for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 922 journals)
    - ANALYTICAL CHEMISTRY (56 journals)
    - CHEMISTRY (656 journals)
    - CRYSTALLOGRAPHY (21 journals)
    - ELECTROCHEMISTRY (27 journals)
    - INORGANIC CHEMISTRY (43 journals)
    - ORGANIC CHEMISTRY (48 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (656 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 14)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 31)
ACS Catalysis     Hybrid Journal   (Followers: 53)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 22)
ACS Combinatorial Science     Hybrid Journal   (Followers: 21)
ACS Macro Letters     Hybrid Journal   (Followers: 29)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 45)
ACS Nano     Hybrid Journal   (Followers: 350)
ACS Photonics     Hybrid Journal   (Followers: 15)
ACS Symposium Series     Full-text available via subscription   (Followers: 1)
ACS Synthetic Biology     Hybrid Journal   (Followers: 24)
Acta Chemica Iasi     Open Access   (Followers: 6)
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 8)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Adsorption Science & Technology     Open Access   (Followers: 7)
Advanced Functional Materials     Hybrid Journal   (Followers: 62)
Advanced Science Focus     Free   (Followers: 5)
Advances in Chemical Engineering and Science     Open Access   (Followers: 85)
Advances in Chemistry     Open Access   (Followers: 28)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 20)
Advances in Drug Research     Full-text available via subscription   (Followers: 26)
Advances in Environmental Chemistry     Open Access   (Followers: 8)
Advances in Enzyme Research     Open Access   (Followers: 11)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 9)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 17)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 11)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 28)
Advances in Nanoparticles     Open Access   (Followers: 17)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Polymer Science     Hybrid Journal   (Followers: 46)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 19)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 13)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 5)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 8)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alchemy : Journal of Chemistry     Open Access   (Followers: 3)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 2)
Alotrop     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 71)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 22)
American Journal of Chemistry     Open Access   (Followers: 34)
American Journal of Plant Physiology     Open Access   (Followers: 13)
American Mineralogist     Hybrid Journal   (Followers: 15)
Anadolu University Journal of Science and Technology A : Applied Sciences and Engineering     Open Access  
Analyst     Full-text available via subscription   (Followers: 37)
Angewandte Chemie     Hybrid Journal   (Followers: 189)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 280)
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 4)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 8)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 2)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 26)
Applied Surface Science     Hybrid Journal   (Followers: 33)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 3)
Asian Journal of Chemistry and Pharmaceutical Sciences     Open Access   (Followers: 2)
Atomization and Sprays     Full-text available via subscription   (Followers: 5)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 4)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 11)
Biochemistry     Hybrid Journal   (Followers: 392)
Biochemistry Insights     Open Access   (Followers: 7)
Biochemistry Research International     Open Access   (Followers: 7)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 11)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 25)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 6)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 151)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 92)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 17)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 25)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 12)
Canadian Mineralogist     Full-text available via subscription   (Followers: 7)
Carbohydrate Research     Hybrid Journal   (Followers: 24)
Carbon     Hybrid Journal   (Followers: 72)
Catalysis for Sustainable Energy     Open Access   (Followers: 10)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 10)
Catalysis Science and Technology     Hybrid Journal   (Followers: 10)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 14)
Cellulose     Hybrid Journal   (Followers: 14)
Cereal Chemistry     Full-text available via subscription   (Followers: 5)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 2)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 23)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 74)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 27)
Chemical Physics Letters : X     Open Access   (Followers: 2)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 227)
Chemical Science     Open Access   (Followers: 31)
Chemical Technology     Open Access   (Followers: 46)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 56)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 21)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry     Open Access  
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Biology     Full-text available via subscription   (Followers: 32)
