for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> ENGINEERING (Total: 2255 journals)
    - CHEMICAL ENGINEERING (187 journals)
    - CIVIL ENGINEERING (178 journals)
    - ELECTRICAL ENGINEERING (99 journals)
    - ENGINEERING (1203 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (60 journals)
    - MECHANICAL ENGINEERING (90 journals)

ENGINEERING (1203 journals)

The end of the list has been reached or no journals were found for your choice.
Journal Cover Science and Engineering Ethics
  [SJR: 0.566]   [H-I: 25]   [6 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1471-5546 - ISSN (Online) 1353-3452
   Published by Springer-Verlag Homepage  [2335 journals]
  • CRISPR and the Rebirth of Synthetic Biology
    • Abstract: Abstract Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have been the subject of in-depth debate; however, a lack of transparent regulatory guidelines, outdated governance codes, inefficient time-consuming clinical trial pathways and frequent misunderstanding of the scientific potential of cutting-edge technologies have created substantial obstacles to translational research in this area. While a precautionary principle should be applied at all stages of genome engineering research, the stigma of germline editing, synthesis of new life forms and unrealistic presentation of current technologies should not arrest the transition of new therapeutic, diagnostic or preventive tools from research to clinic. We provide a brief review on the present regulation of CRISPR and discuss the translational aspect of genome engineering research and patient autonomy with respect to the “right to try” potential novel non-germline gene therapies.
      PubDate: 2016-06-20
  • Michael Hauskeller: Sex and the Posthuman Condition
    • Abstract: Abstract This new book from Michael Hauskeller explores the currently marketed or projected sex/love products that exhibit some trait of so-called “posthumanistic” theory or design. These products are so designated because of their intention to fuse high technologies, including robotics and computing, with the human user. The author offers several arguments for why the theory behind these products leads to inconsistencies. The book uses a unique approach to philosophical argument by enmeshing the argument’s major points in a concomitant discussion of pieces from world literature pertaining to posthumanism. The method is compelling, heightened by great world authorial insights that rarely find their way into philosophy and shores up some strong argumentative points. Yet some of the argument still needs more elucidating.
      PubDate: 2016-06-20
  • Scholarly Black Market
    • Abstract: Abstract Fake and unethical publishers’ activities are known by most of the readers of Science and Engineering Ethics. This letter tries to draw the readers’ attention to the hidden side of some of these publishers’ business. Here the black market of scholarly articles, which negatively affects the validity and reliability of research in higher education, as well as science and engineering, will be introduced.
      PubDate: 2016-06-20
  • Biological Dual-Use Research and Synthetic Biology of Yeast
    • Abstract: Abstract In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.
      PubDate: 2016-06-20
  • The Design of the Internet’s Architecture by the Internet
           Engineering Task Force (IETF) and Human Rights
    • Abstract: Abstract The debate on whether and how the Internet can protect and foster human rights has become a defining issue of our time. This debate often focuses on Internet governance from a regulatory perspective, underestimating the influence and power of the governance of the Internet’s architecture. The technical decisions made by Internet Standard Developing Organisations (SDOs) that build and maintain the technical infrastructure of the Internet influences how information flows. They rearrange the shape of the technically mediated public sphere, including which rights it protects and which practices it enables. In this article, we contribute to the debate on SDOs’ ethical responsibility to bring their work in line with human rights. We defend three theses. First, SDOs’ work is inherently political. Second, the Internet Engineering Task Force (IETF), one of the most influential SDOs, has a moral obligation to ensure its work is coherent with, and fosters, human rights. Third, the IETF should enable the actualisation of human rights through the protocols and standards it designs by implementing a responsibility-by-design approach to engineering. We conclude by presenting some initial recommendations on how to ensure that work carried out by the IETF may enable human rights.
      PubDate: 2016-06-02
  • Governance Experiments in Water Management: From Interests to Building
    • Abstract: Abstract The management of water is a topic of great concern. Inadequate management may lead to water scarcity and ecological destruction, but also to an increase of catastrophic floods. With climate change, both water scarcity and the risk of flooding are likely to increase even further in the coming decades. This makes water management currently a highly dynamic field, in which experiments are made with new forms of policy making. In the current paper, a case study is presented in which different interest groups were invited for developing new water policy. The case was innovative in that stakeholders were invited to identify and frame the most urgent water issues, rather than asking them to reflect on possible solutions developed by the water authority itself. The case suggests that stakeholders can participate more effectively if their contribution is focused on underlying competing values rather than conflicting interests.
