for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> CHEMISTRY (Total: 846 journals)
    - ANALYTICAL CHEMISTRY (50 journals)
    - CHEMISTRY (597 journals)
    - CRYSTALLOGRAPHY (22 journals)
    - ELECTROCHEMISTRY (25 journals)
    - INORGANIC CHEMISTRY (41 journals)
    - ORGANIC CHEMISTRY (45 journals)
    - PHYSICAL CHEMISTRY (66 journals)

CHEMISTRY (597 journals)                  1 2 3 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 7)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 26)
ACS Catalysis     Full-text available via subscription   (Followers: 31)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 17)
ACS Combinatorial Science     Full-text available via subscription   (Followers: 23)
ACS Macro Letters     Full-text available via subscription   (Followers: 22)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 39)
ACS Nano     Full-text available via subscription   (Followers: 217)
ACS Photonics     Full-text available via subscription   (Followers: 10)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 20)
Acta Chemica Iasi     Open Access   (Followers: 2)
Acta Chimica Sinica     Full-text available via subscription  
Acta Chimica Slovaca     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 5)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 7)
Adsorption Science & Technology     Full-text available via subscription   (Followers: 5)
Advanced Functional Materials     Hybrid Journal   (Followers: 48)
Advanced Science Focus     Free   (Followers: 3)
Advances in Chemical Engineering and Science     Open Access   (Followers: 53)
Advances in Chemical Science     Open Access   (Followers: 12)
Advances in Chemistry     Open Access   (Followers: 12)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 18)
Advances in Drug Research     Full-text available via subscription   (Followers: 22)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 8)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 14)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 18)
Advances in Nanoparticles     Open Access   (Followers: 12)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 15)
Advances in Polymer Science     Hybrid Journal   (Followers: 40)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 18)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 5)
Advances in Science and Technology     Full-text available via subscription   (Followers: 10)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 2)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 7)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 3)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 65)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 14)
American Journal of Chemistry     Open Access   (Followers: 25)
American Journal of Plant Physiology     Open Access   (Followers: 13)
American Mineralogist     Full-text available via subscription   (Followers: 12)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 153)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 203)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 1)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 3)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 7)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Hybrid Journal  
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 6)
Applied Spectroscopy     Full-text available via subscription   (Followers: 22)
Applied Surface Science     Hybrid Journal   (Followers: 26)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 2)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Atomization and Sprays     Full-text available via subscription   (Followers: 3)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 2)
Avances en Quimica     Open Access   (Followers: 1)
Biochemical Pharmacology     Hybrid Journal   (Followers: 9)
Biochemistry     Full-text available via subscription   (Followers: 277)
Biochemistry Insights     Open Access   (Followers: 5)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 9)
Bioinspired Materials     Open Access   (Followers: 3)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access  
Biomacromolecules     Full-text available via subscription   (Followers: 18)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 4)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 107)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 99)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 2)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 2)
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Full-text available via subscription   (Followers: 10)
Canadian Mineralogist     Full-text available via subscription   (Followers: 3)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 67)
Catalysis for Sustainable Energy     Open Access   (Followers: 6)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 7)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 12)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 69)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 23)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Full-text available via subscription   (Followers: 19)
Chemical Reviews     Full-text available via subscription   (Followers: 165)
Chemical Science     Open Access   (Followers: 21)
Chemical Technology     Open Access   (Followers: 15)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 4)
Chemical Week     Full-text available via subscription   (Followers: 7)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 55)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 25)
ChemInform     Hybrid Journal   (Followers: 7)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 6)
Chemistry & Biology     Full-text available via subscription   (Followers: 30)
Chemistry & Industry     Hybrid Journal   (Followers: 5)
Chemistry - A European Journal     Hybrid Journal   (Followers: 136)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 15)
Chemistry and Materials Research     Open Access   (Followers: 17)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Hybrid Journal   (Followers: 2)
Chemistry Letters     Full-text available via subscription   (Followers: 43)
Chemistry of Materials     Full-text available via subscription   (Followers: 189)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry-Didactics-Ecology-Metrology     Open Access  
ChemistryOpen     Open Access   (Followers: 2)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 2)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 8)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 10)
Chromatographia     Hybrid Journal   (Followers: 23)
Chromatography Research International     Open Access   (Followers: 7)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Cogent Chemistry     Open Access  
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 10)
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 8)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 3)
Combustion Science and Technology     Hybrid Journal   (Followers: 18)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 2)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 9)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 2)
Copernican Letters     Open Access  
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 5)
Crystal Structure Theory and Applications     Open Access   (Followers: 3)
CrystEngComm     Full-text available via subscription   (Followers: 10)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Metabolomics     Hybrid Journal   (Followers: 4)
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Research in Chemistry     Open Access   (Followers: 8)
Current Science     Open Access   (Followers: 48)
Dalton Transactions     Full-text available via subscription   (Followers: 18)
Detection     Open Access   (Followers: 2)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 11)
Dislocations in Solids     Full-text available via subscription  
Doklady Chemistry     Hybrid Journal  
Drying Technology: An International Journal     Hybrid Journal   (Followers: 3)
Eclética Química     Open Access   (Followers: 1)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
Ecotoxicology and Environmental Contamination     Open Access  
Educación Química     Open Access   (Followers: 1)
Education for Chemical Engineers     Hybrid Journal   (Followers: 5)
EJNMMI Radiopharmacy and Chemistry     Open Access  
Elements     Full-text available via subscription   (Followers: 2)
Environmental Chemistry     Hybrid Journal   (Followers: 8)
Environmental Chemistry Letters     Hybrid Journal   (Followers: 4)
Environmental Science & Technology Letters     Full-text available via subscription   (Followers: 5)
Environmental Science : Nano     Partially Free   (Followers: 1)
Environmental Toxicology & Chemistry     Hybrid Journal   (Followers: 19)

        1 2 3 | Last

Journal Cover C - Journal of Carbon Research
  [2 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2311-5629
   Published by MDPI Homepage  [148 journals]
  • C, Vol. 3, Pages 10: Mechanical and Electrical Properties of Elastomer
           Nanocomposites Based on Different Carbon Nanomaterials

