for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> ENGINEERING (Total: 2267 journals)
    - CHEMICAL ENGINEERING (190 journals)
    - CIVIL ENGINEERING (183 journals)
    - ELECTRICAL ENGINEERING (99 journals)
    - ENGINEERING (1196 journals)
    - ENGINEERING MECHANICS AND MATERIALS (391 journals)
    - HYDRAULIC ENGINEERING (55 journals)
    - INDUSTRIAL ENGINEERING (64 journals)
    - MECHANICAL ENGINEERING (89 journals)

ENGINEERING (1196 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 7)
3D Research     Hybrid Journal   (Followers: 19)
AAPG Bulletin     Full-text available via subscription   (Followers: 5)
AASRI Procedia     Open Access   (Followers: 15)
Abstract and Applied Analysis     Open Access   (Followers: 3)
Aceh International Journal of Science and Technology     Open Access   (Followers: 2)
ACS Nano     Full-text available via subscription   (Followers: 216)
Acta Geotechnica     Hybrid Journal   (Followers: 6)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 1)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Active and Passive Electronic Components     Open Access   (Followers: 7)
Adaptive Behavior     Hybrid Journal   (Followers: 10)
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi     Open Access  
Adsorption     Hybrid Journal   (Followers: 4)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 4)
Advanced Science     Open Access   (Followers: 4)
Advanced Science Focus     Free   (Followers: 3)
Advanced Science Letters     Full-text available via subscription   (Followers: 5)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 6)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 17)
Advances in Artificial Neural Systems     Open Access   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 9)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 18)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Natural Sciences: Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in OptoElectronics     Open Access   (Followers: 5)
Advances in Physics Theories and Applications     Open Access   (Followers: 13)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 35)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aerobiologia     Hybrid Journal   (Followers: 1)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 4)
AIChE Journal     Hybrid Journal   (Followers: 28)
Ain Shams Engineering Journal     Open Access   (Followers: 5)
Akademik Platform Mühendislik ve Fen Bilimleri Dergisi     Open Access  
Alexandria Engineering Journal     Open Access  
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 28)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 11)
American Journal of Engineering Education     Open Access   (Followers: 9)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 23)
Analele Universitatii Ovidius Constanta - Seria Chimie     Open Access  
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Regional Science     Hybrid Journal   (Followers: 7)
Annals of Science     Hybrid Journal   (Followers: 7)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 5)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 6)
Applied Clay Science     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 3)
Applied Nanoscience     Open Access   (Followers: 7)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Physics Research     Open Access   (Followers: 4)
Applied Sciences     Open Access   (Followers: 3)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Archives of Foundry Engineering     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 8)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ASEE Prism     Full-text available via subscription   (Followers: 2)
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 1)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 7)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Current Engineering & Maths     Open Access  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 8)
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Full-text available via subscription   (Followers: 2)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 7)
Avances en Ciencias e Ingeniería     Open Access  
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 1)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 3)
Batteries     Open Access   (Followers: 3)
Bautechnik     Hybrid Journal   (Followers: 1)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 23)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
BER : Manufacturing Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Motor Trade Survey     Full-text available via subscription   (Followers: 1)
BER : Retail Sector Survey     Full-text available via subscription   (Followers: 2)
BER : Retail Survey : Full Survey     Full-text available via subscription   (Followers: 2)
BER : Survey of Business Conditions in Manufacturing : An Executive Summary     Full-text available via subscription   (Followers: 3)
BER : Survey of Business Conditions in Retail : An Executive Summary     Full-text available via subscription   (Followers: 3)
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Biofuels Engineering     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 9)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 5)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 16)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 5)
Biomedical Microdevices     Hybrid Journal   (Followers: 8)
Biomedical Science and Engineering     Open Access   (Followers: 4)
Biomedizinische Technik - Biomedical Engineering     Hybrid Journal  
Biomicrofluidics     Open Access   (Followers: 4)
BioNanoMaterials     Hybrid Journal   (Followers: 1)
Biotechnology Progress     Hybrid Journal   (Followers: 39)
Boletin Cientifico Tecnico INIMET     Open Access  
Botswana Journal of Technology     Full-text available via subscription  
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 14)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 3)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers, Droit, Sciences et Technologies     Open Access  
Calphad     Hybrid Journal  
Canadian Geotechnical Journal     Full-text available via subscription   (Followers: 13)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 40)
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 7)
Case Studies in Thermal Engineering     Open Access   (Followers: 4)
Catalysis Communications     Hybrid Journal   (Followers: 6)
Catalysis Letters     Hybrid Journal   (Followers: 2)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysis Today     Hybrid Journal   (Followers: 5)
CEAS Space Journal     Hybrid Journal  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 3)
Central European Journal of Engineering     Hybrid Journal   (Followers: 1)
CFD Letters     Open Access   (Followers: 6)
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 2)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencias Holguin     Open Access   (Followers: 1)
CienciaUAT     Open Access  
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Full-text available via subscription   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Full-text available via subscription   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 21)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Coastal Engineering     Hybrid Journal   (Followers: 11)
Coastal Engineering Journal     Hybrid Journal   (Followers: 4)
Coatings     Open Access   (Followers: 2)
Cogent Engineering     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Color Research & Application     Hybrid Journal   (Followers: 1)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 13)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 23)
Composite Interfaces     Hybrid Journal   (Followers: 5)
Composite Structures     Hybrid Journal   (Followers: 252)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 176)
Composites Part B : Engineering     Hybrid Journal   (Followers: 224)
Composites Science and Technology     Hybrid Journal   (Followers: 164)
Comptes Rendus Mécanique     Full-text available via subscription   (Followers: 2)
Computation     Open Access  
Computational Geosciences     Hybrid Journal   (Followers: 12)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 17)
Computers & Geosciences     Hybrid Journal   (Followers: 25)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 5)
Computers and Electronics in Agriculture     Hybrid Journal   (Followers: 4)
Computers and Geotechnics     Hybrid Journal   (Followers: 8)
Computing and Visualization in Science     Hybrid Journal   (Followers: 6)
Computing in Science & Engineering     Full-text available via subscription   (Followers: 25)
Conciencia Tecnologica     Open Access  
Concurrent Engineering     Hybrid Journal   (Followers: 3)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 6)
Control and Dynamic Systems     Full-text available via subscription   (Followers: 7)
Control Engineering Practice     Hybrid Journal   (Followers: 40)
Control Theory and Informatics     Open Access   (Followers: 7)
Corrosion Science     Hybrid Journal   (Followers: 24)
CT&F Ciencia, Tecnologia y Futuro     Open Access  
CTheory     Open Access  
Current Applied Physics     Full-text available via subscription   (Followers: 4)