      PubDate: 2016-06-01
  • Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical
    • Abstract: Abstract In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the ‘social’ is foreseen to be restricted to safeguarding the functioning of the ‘technical’, geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of ‘actor-networking’ as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.
      PubDate: 2016-06-01
  • Creating Inquiry Between Technology Developers and Civil Society Actors:
           Learning from Experiences Around Nanotechnology
    • Abstract: Abstract Engaging civil society actors as knowledgeable dialogue partners in the development and governance of emerging technologies is a new challenge. The starting point of this paper is the observation that the design and orchestration of current organized interaction events shows limitations, particularly in the articulation of issues and in learning how to address the indeterminacies that go with emerging technologies. This paper uses Dewey’s notion of ‘publics’ and ‘reflective inquiry’ to outline ways of doing better and to develop requirements for a more productive involvement of civil society actors. By studying four novel spaces for interaction in the domain of nanotechnology, this paper examines whether and how elements of Dewey’s thought are visible and under what conditions. One of the main findings is that, in our society, special efforts are needed in order for technology developers and civil society actors to engage in a joint inquiry on emerging nanotechnology. Third persons, like social scientists and philosophers, play a role in this respect in addition to external input such as empirically informed scenarios and somewhat protected spaces.
      PubDate: 2016-06-01
  • Experiments on Socio-Technical Systems: The Problem of Control
    • Abstract: Abstract My aim is to question whether the introduction of new technologies in society may be considered to be genuine experiments. I will argue that they are not, at least not in the sense in which the notion of experiment is being used in the natural and social sciences. If the introduction of a new technology in society is interpreted as an experiment, then we are dealing with a notion of experiment that differs in an important respect from the notion of experiment as used in the natural and social sciences. This difference shows itself most prominently when the functioning of the new technological system is not only dependent on technological hardware but also on social ‘software’, that is, on social institutions such as appropriate laws, and actions of operators of the new technological system. In those cases we are not dealing with ‘simply’ the introduction of a new technology, but with the introduction of a new socio-technical system. I will argue that if the introduction of a new socio-technical system is considered to be an experiment, then the relation between the experimenter and the system on which the experiment is performed differs significantly from the relation in traditional experiments in the natural and social sciences. In the latter experiments it is assumed that the experimenter is not part of the experimental system and is able to intervene in and control the experimental system from the outside. With regard to the introduction of new socio-technical systems the idea that there is an experimenter outside the socio-technical system who intervenes in and controls that system becomes problematic. From that perspective we are dealing with a different kind of experiment.
      PubDate: 2016-06-01
  • Geoengineering as Collective Experimentation
    • Abstract: Abstract Geoengineering is defined as the ‘deliberate and large-scale intervention in the Earth’s climatic system with the aim of reducing global warming’. The technological proposals for doing this are highly speculative. Research is at an early stage, but there is a strong consensus that technologies would, if realisable, have profound and surprising ramifications. Geoengineering would seem to be an archetype of technology as social experiment, blurring lines that separate research from deployment and scientific knowledge from technological artefacts. Looking into the experimental systems of geoengineering, we can see the negotiation of what is known and unknown. The paper argues that, in renegotiating such systems, we can approach a new mode of governance—collective experimentation. This has important ramifications not just for how we imagine future geoengineering technologies, but also for how we govern geoengineering experiments currently under discussion.