    • Authors: Liliane Bokobza
      First page: 10
      Abstract: Carbon nanostructures including carbon black, carbon nanotubes, graphite or graphene have attracted a tremendous interest as fillers for elastomeric compounds. The preparation methods of nanocomposites that have a strong impact on the state of filler dispersion and thus on the properties of the resulting composites, are briefly described. At a same filler loading, considerable improvement in stiffness is imparted to the host polymeric matrix by the carbon nanomaterials with regard to that provided by the conventional carbon black particles. It is mainly attributed to the high aspect ratio of the nanostructures rather than to strong polymer-filler interactions. The orienting capability of the anisotropic fillers under strain as well the formation of a filler network, have to be taken into account to explain the high level of reinforcements. A comparison of the efficiency of the different carbon nanostructures is carried out through their mechanical and electrical properties but no clear picture can be obtained since the composite properties are strongly affected by the state of filler dispersion.
      PubDate: 2017-04-12
      DOI: 10.3390/c3020010
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 11: The Role of Synthetic Fuels for a Carbon Neutral
           Economy

    • Authors: Rui Rosa
      First page: 11
      Abstract: Fossil fuels depletion and increasing environmental impacts arising from their use call for seeking growing supplies from renewable and nuclear primary energy sources. However, it is necessary to simultaneously attend to both the electrical power needs and the specificities of the transport and industrial sector requirements. A major question posed by the shift away from traditional fossil fuels towards renewable energy sources lies in matching the power demand with the daily and seasonal oscillation and the intermittency of these natural energy fluxes. Huge energy storage requirements become necessary or otherwise the decline of the power factor of both the renewable and conventional generation would mean loss of resources. On the other hand, liquid and gaseous fuels, for which there is vast storage and distribution capacity available, appear essential to supply the transport sector for a very long time ahead, besides their domestic and industrial roles. Within this context, the present assessment suggests that proven technologies and sound tested principles are available to develop an integrated energy system, relying on synthetic fuels. These would incorporate carbon capture and utilization in a closed carbon cycle, progressively relying mostly on solar and/or nuclear primary sources, providing both electric power and gaseous/liquid hydrocarbon fuels, having ample storage capacity, and able to timely satisfy all forms of energy demand. The principles and means are already available to develop a carbon-neutral synthetic fuel economy.
      PubDate: 2017-04-20
      DOI: 10.3390/c3020011
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 12: Wool Carpet Dye Adsorption on Nanoporous Carbon
           Materials Derived from Agro-Product

    • Authors: Raja Pradhananga, Laxmi Adhikari, Rekha Shrestha, Mandira Adhikari, Rinita Rajbhandari, Katsuhiko Ariga, Lok Shrestha
      First page: 12
      Abstract: In this paper, wool carpet dye adsorption properties of nanoporous activated carbon materials (NCMs) prepared from bamboo agro-product is reported. Bamboo cane powder was chemically activated with phosphoric acid at different temperatures (400, 500, and 600 °C) at an impregnation ratio of 1:1. We found that the specific surface area and the total pore volume of NCM increases with temperature giving the highest surface area and pore volume ca. 2130 m2·g−1 and 2.69 cc·g−1 at 600 °C. Owing to superior surface textural properties, bamboo-derived NCM showed excellent adsorption capacity for wool carpet dyes Lanasyn orange (LO) and Lanasyn gray (LG). The adsorption phenomena could be described by Langmuir/Freundlich adsorption isotherm models. The maximum adsorption capacity was ca. 2.60 × 103 and 3.04 × 103 mg·g−1 for LO and LG, respectively. The adsorption followed pseudo second order kinetics with the second order rate constant of 1.24 × 10−3 g·mg−1·min−1 (LO) and 7.69 × 10−4 g·mg−1·min−1 (LG), respectively. This study demonstrated that the high surface area NCMs prepared from agro-product can be used as efficient and cost-effective adsorbent materials for the removal of dyes from industrial effluent.
      PubDate: 2017-04-26
      DOI: 10.3390/c3020012
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 13: 14N NMR Spectroscopy Study of Binding Interaction
           between Sodium Azide and Hydrated Fullerene

    • Authors: Tamar Chachibaia, Manuel Martin Pastor
      First page: 13
      Abstract: Our study is the first attempt to study the interaction between NaN3 and hydrated fullerenes C60 by means of a non-chemical reaction-based approach. The aim is to study deviations of signals obtained by 14N NMR spectroscopy to detect the binding interaction between sodium azide and hydrated fullerene. We considered 14N NMR spectroscopy as one of the most suitable methods for the characterization of azides to show resonance signals corresponding to the three non-equivalent nitrogen atoms. The results demonstrate that there are changes in the chemical shift positions and line-broadening, which are related to the different molar ratios of NaN3:C60 in the samples.
      PubDate: 2017-04-29
      DOI: 10.3390/c3020013
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 14: Piezoresistive Response of Integrated CNT Yarns under
           Compression and Tension: The Effect of Lateral Constraint

    • Authors: Jude Anike, Huy Le, Grace Brodeur, Mathew Kadavan, Jandro Abot
      First page: 14
      Abstract: Carbon nanotube (CNT) yarns are fiber-like materials that exhibit excellent mechanical, electrical and thermal properties. More importantly, they exhibit a piezoresistive response that can be tapped for sensing purposes. The objective of this study is to determine experimentally the piezoresistive response of CNT yarns that are embedded in a polymeric medium while subjected to either tension or compression, and compare it with that of the free or unconstrained CNT yarns. The rationale is the need to know the piezoresistive response of the CNT yarn while in a medium, which provides a lateral constraint to the CNT yarn, thus mimicking the response of integrated CNT yarn sensors. The experimental program includes the fabrication of samples and their electromechanical characterization. The CNT yarns are integrated in polymeric beams and subjected to four-point bending, allowing the determination of their response under tension and compression. The electromechanical data from a combined Inductance–Capacitance–Resistance (LCR) device and a mechanical testing system were used to determine the piezoresistive response of the CNT yarns. At a strain rate of 0.006 min−1, the gauge factor obtained under tension for a maximum strain of 0.1% is ~29.3 which is higher than ~21.2 obtained under compression. The CNT yarn sensor exhibited strain rate dependence with a gauge factor of approximately 23.0 at 0.006 min−1, in comparison to 19.0 and 1.3, which were obtained at 0.0005 min−1 and 0.003 min−1, respectively. There is a difference of up to two orders of magnitude in the sensitivity of the constrained CNT yarn under bending with respect to that of the free CNT yarn under uniaxial tension. However, the difference becomes smaller when the constrained CNT yarn was tested under uniaxial tension. This data and information will be used for future modeling efforts and to study the phenomena that occur when CNT yarns are integrated in polymeric and composite materials and structures.
      PubDate: 2017-05-05
      DOI: 10.3390/c3020014
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 15: DFT Study on the Interaction of the Smallest
           Fullerene C20 with Lithium Ions and Atoms