        1 2 3 4 5 6 | Last

Journal Cover Archives of Computational Methods in Engineering
  [SJR: 2.841]   [H-I: 40]   [4 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1886-1784 - ISSN (Online) 1134-3060
   Published by Springer-Verlag Homepage  [2341 journals]
  • Recent Advances on Topology Optimization of Multiscale Nonlinear
           Structures
    • Authors: Liang Xia; Piotr Breitkopf
      Pages: 227 - 249
      Abstract: Research on topology optimization mainly deals with the design of monoscale structures, which are usually made of homogeneous materials. Recent advances of multiscale structural modeling enables the consideration of microscale material heterogeneities and constituent nonlinearities when assessing the macroscale structural performance. However, due to the modeling complexity and the expensive computing requirement of multiscale modeling, there has been very limited research on topology optimization of multiscale nonlinear structures. This paper reviews firstly recent advances made by the authors on topology optimization of multiscale nonlinear structures, in particular techniques regarding to nonlinear topology optimization and computational homogenization (also known as FE2) are summarized. Then the conventional concurrent material and structure topology optimization design approaches are reviewed and compared with a recently proposed FE2-based design approach, which treats the microscale topology optimization process integrally as a generalized nonlinear constitutive behavior. In addition, discussions on the use of model reduction techniques is provided in regard to the prohibitive computational cost.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9170-7
      Issue No: Vol. 24, No. 2 (2017)
       