      PubDate: 2016-06-01
  • Stretching the Traditional Notion of Experiment in Computing: Explorative
    • Abstract: Abstract Experimentation represents today a ‘hot’ topic in computing. If experiments made with the support of computers, such as computer simulations, have received increasing attention from philosophers of science and technology, questions such as “what does it mean to do experiments in computer science and engineering and what are their benefits'” emerged only recently as central in the debate over the disciplinary status of the discipline. In this work we aim at showing, also by means of paradigmatic examples, how the traditional notion of controlled experiment should be revised to take into account a part of the experimental practice in computing along the lines of experimentation as exploration. Taking inspiration from the discussion on exploratory experimentation in the philosophy of science—experimentation that is not theory-driven—we advance the idea of explorative experiments that, although not new, can contribute to enlarge the debate about the nature and role of experimental methods in computing. In order to further refine this concept we recast explorative experiments as socio-technical experiments, that test new technologies in their socio-technical contexts. We suggest that, when experiments are explorative, control should be intended in a posteriori form, in opposition to the a priori form that usually takes place in traditional experimental contexts.
      PubDate: 2016-06-01
  • Facing up to Complexity: Implications for Our Social Experiments
    • Abstract: Abstract Biological systems are highly complex, and for this reason there is a considerable degree of uncertainty as to the consequences of making significant interventions into their workings. Since a number of new technologies are already impinging on living systems, including our bodies, many of us have become participants in large-scale “social experiments”. I will discuss biological complexity and its relevance to the technologies that brought us BSE/vCJD and the controversy over GM foods. Then I will consider some of the complexities of our social dynamics, and argue for making a shift from using the precautionary principle to employing the approach of evaluating the introduction of new technologies by conceiving of them as social experiments.
      PubDate: 2016-06-01
  • Gone with the Wind: Conceiving of Moral Responsibility in the Case of GMO
    • Abstract: Abstract Genetically modified organisms are a technology now used with increasing frequency in agriculture. Genetically modified seeds have the special characteristic of being living artefacts that can reproduce and spread; thus it is difficult to control where they end up. In addition, genetically modified seeds may also bring about uncertainties for environmental and human health. Where they will go and what effect they will have is therefore very hard to predict: this creates a puzzle for regulators. In this paper, I use the problem of contamination to complicate my ascription of forward-looking moral responsibility to owners of genetically modified organisms. Indeed, how can owners act responsibly if they cannot know that contamination has occurred' Also, because contamination creates new and unintended ownership, it challenges the ascription of forward-looking moral responsibility based on ownership. From a broader perspective, the question this paper aims to answer is as follows: how can we ascribe forward-looking moral responsibility when the effects of the technologies in question are difficult to know or unknown' To solve this problem, I look at the epistemic conditions for moral responsibility and connect them to the normative notion of the social experiment. Indeed, examining conditions for morally responsible experimentation helps to define a range of actions and to establish the related epistemic virtues that owners should develop in order to act responsibly where genetically modified organisms are concerned.
      PubDate: 2016-06-01
  • Security-by-Experiment: Lessons from Responsible Deployment in Cyberspace
    • Abstract: Abstract Conceiving new technologies as social experiments is a means to discuss responsible deployment of technologies that may have unknown and potentially harmful side-effects. Thus far, the uncertain outcomes addressed in the paradigm of new technologies as social experiments have been mostly safety-related, meaning that potential harm is caused by the design plus accidental events in the environment. In some domains, such as cyberspace, adversarial agents (attackers) may be at least as important when it comes to undesirable effects of deployed technologies. In such cases, conditions for responsible experimentation may need to be implemented differently, as attackers behave strategically rather than probabilistically. In this contribution, we outline how adversarial aspects are already taken into account in technology deployment in the field of cyber security, and what the paradigm of new technologies as social experiments can learn from this. In particular, we show the importance of adversarial roles in social experiments with new technologies.
      PubDate: 2016-06-01
  • An Ethical Framework for Evaluating Experimental Technology
    • Abstract: Abstract How are we to appraise new technological developments that may bring revolutionary social changes' Currently this is often done by trying to predict or anticipate social consequences and to use these as a basis for moral and regulatory appraisal. Such an approach can, however, not deal with the uncertainties and unknowns that are inherent in social changes induced by technological development. An alternative approach is proposed that conceives of the introduction of new technologies into society as a social experiment. An ethical framework for the acceptability of such experiments is developed based on the bioethical principles for experiments with human subjects: non-maleficence, beneficence, respect for autonomy, and justice. This provides a handle for the moral and regulatory assessment of new technologies and their impact on society.