    • Authors: Hiroshi Kawabata, Hiroto Tachikawa
      First page: 15
      Abstract: The smallest fullerene C20 with positive electron affinity is considered to be a new organic nano-electronic material. The binding structures and electronic states of lithium ions and atoms (Li+ and Li) trapped on the surface of C20 have been investigated by means of density functional theory (DFT) calculation to elucidate the nature of their interaction. It was found that a Li+ can bind to only one site of C20. This is, specifically, on top of the site where Li+ binds to the carbon atom of C20. On the other hand, in the case of a Li atom, two structures were obtained besides the on-top structure. One was pentagonal structure which included a Li atom on a five-membered ring of C20. The other was a triangular structure in which the Li atom bind to the the carbon–carbon bond of C20. Finally, the nature of the interactions between Li ions or atoms and the C20 cluster was discussed on the basis of theoretical results.
      PubDate: 2017-05-10
      DOI: 10.3390/c3020015
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 16: Materials and Processes for Carbon Dioxide Capture
           and Utilisation

    • Authors: Enrico Andreoli
      First page: 16
      Abstract: n/a
      PubDate: 2017-05-19
      DOI: 10.3390/c3020016
      Issue No: Vol. 3, No. 2 (2017)
       
  • C, Vol. 3, Pages 1: Batteries: Recent Advances in Carbon Materials

    • Authors: I. Cheng
      First page: 1
      Abstract: We welcome readers to this Special Issue of C. From the standpoint of economics of energy storage, carbon electrodes offer the practicality of large-scale applications with the promise of improved performance.[...]
      PubDate: 2017-01-09
      DOI: 10.3390/c3010001
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 2: Acknowledgement to Reviewers of C in 2016

    • Authors: C Editorial Office
      First page: 2
      Abstract: The editors of C would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...]
      PubDate: 2017-01-11
      DOI: 10.3390/c3010002
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 3: Carbon Nanostructures for Tagging in Electrochemical
           Biosensing: A Review

    • Authors: Paloma Yáñez-Sedeño, Susana Campuzano, José Pingarrón
      First page: 3
      Abstract: Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nanomaterials’ large surface area, excellent biological compatibility and ease functionalization and, in some cases, intrinsic electrochemistry. These carbon-based nanomaterials involve well-known carbon nanotubes (CNTs) and graphene as well as the more recent use of other carbon nanoforms. This paper briefly discusses the advantages of using carbon nanostructures and their hybrid nanocomposites for amplification through tagging in electrochemical biosensing platforms and provides an updated overview of some selected examples making use of labels involving carbon nanomaterials, acting both as carriers for signal elements and as electrochemical tracers, applied to the electrochemical biosensing of relevant (bio)markers.
      PubDate: 2017-01-16
      DOI: 10.3390/c3010003
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 4: Influence of Temperature on Vibrational Frequency of
           Graphene Sheet Used as Nano-Scale Sensing

    • Authors: Toshiaki Natsuki, Atsushi Yiwada, Jun Natsuki
      First page: 4
      Abstract: In this study, the vibrational properties of single- and double-layer graphene sheets (GSs) with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential applications of atomic-scale mass sensing are presented using GSs with simply supported boundary condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate the vibration frequency of the GSs under thermal environment. Using the proposed model, the relationship between the frequency shifts of graphene-based mass sensor and the attached nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation of frequency shifts with the attached nanomass and the positions on the GS are investigated and discussed in detail. The obtained results show that the nanomass can be easily detected by using GS resonator which provides a highly sensitive nanomechanical element in sensor systems. The vibrational frequency shift of GS increases with increasing the temperature dependence. The double-layer GSs (DLGSs) have higher sensitivity than the single-layer GSs (SLGSs) due to high frequency shifts.
      PubDate: 2017-01-19
      DOI: 10.3390/c3010004
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 5: Electrode Surface Composition of Dual-Intercalation,
           All-Graphite Batteries

    • Authors: Boris Dyatkin, Joseph Halim, Jeffrey Read
      First page: 5
      Abstract: Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes and offer high specific energy, inexpensive and environmentally sustainable materials, and high operating voltages. Our research investigated the influence of surface composition on capacities and cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected coreshell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and hydrogenation to introduce, respectively, –OH, and –H surface functional groups. We identified noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our approach provides novel fundamental insight into the anion intercalation process and suggests inexpensive and environmentally sustainable methods to improve performance of these grid-scale energy storage systems
      PubDate: 2017-02-09
      DOI: 10.3390/c3010005
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 6: High-Bandwidth and Sensitive Air Flow Sensing Based on
           Resonance Properties of CNT-on-Fiber Hairs

    • Authors: Keith Slinker, Corey Kondash, Benjamin Dickinson, Jeffery Baur
      First page: 6
      Abstract: Artificial hair flow sensors were fabricated using piezoresistive, radially grown carbon nanotube arrays on glass fibers and investigated for their dynamic aerodynamic response as measured within an instrumented plane-wave tube. The sensors were experimentally observed to provide both a large bandwidth of operation below first resonance and a strong resonance response at selected frequencies above first resonance. The frequency of first resonance was easily tunable by adjusting the length of the exposed hair and could be made to vary from a few hundred hertz to over 13 kHz. Higher frequency bands were accessible for a given hair length using higher-order resonance modes, up to five of which were observed. All of the responses were understood and modeled using a vibrating Euler-Bernoulli beam analysis.
      PubDate: 2017-03-08
      DOI: 10.3390/c3010006
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 7: More Energy-Efficient CO2 Capture from IGCC GE Flue
           Gases

    • Authors: Rakpong Peampermpool, Chii Teh, Moses Tade, Abdul Qader, Ahmed Barifcani
      First page: 7
      Abstract: Carbon dioxide (CO2) emissions are one of the main reasons for the increase in greenhouse gasses in the earth’s atmosphere and carbon capture and sequestration (CCS) is known as an effective method to reduce CO2 emissions on a larger scale, such as for fossil energy utilization systems. In this paper, the feasibility of capturing CO2 using cryogenic liquefaction and improving the capture rate by expansion will be discussed. The main aim was to design an energy-saving scheme for an IGCC (integrated gasification combined cycle) power plant with CO2 cryogenic liquefaction capture. The experimental results provided by the authors, using the feed gas specification of a 740 MW IGCC General Electric (GE) combustion power plant, demonstrated that using an orifice for further expanding the vent gas after cryogenic capture from 57 bar to 24 bar gave an experimentally observed capture rate up to 65%. The energy-saving scheme can improve the overall CO2 capture rate, and hence save energy. The capture process has also been simulated using Aspen HYSYS simulation software to evaluate its energy penalty. The results show that a 92% overall capture rate can be achieved by using an orifice.
      PubDate: 2017-03-13
      DOI: 10.3390/c3010007
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 8: An Overview of Pesticide Monitoring at Environmental
           Samples Using Carbon Nanotubes-Based Electrochemical Sensors

