 27 kΩ to 246 ± 19 kΩ and charge storage capacity was increased from 0.40 ± 0.87 mC/cm2 to 2.1 ± 0.87 mC/cm2. Neural spikes recorded with PDMS based electrodes from isolated retina also contained less noise as indicated by signal to noise ratio analysis. The present study established that the use of PDMS as a substrate for MEAs can enhance the performance of any thin film metal electrodes without incorporation of any coating layers or nanomaterials.
      PubDate: 2017-08-25
      DOI: 10.1007/s10544-017-0221-0
      Issue No: Vol. 19, No. 4 (2017)
       
  • MEMS measurements of single cell stiffness decay due to cyclic mechanical
           loading
    • Authors: Bruno Barazani; Stephan Warnat; Andrew J. MacIntosh; Ted Hubbard
      Abstract: Abstract The goal of this study was to measure the mechanical stiffness of individual cells and to observe changes due to the application of repeated cell mechanical loads. 28 single baker’s yeast cells (Saccharomyces cerevisiae) were fatigue tested and had their stiffness measured during repetitive loading cycles performed by a MEMS squeezer in aqueous media. Electrothermal micro-actuators compressed individual cells against a reference back spring; cell and spring motions were measured using a FFT image analysis technique with ~10 nm resolution. Cell stiffness was calculated based on measurements of cell elongation vs. applied force which resulted in stiffness values in the 2–10 N/m range. The effect of increased force was studied for cells mechanically cycled 37 times. Cell stiffness decreased as the force and the cycle number increased. After 37 loading cycles (~4 min), forces of 0.24, 0.29, 0.31, and 0.33 μN caused stiffness drops of 5%, 13%, 31% and 41% respectively. Cells force was then set to 0.29 μN and cells were tested over longer runs of 118 and 268 cycles. After 118 cycles (~12 min) cells experienced an average stiffness drop of 68%. After 268 cycles (~25 min) cells had a stiffness drop of 77%, and appeared to reach a stiffness plateau of 20–25% of the initial stiffness after approximately 200 cycles.
      PubDate: 2017-08-25
      DOI: 10.1007/s10544-017-0219-7
      Issue No: Vol. 19, No. 4 (2017)
       
  • Fabrication and characterization of low-cost, bead-free, durable and
           hydrophobic electrospun membrane for 3D cell culture
    • Authors: Hajar Moghadas; Mohammad Said Saidi; Navid Kashaninejad; Amir Kiyoumarsioskouei; Nam-Trung Nguyen
      Abstract: Abstract This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung cancer cells on these membranes in a static well plate without surface modification. Surprisingly, due to three-dimensional (3D) and hydrophobic nature of the electrospun fibers, cells aggregated into 3D multicellular spheroids. These easily detachable and cost-effective scaffolds with controllable thicknesses and high tensile strength are good candidates for cell-stretching devices, organ-on-a-chip devices, tissue engineering and studies of non-adherent mammalian cancer stem cells.
      PubDate: 2017-08-22
      DOI: 10.1007/s10544-017-0215-y
      Issue No: Vol. 19, No. 4 (2017)
       
  • Hands-free smartphone-based diagnostics for simultaneous detection of
           Zika, Chikungunya, and Dengue at point-of-care
    • Authors: A. Ganguli; A. Ornob; H. Yu; G. L. Damhorst; W. Chen; F. Sun; A. Bhuiya; B. T. Cunningham; R. Bashir
      Abstract: Abstract Infectious diseases remain the world’s top contributors to death and disability, and, with recent outbreaks of Zika virus infections there has been an urgency for simple, sensitive and easily translatable point-of-care tests. Here we demonstrate a novel point-of-care platform to diagnose infectious diseases from whole blood samples. A microfluidic platform performs minimal sample processing in a user-friendly diagnostics card followed by real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on the same card with pre-dried primers specific to viral targets. Our point-of-care platform uses a commercial smartphone to acquire real-time images of the amplification reaction and displays a visual read-out of the assay. We apply this system to detect closely related Zika, Dengue (types 1 and 3) and Chikungunya virus infections from whole blood on the same pre-printed chip with high specificity and clinically relevant sensitivity. Limit of detection of 1.56e5 PFU/mL of Zika virus from whole blood was achieved through our platform. With the ability to quantitate the target nucleic acid, this platform can also perform point-of-care patient surveillance for pathogen load or select biomarkers in whole blood.
      PubDate: 2017-08-22
      DOI: 10.1007/s10544-017-0209-9
      Issue No: Vol. 19, No. 4 (2017)
       
  • Biocontractile microfluidic channels for peristaltic pumping
    • Authors: Angelina V. Shutko; Vasily S. Gorbunov; Konstantin G. Guria; Konstantin I. Agladze
      Abstract: Abstract Bio-actuated micro-pumps do not need any external power source and pose no risk of electrical or heat shock for the biological materials in lab-on-chip systems. Several different designs of bio-actuated micro-pumps based on the use of the contractile force of cultured cardiomyocites have been proposed earlier. Here we present a novel type of a bio-actuated micro-pump representing a microfluidic channel with a contractile wall. The flow inside the channel is generated by the peristaltic movement of its wall caused by the propagation of an excitation-contraction wave along the channels surface. The directional flow generated by the pump was demonstrated by tracking of polystyrene microspheres, moving in the direction of the propagation of the excitation-contraction wave with an average velocity of 6–8 μm/min. The suggested design of a micro-pump allows the control of pumping direction, which might be useful for targeted delivery of fluids and substances in lab-on-chip systems. Prospects of future development and implementation of this kind of bio-actuated peristaltic pumps are discussed.
      PubDate: 2017-08-09
      DOI: 10.1007/s10544-017-0216-x
      Issue No: Vol. 19, No. 4 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.162.105.241
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016