  • Numerical Analysis of a Vortex Tube: A Review
    • Authors: T. Karthikeya Sharma; G. Amba Prasad Rao; K. Madhu Murthy
      Pages: 251 - 280
      Abstract: Ranque–Hilsch vortex tube is a simple devise with no moving parts which could generate cold and hot air/gas streams simultaneously with compressed air/gas as a working fluid. The energy and flow separation in a vortex tube is highly depends on factors like nozzle shape, nozzle number, diameter and length of the vortex tube, inlet pressure, control valve, diaphragm hole size and cold mass fraction. As the energy separation and flow patterns in a vortex tube are highly complex and were not explained successfully by any researcher, a computational study of vortex tube flow and energy separation will give a better understanding about the physics and mechanism involved. Many researchers conducted computational fluid dynamic analysis of the vortex to have a deep insight about the process of flow separation. In this paper computational analysis of vortex by many researchers were presented along with the results obtained and suggestions to improve the performance of the vortex tube. Researchers considered Turbulence models which predict the performance precisely were discussed in the present paper. Researchers considered turbulence models like LES, k–ε, k–ω and RMS to predict the energy separation in vortex tube. Some researchers considered artificial neural networks (ANN) and Taguchi methods for their analysis. Comparison of the predictions with simulation results were also presented to give a clear idea for the reader about the CFD models prediction capabilities.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9166-3
      Issue No: Vol. 24, No. 2 (2017)
       
  • Numerical Simulation of Fracking in Shale Rocks: Current State and Future
           Approaches
    • Authors: Gabriel Hattori; Jon Trevelyan; Charles E. Augarde; William M. Coombs; Andrew C. Aplin
      Pages: 281 - 317
      Abstract: Extracting gas from shale rocks is one of the current engineering challenges but offers the prospect of cheap gas. Part of the development of an effective engineering solution for shale gas extraction in the future will be the availability of reliable and efficient methods of modelling the development of a fracture system, and the use of these models to guide operators in locating, drilling and pressurising wells. Numerous research papers have been dedicated to this problem, but the information is still incomplete, since a number of simplifications have been adopted such as the assumption of shale as an isotropic material. Recent works on shale characterisation have proved this assumption to be wrong. The anisotropy of shale depends significantly on the scale at which the problem is tackled (nano, micro or macroscale), suggesting that a multiscale model would be appropriate. Moreover, propagation of hydraulic fractures in such a complex medium can be difficult to model with current numerical discretisation methods. The crack propagation may not be unique, and crack branching can occur during the fracture extension. A number of natural fractures could exist in a shale deposit, so we are dealing with several cracks propagating at once over a considerable range of length scales. For all these reasons, the modelling of the fracking problem deserves considerable attention. The objective of this work is to present an overview of the hydraulic fracture of shale, introducing the most recent investigations concerning the anisotropy of shale rocks, then presenting some of the possible numerical methods that could be used to model the real fracking problem.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9169-0
      Issue No: Vol. 24, No. 2 (2017)
       
  • An Overview of Recent Advancements in Causal Studies
    • Authors: Pramod Kumar Parida; Tshilidzi Marwala; Snehashish Chakraverty
      Pages: 319 - 335
      Abstract: In causal study we are interested in finding the graphical structure in the form of directed acyclic graphs (DAGs). These DAGs describe the directions and connection strength to connecting variables represented by nodes. In this regard, various methods have been developed to estimate the appropriate structure of the causal model and to explain a fair number of its features. Our review aims to provide a complete and systematic analysis of selected articles from past few decades, having powerful methods to infer the area of study. In this article, we categorized all selected articles in three groups, on the basis of techniques these used to construct the causal model. To provide a full comparative study under categories of probabilistic, statistical and algebraic approaches, we discussed underlying difficulties, limitations, merits and disadvantages in applying these techniques. The reader will find it helpful to choose and use the appropriate method for a better implication.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9168-1
      Issue No: Vol. 24, No. 2 (2017)
       