      PubDate: 2016-06-01
  • The Need for Governance by Experimentation: The Case of Biofuels
    • Abstract: Abstract The policies of the European Union concerning the development of biofuels can be termed a lock-in. Biofuels were initially hailed as a green, sustainability technology. However evidence to the contrary quickly emerged. The European Commission proposed to alter its policies to accommodate for these effects but met with fierce resistance from a considerable number of member states who have an economic interest in these first generation biofuels. In this paper I argue that such a lock-in might have been avoided if an experimental approach to governance had been adopted. Existing approaches such as anticipation and niche management either do not reduce uncertainty sufficiently or fail to explicitly address conflicts between values motivating political and economic support for new technologies. In this paper, I suggest to apply an experimental framework to the development of sustainable biobased technologies. Such an approach builds on insights from adaptive management and transition management in that it has the stimulation of learning effects at its core. I argue that these learning effects should occur on the actual impacts of new technologies, on the institutionalisation of new technologies and most specifically on the norms and values that underly policies supporting new technologies. This approach can be relevant for other emerging technologies.
      PubDate: 2016-06-01
  • Editors’ Overview: Experiments, Ethics, and New Technologies
    • PubDate: 2016-06-01
  • Experiments: Why and How'
    • Abstract: Abstract An experiment, in the standard scientific sense of the term, is a procedure in which some object of study is subjected to interventions (manipulations) that aim at obtaining a predictable outcome or at least predictable aspects of the outcome. The distinction between an experiment and a non-experimental observation is important since they are tailored to different epistemic needs. Experimentation has its origin in pre-scientific technological experiments that were undertaken in order to find the best technological means to achieve chosen ends. Important parts of the methodological arsenal of modern experimental science can be traced back to this pre-scientific, technological tradition. It is claimed that experimentation involves a unique combination of acting and observing, a combination whose unique epistemological properties have not yet been fully clarified.
      PubDate: 2016-06-01
  • What is Proof of Concept Research and how does it Generate Epistemic and
           Ethical Categories for Future Scientific Practice'
    • Abstract: Abstract “Proof of concept” is a phrase frequently used in descriptions of research sought in program announcements, in experimental studies, and in the marketing of new technologies. It is often coupled with either a short definition or none at all, its meaning assumed to be fully understood. This is problematic. As a phrase with potential implications for research and technology, its assumed meaning requires some analysis to avoid it becoming a descriptive category that refers to all things scientifically exciting. I provide a short analysis of proof of concept research and offer an example of it within synthetic biology. I suggest that not only are there activities that circumscribe new epistemological categories but there are also associated normative ethical categories or principles linked to the research. I examine these and provide an outline for an alternative ethical account to describe these activities that I refer to as “extended agency ethics”. This view is used to explain how the type of research described as proof of concept also provides an attendant proof of principle that is the result of decision-making that extends across practitioners, their tools, techniques, and the problem solving activities of other research groups.
      PubDate: 2016-06-01
  • Just a Cog in the Machine' The Individual Responsibility of
           Researchers in Nanotechnology is a Duty to Collectivize
    • Abstract: Abstract Responsible Research and Innovation (RRI) provides a framework for judging the ethical qualities of innovation processes, however guidance for researchers on how to implement such practices is limited. Exploring RRI in the context of nanotechnology, this paper examines how the dispersed and interdisciplinary nature of the nanotechnology field somewhat hampers the abilities of individual researchers to control the innovation process. The ad-hoc nature of the field of nanotechnology, with its fluid boundaries and elusive membership, has thus far failed to establish a strong collective agent, such as a professional organization, through which researchers could collectively steer technological development in light of social and environmental needs. In this case, individual researchers cannot innovate responsibly purely by themselves, but there is also no structural framework to ensure that responsible development of nanotechnologies takes place. We argue that, in such a case, individual researchers have a duty to collectivize. In short, researchers in situations where it is challenging for individual agents to achieve the goals of RRI are compelled to develop organizations to facilitate RRI. In this paper we establish and discuss the criteria under which individual researchers have this duty to collectivize.
      PubDate: 2016-06-01
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015