    • Authors: Ademar Wong, Tiago Silva, Fábio Caetano, Márcio Bergamini, Luiz Marcolino-Junior, Orlando Fatibello-Filho, Bruno Janegtiz
      First page: 8
      Abstract: Carbon nanotubes have received enormous attention in the development of electrochemical sensors by promoting electron transfer reactions, decreasing the work overpotential within great surface areas. The growing concerns about environmental health emphasized the necessity of continuous monitoring of pollutants. Pesticides have been successfully used to control agricultural and public health pests; however, intense use can cause a number of damages for biodiversity and human health. In this sense, carbon nanotubes-based electrochemical sensors have been proposed for pesticide monitoring combining different electrode modification strategies and electroanalytical techniques. In this paper, we provide a review of the recent advances in the use of carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides. Future directions, perspectives, and challenges are also commented.
      PubDate: 2017-03-15
      DOI: 10.3390/c3010008
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 3, Pages 9: Biosensors Based on Lipid Modified Graphene
           Microelectrodes

    • Authors: Georgia-Paraskevi Nikoleli, Christina Siontorou, Dimitrios Nikolelis, Spyridoula Bratakou, Stephanos Karapetis, Nikolaos Tzamtzis
      First page: 9
      Abstract: Graphene is one of the new materials which has shown a large impact on the electronic industry due to its versatile properties, such as high specific surface area, high electrical conductivity, chemical stability, and large spectrum of electrochemical properties. The graphene material-based electronic industry has provided flexible devices which are inexpensive, simple and low power-consuming sensor tools, therefore opening an outstanding new door in the field of portable electronic devices. All these attractive advantages of graphene give a platform for the development of a new generation of devices in both food and environmental applications. Lipid-based sensors have proven to be a good route to the construction of novel devices with improved characteristics, such as fast response times, increased sensitivity and selectivity, and the possibility of miniaturization for the construction of portable biosensors. Therefore, the incorporation of a lipid substrate on graphene electrodes has provided a route to the construction of a highly sensitive and selective class of biosensors with fast response times and portability of field applications for the rapid detection of toxicants in the environment and food products.
      PubDate: 2017-03-16
      DOI: 10.3390/c3010009
      Issue No: Vol. 3, No. 1 (2017)
       
  • C, Vol. 2, Pages 23: Three-Dimensional Carbon Nanostructures for Advanced
           Lithium-Ion Batteries

    • Authors: Chiwon Kang, Eunho Cha, Mumukshu Patel, H. Wu, Wonbong Choi
      First page: 23
      Abstract: Carbon nanostructural materials have gained the spotlight as promising anode materials for energy storage; they exhibit unique physico-chemical properties such as large surface area, short Li+ ion diffusion length, and high electrical conductivity, in addition to their long-term stability. However, carbon-nanostructured materials have issues with low areal and volumetric densities for the practical applications in electric vehicles, portable electronics, and power grid systems, which demand higher energy and power densities. One approach to overcoming these issues is to design and apply a three-dimensional (3D) electrode accommodating a larger loading amount of active anode materials while facilitating Li+ ion diffusion. Furthermore, 3D nanocarbon frameworks can impart a conducting pathway and structural buffer to high-capacity non-carbon nanomaterials, which results in enhanced Li+ ion storage capacity. In this paper, we review our recent progress on the design and fabrication of 3D carbon nanostructures, their performance in Li-ion batteries (LIBs), and their implementation into large-scale, lightweight, and flexible LIBs.
      PubDate: 2016-10-26
      DOI: 10.3390/c2040023
      Issue No: Vol. 2, No. 4 (2016)
       
  • C, Vol. 2, Pages 24: Recent Progress in Design of Biomass-Derived Hard
           Carbons for Sodium Ion Batteries

    • Authors: Joanna Górka, Cathie Vix-Guterl, Camelia Matei Ghimbeu
      First page: 24
      Abstract: Sodium ion batteries (SIBs) have attracted lots of attention over last few years due to the abundance and wide availability of sodium resources, making SIBs the most cost-effective alternative to the currently used lithium ion batteries (LIBs). Many efforts are underway to find effective anodes for SIBs since the commercial anode for LIBs, graphite, has shown very limited capacity for SIBs. Among many different types of carbons, hard carbons—especially these derived from biomass—hold a great deal of promise for SIB technology thanks to their constantly improving performance and low cost. The main scope of this mini-review is to present current progress in preparation of negative electrodes from biomass including aspects related to precursor types used and their impact on the final carbon characteristics (structure, texture and composition). Another aspect discussed is how certain macro- and microstructure characteristics of the materials translate to their performance as anode for Na-ion batteries. In the last part, current understanding of factors governing sodium insertion into hard carbons is summarized, specifically those that could help solve existing performance bottlenecks such as irreversible capacity, initial low Coulombic efficiency and poor rate performance.
      PubDate: 2016-12-05
      DOI: 10.3390/c2040024
      Issue No: Vol. 2, No. 4 (2016)
       
  • C, Vol. 2, Pages 25: CO2 Adsorption by para-Nitroaniline Sulfuric
           Acid-Derived Porous Carbon Foam

    • Authors: Enrico Andreoli, Andrew Barron
      First page: 25
      Abstract: The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS) characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively) are comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials. The analysis of the XPS signals of C1s, O1s, N1s, and S2p reveals the presence of a large number of functional groups and chemical species. The CO2 adsorption capacity of the foam is 7.9 wt% (1.79 mmol/g) at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is 113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an extrapolated activation energy of 18.3 kJ/mol comparable to that of amine-modified nanocarbons. The richness in functionalities of H2SO4-expanded foams represents a valuable and further pursuable approach to porous carbons alternative to KOH-derived activated carbons.
      PubDate: 2016-12-21
      DOI: 10.3390/c2040025
      Issue No: Vol. 2, No. 4 (2016)
       
  • C, Vol. 2, Pages 17: Tuning CNT Properties for Metal-Free Environmental
           Catalytic Applications

    • Authors: Raquel Rocha, Olívia Soares, José Figueiredo, Manuel Pereira
      First page: 17
      Abstract: The application of carbon nanotubes (CNTs) as metal-free catalysts is a novel approach for heterogeneous liquid phase catalytic systems. Textural and chemical modifications by liquid/gas phase or mechanical treatments, as well as solid state reactions, were successfully applied to obtain carbon nanotubes with different surface functionalities. Oxygen, nitrogen, and sulfur are the most common heteroatoms introduced on the carbon surface. This short-review highlights different routes used to develop metal-free carbon nanotube catalysts with enhanced properties for Advanced Oxidation Processes.
      PubDate: 2016-06-29
      DOI: 10.3390/c2030017
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 18: Thermochemistry of a Biomimetic and Rubisco-Inspired
           CO2 Capture System from Air