  • Parallelization Strategies for Computational Fluid Dynamics Software:
           State of the Art Review
    • Authors: Asif Afzal; Zahid Ansari; Ahmed Rimaz Faizabadi; M. K. Ramis
      Pages: 337 - 363
      Abstract: Computational fluid dynamics (CFD) is one of the most emerging fields of fluid mechanics used to analyze fluid flow situation. This analysis is based on simulations carried out on computing machines. For complex configurations, the grid points are so large that the computational time required to obtain the results are very high. Parallel computing is adopted to reduce the computational time of CFD by utilizing the available resource of computing. Parallel computing tools like OpenMP, MPI, CUDA, combination of these and few others are used to achieve parallelization of CFD software. This article provides a comprehensive state of the art review of important CFD areas and parallelization strategies for the related software. Issues related to the computational time complexities and parallelization of CFD software are highlighted. Benefits and issues of using various parallel computing tools for parallelization of CFD software are briefed. Open areas of CFD where parallelization is not much attempted are identified and parallel computing tools which can be useful for parallelization of CFD software are spotlighted. Few suggestions for future work in parallel computing of CFD software are also provided.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9165-4
      Issue No: Vol. 24, No. 2 (2017)
       
  • A Review on the Mechanical Modeling of Composite Manufacturing Processes
    • Authors: Ismet Baran; Kenan Cinar; Nuri Ersoy; Remko Akkerman; Jesper H. Hattel
      Pages: 365 - 395
      Abstract: The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9167-2
      Issue No: Vol. 24, No. 2 (2017)
       
  • Historical Origin and Recent Development on Normal Directional Impact
           Models for Rigid Body Contact Simulation: A Critical Review
    • Authors: Arnab Banerjee; Avishek Chanda; Raj Das
      Pages: 397 - 422
      Abstract: The impact is one of the most abundant phenomena in the field of multi-body dynamics when two or more bodies come in close vicinity and depending on the interaction properties and geometry, all the interacting bodies experience certain impulsive force for an infinitesimal duration. Nowadays, impact modelling becomes an intrinsic part in the modelling of structural pounding, granular materials, crash and machinery analysis, robotics and bio-mechatronics applications. Since the time of Newton, numerous literatures have been published on the modelling of both normal and oblique contact phenomena. The scope of this critical review is limited to consolidate the existing knowledge on the computational model of normal directional impact on rigid bodies. The literature related to modelling of oblique impact, soft body impact, impact damage in composites and associated stress wave propagation are excluded from the scope of this critical review. Smooth and non-smooth mechanics are two schools of thought in simulating the normal directional impact. In this review, the shortcomings of all the classes of compliance and non-smooth models are analysed in the unified dimensionless frame-work to compare their response output with the conventional stereo-mechanical model. This review opens a new avenue for future researchers in selecting a proper contact formulation for specific application.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9164-5
      Issue No: Vol. 24, No. 2 (2017)
       
  • Multiphase Flow in Deforming Porous Media: A Review
    • Authors: Francesco Pesavento; Bernhard A. Schrefler; Giuseppe Sciumè
      Pages: 423 - 448
      Abstract: In this work we present a general model for the analysis of multiphase flow in deforming porous media with particular regard to concrete and biological tissues. Such problems are typically multi-physics ones with overlapping domains where diffusion, advection, adsorption, phase change, deformation, chemical reactions and other phenomena take place in the porous medium. For the analysis of such a complex system, the model here proposed is obtained from microscopic scale by applying the thermodynamically constrained averaging theory which guarantees the satisfaction of the second law of thermodynamics for all constituents both at micro and macro-level. Furthermore, one can obtain some important thermodynamic restrictions for the evolution equations describing the material deterioration. Two specific forms of the general model adapted to the cases of cementitious and biological materials respectively are shown. Some numerical simulations aimed at proving the validity of the approach adopted, are also presented and discussed.
      PubDate: 2017-04-01
      DOI: 10.1007/s11831-016-9171-6
      Issue No: Vol. 24, No. 2 (2017)
       