Chemistry & Industry     Full-text available via subscription   (Followers: 8)
Chemistry - A European Journal     Hybrid Journal   (Followers: 186)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 16)
Chemistry and Materials Research     Open Access   (Followers: 21)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 45)
Chemistry of Heterocyclic Compounds     Hybrid Journal   (Followers: 4)
Chemistry of Materials     Hybrid Journal   (Followers: 281)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 10)
Chemistry World     Full-text available via subscription   (Followers: 21)
Chemistry-Didactics-Ecology-Metrology     Open Access   (Followers: 1)
ChemistryOpen     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 11)
Chromatographia     Hybrid Journal   (Followers: 22)
Chromatography     Open Access   (Followers: 3)
Chromatography Research International     Open Access   (Followers: 5)
Clay Minerals     Hybrid Journal   (Followers: 10)
Cogent Chemistry     Open Access   (Followers: 2)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 11)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 7)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 4)
Combustion Science and Technology     Hybrid Journal   (Followers: 24)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Communications Chemistry     Open Access   (Followers: 2)
Composite Interfaces     Hybrid Journal   (Followers: 8)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 1)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Chemistry     Open Access   (Followers: 3)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 10)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 4)
Copernican Letters     Open Access   (Followers: 1)
Corrosion Series     Full-text available via subscription   (Followers: 7)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 8)
Croatica Chemica Acta     Open Access  
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
CrystEngComm     Full-text available via subscription   (Followers: 13)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Chromatography     Hybrid Journal  
Current Green Chemistry     Hybrid Journal   (Followers: 2)
Current Metabolomics     Hybrid Journal   (Followers: 6)
Current Microwave Chemistry     Hybrid Journal  
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Opinion in Molecular Therapeutics     Full-text available via subscription   (Followers: 13)
Current Research in Chemistry     Open Access   (Followers: 9)
Current Science     Open Access   (Followers: 92)

        1 2 3 4 | Last

Similar Journals
Journal Cover
Advances in Colloid and Interface Science
Journal Prestige (SJR): 1.977
Citation Impact (citeScore): 8
Number of Followers: 20  
  Full-text available via subscription Subscription journal
ISSN (Print) 0001-8686
Published by Elsevier Homepage  [3185 journals]
  • Colloidal networks of fat crystals
    • Abstract: Publication date: Available online 10 September 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Edmund D. Co, Alejandro G. Marangoni The following paper traces the development of the study of colloidal networks of fat crystals. The work starts with traditional pre-fractal particle network models of fat crystal networks. Due to its central importance in the study of colloidal networks of fat crystals (and other colloidal aggregates), a short exposition of fractal geometry is provided. The development of fractal aggregation models as well as models that describe the rheology of networks of these fractal aggregates is introduced. Later sections of the paper show the application of these aggregation and mechanical models specifically to fats. Finally, recent work in elucidating the nanostructural elements of fat crystal networks and aggregates of these nanostructures is provided.Graphical abstractFractal aggregates of fat crystals of the high melting fraction of milkfat in triolein.Unlabelled Image
  • A review on exfoliation, characterization, environmental and energy
           applications of graphene and graphene-based composites
    • Abstract: Publication date: Available online 10 September 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Mohammad Yusuf, Mahendra Kumar, Moonis Ali Khan, Mika Sillanpa, Hassan Arafat Because of an atom-thick two-dimensional structure with sp2 hybridization, large specific area, high thermal conductivity, superior electron mobility, and chemical stability, graphene (GN) has developed substantial interest among researchers, exponentially accelerating GN based research. GN and its derivatives are the potentially attractive materials to develop composites for energy and environmental applications. This review covered a general overview on physical and chemical properties of GN and based composite materials, briefly summarizing exfoliation methodologies and characterization techniques in the first section. The environmental applications of GN and GN composites in detection of gases, bacteria as well as in the removal of organic and inorganic pollutants were comprehensively addressed in the second section. Third section focused on recent progress associated with the applications of GN and its composites in solar energy conversion, electrochemical energy devices, storage and production of hydrogen. Finally, conclusive remarks emphasizing unresolved problems and major future challenges were covered in the last section. In addition, the prospects and further development of GN and GN composites in energy, environment and bioscience were discussed.Graphical abstractUnlabelled Image
  • Human saliva and model saliva at bulk to adsorbed
           phases – similarities and differences