    • Authors: Andrew Muelleman, Joseph Schell, Spencer Glazer, Rainer Glaser
      First page: 18
      Abstract: In theoretical studies of chemical reactions the reaction thermochemistry is usually reported for the stoichiometric reaction at standard conditions (ΔG°, ΔH°, ΔS°). We describe the computation of the equilibrium concentrations of the CO2-adducts for the general capture reaction CO2 + Capture System ⇆ CO2-adduct (GCR) and the rubisco-type capture reaction CO2 + Capture System ⇆ CO2-adduct + H2O (RCR) with consideration of the reaction CO2(g) ⇆ CO2(aq) via Henry’s law. The resulting equations are evaluated and graphically illustrated as a function of atmospheric CO2 concentration and as a function of temperature. The equations were applied to the thermochemistry of small molecule rubisco-model reactions and series of additional model reactions to illustrate the range of the Gibbs free enthalpy for the effective reversible capture and of the reaction entropy for economic CO2 release at elevated temperature. A favorable capture of free enthalpy is of course a design necessity, but not all exergonic reactions are suitable CO2 capture systems. Successful CO2 capture systems must allow for effective release as well, and this feature is controlled by the reaction entropy. The principle of using a two-pronged capture system to ensure a large negative capture entropy is explained and highlighted in the graphical abstract. It is hoped that the presentation of the numerical examples provides useful guidelines for the design of more efficient capture systems.
      PubDate: 2016-07-01
      DOI: 10.3390/c2030018
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 19: Carbon Nanofibers Grown on Large Woven Cloths:
           Morphology and Properties of Growth

    • Authors: Vitaly Koissin, Ton Bor, Željko Kotanjac, Leon Lefferts, Laurent Warnet, Remko Akkerman
      First page: 19
      Abstract: The morphology and chemical composition of carbon nanofibers in situ grown on a large carbon-fiber woven fabric are studied using SEM measurements, X-ray Diffraction, X-ray Flourescence, and X-ray Photoelectron Spectroscopy. Results show that nanofibers can have a density and a morphology potentially advantageous for application in polymer-matrix composites. The fiber surface functional groups significantly change after the growth and this also potentially provides a better interfacial adhesion. These advantages can be controlled, e.g., by the catalyst loading and the type of solvent used for its deposition.
      PubDate: 2016-07-04
      DOI: 10.3390/c2030019
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 20: Simple Process for Sidewall Modification of
           Multi-Walled Carbon Nanotubes with Polymer Side Chain Radicals Generated
           by Ultraviolet-Induced C–Cl Bond Dissociation of Polystyrene Derivatives
           

    • Authors: Tomoya Takada, Takuma Baba, Shigeaki Abe
      First page: 20
      Abstract: In this work, we investigated a simple one-step process for the formation of chemical bonds between multi-walled carbon nanotubes (MWCNTs) and benzyl-type side chain radicals generated by UV photolysis of polystyrene derivatives containing the chloromethyl (–CH2Cl) group. Poly(4-chloromethyl)styrene, or styrene/4-(chloromethyl)styrene random copolymer, was mixed with MWCNTs in 1-methyl-2-pyrrolidone and irradiated with ultraviolet (UV) light. Films of polymer/MWCNT mixtures before and after UV irradiation were fabricated, and then examined by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. According to the XPS analysis, the amount of Cl atoms in the mixture was found to decrease upon UV irradiation, indicating that the Cl atoms generated by photolysis of chloromethyl groups escaped from the reaction system in the form of gaseous Cl2. The structural change of CNTs after UV irradiation was also observed by comparing the G/D ratios (the intensity ratio of the G to D bands) of the Raman spectra obtained before and after UV irradiation. Similar phenomena were also confirmed in the case of the polymer/MWCNT mixture containing hydroxylammonium chloride as a dispersant of MWCNTs. These results confirmed the UV-induced covalent bond formation between polymer side chains and MWCNTs.
      PubDate: 2016-07-26
      DOI: 10.3390/c2030020
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 21: Synergetic Hybrid Aerogels of Vanadia and Graphene as
           Electrode Materials of Supercapacitors

    • Authors: Xuewei Fu, Yuming Chen, Yu Zhu, Sadhan Jana
      First page: 21
      Abstract: The performance of synergetic hybrid aerogel materials of vanadia and graphene as electrode materials in supercapacitors was evaluated. The hybrid materials were synthesized by two methods. In Method I, premade graphene oxide (GO) hydrogel was first chemically reduced by L-ascorbic acid and then soaked in vanadium triisopropoxide solution to obtain V2O5 gel in the pores of the reduced graphene oxide (rGO) hydrogel. The gel was supercritically dried to obtain the hybrid aerogel. In Method II, vanadium triisopropoxide was hydrolyzed from a solution in water with GO particles uniformly dispersed to obtain the hybrid gel. The hybrid aerogel was obtained by supercritical drying of the gel followed by thermal reduction of GO. The electrode materials were prepared by mixing 80 wt % hybrid aerogel with 10 wt % carbon black and 10 wt % polyvinylidene fluoride. The hybrid materials in Method II showed higher capacitance due to better interactions between vanadia and graphene oxide particles and more uniform vanadia particle distribution.
      PubDate: 2016-08-04
      DOI: 10.3390/c2030021
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 22: Flexible Carbon Aerogels

    • Authors: Marina Schwan, Lorenz Ratke
      First page: 22
      Abstract: Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.
      PubDate: 2016-09-06
      DOI: 10.3390/c2030022
      Issue No: Vol. 2, No. 3 (2016)
       
  • C, Vol. 2, Pages 9: Electrochemical Li Storage Properties of Carbon-Rich
           B–C–N Ceramics