  • Building a Digital Wind Farm
    • Authors: Sam Hewitt; Lee Margetts; Alistair Revell
      Abstract: The purpose of this paper is to provide a high level, holistic overview of the work being undertaken in the wind energy industry. It summarises the main techniques used to simulate both aerodynamic and structural issues associated with wind turbines and farms. The motivation behind this paper is to provide new researchers with an outlook of the modelling and simulation landscape, whilst highlighting the trends and direction research is taking. Each section summarises an individual area of simulation and modelling, covering the important historical research findings and a comprehensive analysis of recent work. This segregated approach emphasises the key components of wind energy. Topics range in geometric scales and detail, ranging from atmospheric boundary layer modelling, to fatigue and fracture in the turbine blades. More recent studies have begun to combine a range of scales and physics to better approximate real systems and provide higher fidelity and accurate analyses to manufacturers and companies. This paper shows a clear trend towards coupling both scales and physics into singular models utilising high performance computing system.
      PubDate: 2017-04-18
      DOI: 10.1007/s11831-017-9222-7
       
  • Observable Dictionary Learning for High-Dimensional Statistical Inference
    • Authors: Lionel Mathelin; Kévin Kasper; Hisham Abou-Kandil
      Abstract: This paper introduces a method for efficiently inferring a high-dimensional distributed quantity from a few observations. The quantity of interest (QoI) is approximated in a basis (dictionary) learned from a training set. The coefficients associated with the approximation of the QoI in the basis are determined by minimizing the misfit with the observations. To obtain a probabilistic estimate of the quantity of interest, a Bayesian approach is employed. The QoI is treated as a random field endowed with a hierarchical prior distribution so that closed-form expressions can be obtained for the posterior distribution. The main contribution of the present work lies in the derivation of a representation basis consistent with the observation chain used to infer the associated coefficients. The resulting dictionary is then tailored to be both observable by the sensors and accurate in approximating the posterior mean. An algorithm for deriving such an observable dictionary is presented. The method is illustrated with the estimation of the velocity field of an open cavity flow from a handful of wall-mounted point sensors. Comparison with standard estimation approaches relying on Principal Component Analysis and K-SVD dictionaries is provided and illustrates the superior performance of the present approach.
      PubDate: 2017-04-11
      DOI: 10.1007/s11831-017-9219-2
       
  • Bi-level and Multi-Level Programming Problems: Taxonomy of Literature
           Review and Research Issues
    • Authors: Kailash Lachhwani; Abhishek Dwivedi
      Abstract: This paper presents taxonomy of detailed literature reviews on bi-level programming problems (BLPPs), multi-level programming problems (MLPPs) and associated research problems, while providing detail of solution techniques at the same time. In this taxonomy of review, we classified the multi-level programming problems into two types: (i) General multi-level programming problems (MLPPs) (ii) multi-level multi-objective programming problems (ML-MOPPs) which are further sub classified based on the algorithmic and optimality studies. Bi-level programming problems (BLPPs) are considered as special cases of multi-level programming problems with two level structures. The present literature review includes approximately all prior and latest references on BLPPs, and MLPPs, related solution methodologies. The general related concepts are briefly described while associated references are included for further investigations. The aim of this paper is to provide an easy and systematic road map of currently available literature studies on BLPPs and MLPPs for future researchers.
      PubDate: 2017-04-09
      DOI: 10.1007/s11831-017-9216-5
       