    • Abstract: Publication date: Available online 31 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Anwesha Sarkar, Feng Xu, Seunghwan Lee Human saliva, a seemingly simple aqueous fluid, is, in fact, an extraordinarily complex biocolloid that is not fully understood, despite many decades of study. Salivary lubrication is widely believed to be a signature of good oral health and is also crucial for speech, food oral processing and swallowing. However, saliva has been often neglected in food colloid research, primarily due to its high intra- to inter-individual variability and altering material properties upon collection and storage, when used as an ex vivo research material. In the last decade, colloid scientists have attempted designing model (i.e. ‘saliva mimicking fluid’) saliva formulations to understand saliva-food colloid interactions in an in vitro set up and its contribution on microstructural aspects, lubrication properties and sensory perception. In this Review, we critically examine the current state of knowledge on bulk and interfacial properties of model saliva in comparison to real human saliva and highlight how far such model salivary formulations can match the properties of real human saliva. Many, if not most, of these model saliva formulations share similarities with real human saliva in terms of biochemical compositions, including electrolytes, pH and concentrations of salivary proteins, such as α-amylase and highly glycosylated mucins. This, together with similarities between model and real saliva in terms of surface charge, has led to significant advancement in decoding colloidal interactions (bridging, depletion) of charged emulsion droplets and associated sensory perception in the oral phase. However, model saliva represents significant dissimilarity to real saliva in the lubricating properties. Based on in-depth examination of properties of mucins from animal sources (e.g. pig gastric mucins (PGM) or bovine submaxillary mucin (BSM)), we can recommend that BSM is currently the most optimal mucin source when attempting to replicate saliva based on surface adsorption and lubrication properties. Even though purification via dialysis or chromatographic techniques may influence various physicochemical properties of BSM, such as structure and surface adsorption, the lubricating properties of model saliva formulations based on BSM are generally superior and more reliable than PGM counterpart at orally relevant pH. Comparison of mucin-containing model saliva with ex vivo human salivary conditioning films suggests that mucin alone cannot replicate the lubricity of real human salivary pellicle. Mucin-based multi-layers containing mucin and oppositely charged polyelectrolytes may offer promising avenues in the future for engineering biomimetic salivary pellicle, however, this has not been explored in oral tribology experiments to date. Hence, there is a strong need for systematic studies with employment of model saliva formulations containing mucins with and without polycationic additives before a consensus on a standardized model saliva formulation can be achieved. Overall, this review provides a comprehensive framework on simulating saliva for a particular bulk or surface property when doing food oral processing experiments.Graphical abstractUnlabelled Image
  • Nanoparticles fabricated from bulk solid lipids: Preparation, properties,
           and potential food applications
    • Abstract: Publication date: Available online 31 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Qixin Zhong, Linhan Zhang Unlike conventional emulsions, solid lipids are used to prepare solid lipid nanoparticles (SLNs) with crystalline structures and nanostructured lipid carriers (NLCs) with imperfect crystals or amorphous structures to encapsulate various bioactive compounds significant to food applications. The solid lipid matrix can stabilize particle structures and control release properties of the encapsulated compounds that may not be possible for emulsions with liquid droplets. In this review, common approaches of preparing SLNs and NLCs are first presented, followed by parameters used to study lipid particles, including dimensional, morphological, charge, thermal, and crystalline properties. The structures of SLNs and NLCs with respect to the release mechanisms of encapsulated compounds are discussed in the context of lipid and emulsifier chemistry and preparation conditions. Lastly, possible applications of SLNs and NLCs in food systems are discussed.Graphical abstractUnlabelled Image
  • Lattice structures and phase behavior of amphiphilic monoglycerol
    • Abstract: Publication date: Available online 29 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): D. Vollhardt, G. Brezesinski Due to the Angstrom resolution, Grazing incidence X-ray diffraction (GIXD) represents the most important technique for probing the lateral ordering in condensed monolayers at the air/water interface and allows the construction of phase diagrams of amphiphilic monolayers on the basis of two-dimensional lattice structures and tilt directions of the molecules. The high potential of GIXD is demonstrated by the structural characterization of a variety of amphiphilic monoalkanoylglycerol monolayers in Å-scale. The GIXD results have impressively shown that in the racemic 1-monostearoylglycerol monolayer with the appearance of an oblique intermediate phase (Obl) between the nearest neighbor (NN)- and next-nearest neighbor (NNN)-tilted orthorhombic phases symmetry breaking occurs at low temperatures. The generic lateral pressure−temperature phase diagram of racemic monoacylglycerol