    • Authors: Shrikant Bhat, Pradeep Sasikumar, Leopoldo Molina-Luna, Magdalena Graczyk-Zajac, Hans-Joachim Kleebe, Ralf Riedel
      First page: 9
      Abstract: Amorphous BCN ceramics were synthesized via a thermal conversion procedure of piperazine–borane and pyridine–borane. The synthesized BC2N and BC4N ceramics contained, in their final amorphous structure, 45 and 65 wt % of carbon, respectively. Elemental analysis revealed 45 and 65 wt % of carbon for BC2N and BC4N, respectively. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed the amorphous nature of studied compounds. Lateral cluster size of carbon crystallites of 7.43 and 10.3 nm for BC2N and BC4N, respectively, was calculated from Raman spectroscopy data. This signified a higher order of the carbon phase present in BC4N. The electrochemical investigation of the low carbon BC2N composition as anodes for Li-ion batteries revealed initial capacities of 667 and 235 mAh·g−1 for lithium insertion/extraction, respectively. The material with higher carbon content, BC4N, disclosed better reversible lithium storage properties. Initial capacities of 1030 and 737 mAh·g−1 for lithium insertion and extraction were recovered for carbon-rich BC4N composition. Extended cycling with high currents up to 2 C/2 D revealed the cycling stability of BC4N electrodes. Cycling for more than 75 cycles at constant current rates showed a stable electrochemical behavior of BC4N anodes with capacities as high as 500 mAh·g−1.
      PubDate: 2016-03-24
      DOI: 10.3390/c2020009
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 10: High Performance of Alkaline Anion-Exchange Membranes
           Based on Chitosan/Poly (vinyl) Alcohol Doped with Graphene Oxide for the
           Electrooxidation of Primary Alcohols

    • Authors: Leticia García-Cruz, Clara Casado-Coterillo, Ángel Irabien, Vicente Montiel, Jesus Iniesta
      First page: 10
      Abstract: Mixed matrix membranes (MMM) based on chitosan (CS) and poly (vinyl) alcohol (PVA) with a 50:50 w/w ratio doped with graphene oxide (GO) are prepared by solution casting and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water uptake, alcohol permeability, ion exchange capacity (IEC) and OH− conductivity measurements. The SEM analysis revealed a dense MMM where the GO nanosheets were well dispersed over the entire polymer matrix. The incorporation of GO increased considerably the thermal stability of the CS:PVA membrane. The GO-based MMM exhibited a low conductivity of 0.19 mS·cm−1 in part because the GO sheets did not change the crystallinity of the CS:PVA matrix. The reinforced structure created by the hydrogen bonds between the GO filler and the CS:PVA matrix resulted to be a good physical barrier for alcohol permeability, achieving a coefficient of diffusion of 3.38 × 10−7 and 2.43 × 10−7 cm2·s−1 after 60 and 120 min, respectively, thus avoiding additional alcohol crossover. Finally, the electrochemical performance of the GO-based MMM in the electrooxidation of propargyl alcohol was investigated in a Polymer Electrolyte Membrane Electrochemical Reactor (PEMER) under alkaline conditions, through the polarization curve and the electrolysis reactions, showing a performance comparable to anion-exchange commercial membranes.
      PubDate: 2016-04-01
      DOI: 10.3390/c2020010
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 11: Calculating the Emissions Impacts of Waste
           Electronics Recycling in Ontario, Canada

    • Authors: Calvin Lakhan
      First page: 11
      Abstract: This study highlights the economic and environmental challenges of recycling in Ontario, specifically examining the effect of attempting to increase the emissions target for the province’s Waste Electronics (WEEE) program. The findings from the cost model analysis found that Ontario’s Electronic Stewardship program reduces overall carbon emissions by approximately 205 thousand tonnes every year. This study also found that targeting specific materials for recovery could result in a scenario where the province could improve emissions offsets while reducing material management costs. Under our modeled scenario, as the tonnes of greenhouse gases (GHGs) avoided increases, the system cost per tonne of GHG avoided initially declines. However, after avoiding 215 thousand tonnes of GHGs (the optimal point), the system cost/tonne GHG avoided increases. To achieve an emissions target in excess of 215 thousand tonnes, the province will have to have to start recycling higher cost difficult to recycle materials (display monitors, computer peripherals, etc.).
      PubDate: 2016-04-11
      DOI: 10.3390/c2020011
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 12: Graphene-Oxide Nano Composites for Chemical Sensor
           Applications

    • Authors: Surajit Hazra, Sukumar Basu
      First page: 12
      Abstract: Of late, graphene has occupied the attention of almost all researchers working globally in the area of materials science. Graphene nanocomposites are the latest additions to the wonder applications of graphene. One of the promising applications of the graphene-oxide nanocomposites is chemical sensing which is useful for monitoring the toxicity, inflammability, and explosive nature of chemicals. Well known binary oxides like ZnO, TiO2, SnO2, WO3, and CuO when combined with graphene in the form of nanocomposites have excellent potential for detecting trace amounts of hazardous gases and chemicals. In this article the preparations, characterizations, and the chemical sensor applications of graphene-oxide nanocomposites are presented in detail.
      PubDate: 2016-04-12
      DOI: 10.3390/c2020012
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 13: Application of GUITAR on the Negative Electrode of
           the Vanadium Redox Flow Battery: Improved V3+/2+ Heterogeneous Electron
           Transfer with Reduced Hydrogen Gassing

    • Authors: Humayun Kabir, Isaiah Gyan, Jeremy Foutch, Haoyu Zhu, I. Cheng
      First page: 13
      Abstract: GUITAR (Graphene from the University of Idaho Thermolyzed Asphalt Reaction) has the classical basal and edge plane morphology of graphites and thin layer graphenes with similar X-ray photoelectron spectroscopy (XPS), Raman and IR characteristics. However previous investigations indicated GUITAR is different electrochemically from graphenes and classical graphites. GUITAR has faster heterogeneous electron transfer across its basal plane and an electrochemical window that exceeds graphitic materials by 1 V. These beneficial properties are examined for application in the negative electrode of the vanadium redox flow battery (VRFB). Graphitic materials in this application suffer from hydrogen gassing and slow electron transfer kinetics for the V2+/3+ redox couple. Cyclic voltammetry of the V2+/3+ redox couple (0.05 M V3+ in 1 M H2SO4) on bare KFD graphite felt gives an estimated standard rate constant (k0) of 8.2 × 10−7 cm/s. The GUITAR-coated KFD graphite felt improves that quantity to 8.6 × 10−6 cm/s. The total contribution of the cyclic voltammetric currents at −1.0 V vs. Ag/AgCl to hydrogen evolution is 3% on GUITAR-coated KFD graphite felt. On bare KFD graphite felt, this is 22%. These results establish GUITAR as an excellent alternative material for the negative electrode in the vanadium redox flow battery.
      PubDate: 2016-04-19
      DOI: 10.3390/c2020013
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 14: The Mediatorless Electroanalytical Sensing of Sulfide
           Utilizing Unmodified Graphitic Electrode Materials