  • Erratum to: Computational Methods for Elastoplasticity: An Overview of
           Conventional and Less‑Conventional Approaches
    • Authors: Giulia Scalet; Ferdinando Auricchio
      PubDate: 2017-03-30
      DOI: 10.1007/s11831-017-9221-8
       
  • A Survey of the Hysteretic Duhem Model
    • Authors: Fayçal Ikhouane
      Abstract: The Duhem model is a simulacrum of a complex and hazy reality: hysteresis. Introduced by Pierre Duhem to provide a mathematical representation of thermodynamical irreversibility, it is used to describe hysteresis in other areas of science and engineering. Our aim is to survey the relationship between the Duhem model as a mathematical representation, and hysteresis as the object of that representation.
      PubDate: 2017-03-29
      DOI: 10.1007/s11831-017-9218-3
       
  • A Review and Study on Ritz Method Admissible Functions with Emphasis on
           
    • Authors: Pablo Moreno-García; José V. Araújo dos Santos; Hernani Lopes
      Abstract: The first goal of this work is to present a literature review regarding the use of several sets of admissible functions in the Ritz method. The papers reviewed deal mainly with the analysis of buckling and free vibration of isotropic and anisotropic beams and plates. Theoretically, in order to obtain a correct solution, the set of admissible functions must not violate the essential or geometric boundary conditions and should also be linearly independent and complete. However, in practice, some of the sets of functions proposed in the literature present a bad numerical behavior, namely in terms of convergence, computational time and stability. Thus, a second goal of the present work is to compare the performance of several sets of functions in terms of these three features. To achieve this objective, the free vibration analysis of a fully clamped rectangular plate is carried out using six different sets of functions, along with the study of the convergence of natural frequencies and mode shapes, the computational time and the numerical stability.
      PubDate: 2017-03-24
      DOI: 10.1007/s11831-017-9214-7
       
  • Sensors Used in Structural Health Monitoring
    • Authors: Alejandro Moreno-Gomez; Carlos A. Perez-Ramirez; Aurelio Dominguez-Gonzalez; Martin Valtierra-Rodriguez; Omar Chavez-Alegria; Juan P. Amezquita-Sanchez
      Abstract: In the last years, the occurrence of natural hazards around the world has evinced the necessity of having structural health monitoring schemes that can allow the continuous assessment of the structural integrity of the civil structures or infrastructures, in order to avoid potential economic or human loses; further, it also allows the application of new sensing technologies and signal processing algorithms. An important step in a structural health monitoring strategy is the appropriate selection of the sensor used to measure the required physical variable. Although several reviews have been published, they focus on presenting and/or explaining the methodologies and signal processing techniques used in structural health monitoring. This article presents a state-of-the-art review of the sensing technologies used in structural health monitoring. Further, some candidate sensor technologies with potential of use in this area are also reviewed, where the main issues that affect their implementation in real-life schemes are also discussed.
      PubDate: 2017-03-17
      DOI: 10.1007/s11831-017-9217-4
       
  • System-Based Approaches for Structural Optimization of Flexible Mechanisms
    • Authors: Emmanuel Tromme; Alexander Held; Pierre Duysinx; Olivier Brüls
      Abstract: This paper reviews the state-of-the-art methods to perform structural optimization of flexible mechanisms. These methods are based on a system-based approach, i.e. the formulation of the design problem incorporates the time response of the mechanism that is obtained from a dynamic simulation of the flexible multibody system. The system-based approach aims at considering as precisely as possible the effects of nonlinear dynamic loading under various operating conditions. Also, the optimization process enhances most existing studies which are limited to (quasi-) static or frequency domain loading conditions. This paper briefly introduces flexible multibody system dynamics and structural optimization techniques. Afterwards, the two main methods, named the weakly and the fully coupled methods, that couple both disciplines are presented in details and the influence of the multibody system formalism is analyzed. The advantages and drawbacks of both methods are discussed and future possible research areas are mentioned.
      PubDate: 2017-03-07
      DOI: 10.1007/s11831-017-9215-6
       
  • Recent Developments in Variational Multiscale Methods for Large-Eddy
           Simulation of Turbulent Flow
    • Authors: Ursula Rasthofer; Volker Gravemeier
      Abstract: The variational multiscale method is reviewed as a framework for developing computational methods for large-eddy simulation of turbulent flow. In contrast to other articles reviewing this topic, which focused on large-eddy simulation of turbulent incompressible flow, this study covers further aspects of numerically simulating turbulent flow as well as applications beyond incompressible single-phase flow. The various concepts for subgrid-scale modeling within the variational multiscale method for large-eddy simulation proposed by researchers in this field to date are illustrated. These conceptions comprise (i) implicit large-eddy simulation, represented by residual-based and stabilized methods, (ii) functional subgrid-scale modeling via small-scale subgrid-viscosity models and (iii) structural subgrid-scale modeling via the introduction of multifractal subgrid scales. An overview on exemplary numerical test cases to which the reviewed methods have been applied in the past years is provided, including explicit computational results obtained from turbulent channel flow. Wall-layer modeling, passive and active scalar transport as well as developments for large-eddy simulation of turbulent two-phase flow and combustion are discussed to complete this exposition.
      PubDate: 2017-02-27
      DOI: 10.1007/s11831-017-9209-4
       
  • Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites
    • Authors: Georgios G. Vogiatzis; Doros N. Theodorou
      Abstract: Following the substantial progress in molecular simulations of polymer-matrix nanocomposites, now is the time to reconsider this topic from a critical point of view. A comprehensive survey is reported herein providing an overview of classical molecular simulations, reviewing their major achievements in modeling polymer matrix nanocomposites, and identifying several open challenges. Molecular simulations at multiple length and time scales, working hand-in-hand with sensitive experiments, have enhanced our understanding of how nanofillers alter the structure, dynamics, thermodynamics, rheology and mechanical properties of the surrounding polymer matrices.
      PubDate: 2017-02-22
      DOI: 10.1007/s11831-016-9207-y
       
  • Computational Methods for Elastoplasticity: An Overview of Conventional
           and Less-Conventional Approaches
    • Authors: Giulia Scalet; Ferdinando Auricchio
      Abstract: The need of accurately reproducing the behaviour of elastoplastic materials in computational environments for the solution of engineering problems motivates the development of efficient and robust numerical schemes. These engineering problems often involve complex designs and/or conditions and are further complicated by the necessity of employing highly nonlinear and nonsmooth elastoplastic constitutive equations and constraints to describe material behaviour. Therefore, the numerical solution of such problems is not trivial and requires careful analyses to guarantee algorithm robustness, accuracy, and convergence in a reasonable amount of time. The aim of the present paper is to provide the reader with both an analysis and discussion, helpful in choosing the suitable numerical scheme when considering the implementation of a plasticity model. After a brief overview of the fundamental concepts for classical plasticity theory, we revise the state-of-the-art of computational methods by discussing conventional and less-conventional algorithms, formulated in a unified setting to allow for a comparison. Several approaches are implemented and discussed in representative numerical simulations.
      PubDate: 2017-02-21
      DOI: 10.1007/s11831-016-9208-x
       
  • A Higher-Order Chimera Method for Finite Volume Schemes
    • Authors: Luis Ramírez; Xesús Nogueira; Pablo Ouro; Fermín Navarrina; Sofiane Khelladi; Ignasi Colominas
      Abstract: In this work a higher-order accurate finite volume method for the resolution of the Euler/Navier–Stokes equations using Chimera grid techniques is presented. The formulation is based on the use of Moving Least Squares approximations in order to obtain higher-order accurate reconstruction and connectivity between the overlapped grids. The accuracy and performance of the proposed methodology is demonstrated by solving different benchmark problems.
      PubDate: 2017-02-14
      DOI: 10.1007/s11831-017-9213-8
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.196.53.39
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016