    • Authors: Bhawana Thakur, Elena Bernalte, Jamie Smith, Patricia Linton, Shilpa Sawant, Craig. Banks, Christopher Foster
      First page: 14
      Abstract: The mediatorless electroanalytical sensing of sulfide is explored at a range of commercially available graphitic based electrodes namely, edge and basal plane pyrolytic graphite (EPPGE and BPPGE, respectively), boron-doped diamond (BDDE), glassy carbon (GCE) and screen-printed electrodes (SPE). The electrochemical performance is evaluated in terms of current density/analytical signal and oxidation potential, where the GCE and SPE are found to possess the optimal electrochemical responses. The electroanalytical performance of the GCE is explored towards the electrochemical sensing of sulfide and it is found that it is hampered by sulfide passivation, thus requiring pretreatment in the form of electrode polishing between each measurement. We demonstrate that SPEs provide a simple analytically comparable alternative, which, due to their scales of economy, create disposable, one-shot sensors that do not require any pretreatment of the electrode surface. To the best of our knowledge, this is the first report using mediatorless SPEs (bare/unmodified) towards the sensing of sulfide. In addition, the electroanalytical efficacy of the SPEs is also explored towards the detection of sulfide within model aqueous solutions and real drinking water samples presenting good apparent recoveries, justifying the plausibility of this graphitic mediatorless screen-printed platform.
      PubDate: 2016-04-16
      DOI: 10.3390/c2020014
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 15: Selective Growth of and Electricity Production by
           Marine Exoelectrogenic Bacteria in Self-Aggregated Hydrogel of Microbially
           Reduced Graphene Oxide

    • Authors: Naoko Yoshida, Yuko Goto, Yasushi Miyata
      First page: 15
      Abstract: Graphene oxide (GO) has been shown to be reduced by several microorganisms. Recent studies of the growth of Geobacter species in the presence of GO and electricity production by recovery of electrons on the reduced form of GO (rGO) have indicated substantial benefits of GO and GO-respiring bacteria (GORB) in microbial electrochemical systems. In this study, we enriched GORB from a coastal sample to investigate the distribution and phylogenetic variety of GORB in seawater environments. X-ray photoelectron spectroscopy (XPS) and four-terminal probing revealed that the enriched microbial community (designated as CS culture) reduced GO and self-aggregated into a conductive hydrogel complex with rGO (the CS-rGO complex). In the process of GO reduction, certain bacterial populations grew in a manner that was dependent on GO respiration coupled with acetate oxidization. High-throughput sequencing of 16S rRNA as a biomarker revealed the predominance of Desulfomonas species at 92% of the total bacterial population in the CS culture. The CS-rGO complex produced electricity with acetate oxidization, exhibiting less than 1 Ω/cm3 of charge transfer resistance. Thus, these results suggested that Desulfomonas species could grow on rGO and produce electricity via the reduced form of GO.
      PubDate: 2016-05-20
      DOI: 10.3390/c2020015
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 16: Two Blind Mice: It Is Time for Greater Collaboration
           between Engineers and Social Scientists around the RDD & D of
           Industrial Technologies

    • Authors: Christopher Jones, Allan Jones
      First page: 16
      Abstract: Within this short communication article, we consider the value that closer and earlier collaboration between engineers and social scientists could offer the research, development, demonstration and deployment (RDD & D) of industrial technologies. We consider perspectives taken from both the social sciences and engineering in order to highlight the prejudices and misunderstandings that currently limit the extent and quality of such collaboration. It is reasoned that the complex engineering challenges of the future demand a move towards greater interdisciplinarity. Current successful approaches towards fostering interdisciplinarity within the Carbon Dioxide Utilisation (CDU) research community are then used to illustrate the benefits of employing a more holistic approach to the design and introduction of new industrial technologies. It is our hope that this article will catalyse similar collaborative research efforts within other sectors.
      PubDate: 2016-06-21
      DOI: 10.3390/c2020016
      Issue No: Vol. 2, No. 2 (2016)
       
  • C, Vol. 2, Pages 2: Carbon-Doped Hexagonal Boron Nitride: Analysis as
           π-Conjugate Molecules Embedded in Two Dimensional Insulator

    • Authors: Wei Xie, Takashi Yanase, Taro Nagahama, Toshihiro Shimada
      First page: 2
      Abstract: We analyzed the electronic structures of carbon-doped hexagonal boron nitride, focusing on the comparison with the corresponding π-conjugate hydrocarbon molecules and odd-number substitution by first principle calculation. The band gaps are about the half that of the HOMO-LUMO gaps of corresponding hydrocarbons, except for the cis-butadiene structure in which aromatic hexagonal ring formation is important. Odd number doping makes metallic materials with very different work functions, depending upon the difference in B and N numbers, and has an expected application as electrodes for flexible devices.
      PubDate: 2016-01-29
      DOI: 10.3390/c2010002
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 3: Time-Dependent Effects on the Coupled
           Mechanical-Electrical Response of Carbon Nanotube Yarns under Tensile
           Loading

    • Authors: Jude Anike, Angeline Bajar, Jandro Abot
      First page: 3
      Abstract: Carbon nanotube yarns have extraordinary mechanical, electrical and thermal properties that make them attractive for high-performance and multifunctional composite materials. They also exhibit a unique piezoresistive response when subjected to mechanical strain. This characteristic is of interest for sensing applications including strain measurement and damage detection when integrated in polymeric and composite materials. Thus, there is a need to understand the coupled mechanical and electrical behavior of the carbon nanotube yarns to fully comprehend the entire scope of their sensing applications. Of particular interest are their characteristics when used as piezoresistive strain sensors in structures that are subjected to dynamic loading including fatigue and impact, or quasi-static cyclic loading. This paper presents a study about the presence of hysteresis and other time-dependent effects in carbon nanotube yarns during quasi-static cyclic uniaxial tensile loading. By simultaneously measuring the resistance, the load and the displacement histories, any direct correlations between the mechanical and electrical characteristics of the carbon nanotube yarns are investigated including the effect of strain level, strain rate, and stress relaxation. It was observed that all these effects play a significant role in the piezoresistive response of the carbon nanotube yarns. In particular, a low strain rate appears to bring out a unique piezoresistive response that is not observed at higher strain rates. The underlying phenomena determining the piezoresistive responses are hypothesized and discussed in the context of strain rate and maximum strain level.
      PubDate: 2016-02-02
      DOI: 10.3390/c2010003
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 4: Manganese Oxide Coated Carbon Materials as Hybrid
           Catalysts for the Application in Primary Aqueous Metal-Air Batteries

    • Authors: Andreas Flegler, Sarah Hartmann, Henning Weinrich, Martina Kapuschinski, Jochen Settelein, Henning Lorrmann, Gerhard Sextl
      First page: 4
      Abstract: One of the major challenges of metal-air batteries is the impeded oxygen reduction reaction (ORR) during discharge occurring at the gas diffusion electrode (GDE) of the battery. Due to the impeded ORR, high overpotentials emerge and result in a loss of energy efficiency. In order to improve the latter, suitable catalysts have to be employed. Transition metal oxides like manganese oxides (e.g., MnO2, Mn2O3, Mn3O4, Mn5O8, MnOOH) [1,2] are known as good and inexpensive materials for the ORR in alkaline media. A drawback of manganese oxide catalysts is the poor electrical conductivity. Hence, the approach presented in this work aims to enhance the catalytic activity of Mn3O4 and γ–MnO2 by the incorporation of conductive carbon material into the pure manganese oxide. The resulting hybrid catalysts are prepared either by impregnation of Super C 65, Vulcan XC 72, and Kuraray YP 50F via a sol-gel technique employing a MnO2 precursor sol or by direct precipitation of Mn3O4 or γ–MnO2 particles in the presence of the carbon materials mentioned above. Investigations by rotating disc electrode (RDE) show a noticeably higher catalytic activity of the hybrid catalysts than for the pure materials. For verification of the results measured by RDE, screen printed GDEs are prepared and tested in Zn-air full cells.
      PubDate: 2016-02-15
      DOI: 10.3390/c2010004
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 5: Is the Formation of Poly-CO2 Stabilized by Lewis Base
           Moieties in N- and S-Doped Porous Carbon?

    • Authors: Saunab Ghosh, Andrew Barron
      First page: 5
      Abstract: The polymerization of CO2 by Lewis basic moieties has been recently proposed to account for the high adsorption ability of N and S-doped porous carbon materials formed from the pyrolysis of sulfur or nitrogen containing polymers in the presence of KOH. Ab initio calculations performed on the ideal CO2 tetramer complex LB-(CO2)4 (LB = NH3, H2O, H2S) showed no propensity for stabilization. A weak association is observed using Lewis acid species bound to oxygen (LA = H+, AlF3, AlH3, B4O6); however, the combination of a Lewis acid and base does allow for the formation of polymerized CO2 (i.e., LB-C(O)O-[C(O)O]n-C(O)O-LA). While the presence of acid moieties in porous carbon is well known, and borate species are experimentally observed in KOH activated porous carbon materials, the low stability of the oligomers calculated herein, is insufficient to explain the reported poly-CO2.
      PubDate: 2016-02-15
      DOI: 10.3390/c2010005
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 6: The Kinetics of Single-Walled Carbon Nanotube
           Aggregation in Aqueous Media Is Sensitive to Surface Charge

    • Authors: Byumseok Koh, Wei Cheng
      First page: 6
      Abstract: Single-walled carbon nanotubes (SWCNTs) dispersed in aqueous media have many potential applications in chemistry, biology and medicine. To disperse SWCNTs into aqueous media, it is often necessary to modify the surface of SWCNTs by either covalent or noncovalent methods. As a result of this modification, the properties of SWCNTs may be profoundly influenced by the nature of the surface modification. Here, by using SWCNTs dispersed with single-stranded DNA of different lengths, we show that the kinetics of SWCNTs’ aggregation in aqueous media is strongly dependent on the status of the overall surface charge. SWCNTs with a greater number of surface charges showed faster aggregation. The difference in the rate of aggregation can differ by more than ten-fold among different conditions tested. AFM imaging of the discrete time points along the aggregation process suggests that aggregation starts with the formation of microfilaments, which can further grow to form bigger aggregates. The formation of bigger aggregates also renders it more difficult to redisperse them back into the aqueous media. The concentration of counterions required to trigger SWCNT aggregation also shows a dependence on the concentration of KCl in the aqueous solution, which supports that electrostatic interactions instead of van der Waals interactions dominate the interactions among these individually-dispersed SWCNTs in aqueous media.
      PubDate: 2016-02-19
      DOI: 10.3390/c2010006
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 7: Comparative Kinetic Study of Removal of Pb2+ Ions and
           Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave
           Heating

    • Authors: Nabisab Mubarak, Manimaran Thobashinni, Ezzat Abdullah, Jaya Sahu
      First page: 7
      Abstract: A comparative study of the removal of Pb2+ ions and Cr3+ ions was conducted to determine the efficiency of carbon nanotubes (CNTs) produced using microwave heating as an adsorbent in removing heavy metal ions from waste water. Optimization of parameters such as adsorbent dosage, pH value, agitation speed, and agitation time was done using the Design Expert software version 6.0. The statistical analysis revealed that optimized conditions for the highest removal for Pb2+ are at pH 4.0, CNTs dosage of 0.09 g, agitation time and speed of 50 min and 150 rpm respectively. Meanwhile, the highest removal Cr3+ ions was observed at pH 8.0, CNTs dosage of 0.09 g, agitation time and speed of 60 min and 150 rpm respectively. For the initial concentration of 2 mg/L, the removal efficiency of Pb2+ ions and Cr3+ ions were 99.9% and 95.5% respectively. The maximum adsorption capacities of both Pb2+ ions and Cr3+ ions onto the CNT were 15.34 mg/g for Pb2+ ions and 24.45 mg/g for Cr3+ ions. Besides that, the Langmuir and Freundlich constants for the removal of Pb2+ ions were 0.073 and 1.438 L/mg while 0.071 and 1.317 L/mg for Cr3+ ions. The statistical analysis proved that the removal of Pb2+ ions and Cr3+ ions fits the Langmuir and Freundlich isotherm models, and both models obeyed the pseudo-second-order.
      PubDate: 2016-02-26
      DOI: 10.3390/c2010007
      Issue No: Vol. 2, No. 1 (2016)
       
  • C, Vol. 2, Pages 8: Probing the Catalytic Activity of Tin-Platinum
           Decorated Graphene; Liquid Phase Oxidation of Cyclohexane

    • Authors: Mohammad Sadiq, Saima Sadiq, Muhammad Abid Zia, Muhammad Ali, Khalid Saeed, Muhammad Sohail Ahmad, Rahmat Ali
      First page: 8
      Abstract: Pt-Sn supported on reduced graphene oxide (Pt-Sn/rGO) was synthesized and characterized by SEM, EDX, and XRD. The catalytic activity of Pt-Sn/rGO was tested for the solvent free liquid phase oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, also called KA oil, under mild reaction conditions. The products were analyzed gravimetrically, by UV spectrophotometer, and GC equipped with FID. The catalyst was found to be fairly active as well as selective for the desired products. The experimental data was analyzed by Freundlich, Temkin, and Langmuir adsorption isotherms. The L-H model was found to give a better fit of the data. The catalyst was fully recyclable and truly heterogeneous.
      PubDate: 2016-03-10
      DOI: 10.3390/c2010008
      Issue No: Vol. 2, No. 1 (2016)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.146.5.196
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016