monolayers constructed on the basis of reliable two-dimensional lattice structures indicates that the new and surprising presence of the oblique phase depends only on the temperature. The significant effect of the substituted polar groups, chemical structure variations at the position of the glycerol backbone and chirality on the lattice structure in Å-scale was highlighted in a systematic overview on the structure and phase behavior of amphiphilic monoglycerol monolayers. The conspicuous effect of the position of the glycerol backbone at which the polar group is substituted is demonstrated. The monolayers of 2-monopalmitoyl-rac-glycerol behave as that of 1-monomyristoyl-rac-glycerol having a two CH2 groups shorter alkyl chain. Further main topics discussed are chiral discrimination and crossover between homo- and heterochiral discrimination supported by quantum chemical calculations.Graphical abstractUnlabelled Image
  • Recent advances in membrane development for treating surfactant- and
           oil-containing feed streams via membrane distillation
    • Abstract: Publication date: Available online 28 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Nick Guan Pin Chew, Shanshan Zhao, Rong Wang Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettability has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface energy, and interfacial hydration layer to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.Graphical abstractUnlabelled Image
  • Polymer grafting on graphene layers by controlled radical polymerization
    • Abstract: Publication date: Available online 23 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Parvaneh Eskandari, Zahra Abousalman-Rezvani, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Hanieh Mardani In situ controlled radical polymerization (CRP) is considered as an important approach to graft polymer brushes with controlled grafting density, functionality, and thickness on graphene layers. Polymers are tethered with chain end or through its backbone to the surface or edge of graphene layers with two in situ polymerization methods of “grafting from” and “grafting through” and also a method based on coupling reactions known as “grafting to”. The “grafting from” method relies on the propagation of polymer chains from the surface- or edge-attached initiators. The “grafting through” method is based on incorporation of double bond-modified graphene layers into polymer chains through the propagation reaction. The “grafting to” technique involves attachment of pre-fabricated polymer chains to the graphene substrate. Here, physical and chemical attachment approaches are also considered in polymer-modification of graphene layers. Combination of CRP mechanisms of reversible activation, degenerative (exchange) chain transfer, atom transfer, and reversible chain transfer with various kinds of grafting reactions makes it possible to selectively functionalize graphene layers. The main aim of this review is assessment of the recent advances in the field of preparation of polymer-grafted graphene substrates with well-defined polymers of controlled molecular weight, thickness, and polydispersity index. Study of the opportunities and challenges for the future works in controlling of grafting density, site-selectivity in grafting, and various topologies of the brushes with potential applications in stimuli-responsive surfaces, polymer composites, Pickering emulsions, coating technologies, and sensors is also considered.Graphical abstractUnlabelled Image
  • Interactions between nanoparticles in nanosuspension
    • Abstract: Publication date: Available online 17 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): N. Kovalchuk, D. Johnson, V. Sobolev, N. Hilal, V. Starov Nanoparticles are particles with a characteristic dimension below 100 nm. The properties of nanoparticles differ substantially from those of “big” colloidal particles (size bigger than 1 μm) because radius of surface forces, which is around 100 nm, is greater than or comparable with the nanoparticles size. The latter means that each nanoparticle could be completely covered by the surface forces of the neighbouring particles at small enough separation. It also means that the well-known Derjaguin approximation cannot be applied directly and some modifications are required. Pairwise interaction between nanoparticles can be used only at an extremely low volume fraction of nanoparticles (below some critical volume fraction, which is ~0.02%), and above this concentration a new theory based on many-particle interactions should be applied, which is yet to be developed. Some recent progress in the area of interaction between nanoparticles is reviewed and the properties of nanosuspensions based on interaction between nanoparticles are described. The authors have not attempted to cover all available literature in the area but instead have tried to underline the fundamental problems in the area which need to be addressed.Graphical abstractUnlabelled Image
  • Air bubble bursting phenomenon at the air-water interface monitored by the
           piezoelectric-acoustic method
    • Abstract: Publication date: Available online 16 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Alex Nikolov, Darsh Wasan When an air bubble arrives at the free interface, the bubble's lamella drains and ruptures. The bubble collapses, and gas vapor is released. The ruptured lamella retreats, and a rim at the edge of the retreating lamella forms. The rim becomes unstable and breaks into fine droplets, leading to the formation of a mist. As the collapsing bubble gas's vapor is released, the collapsing bubble oscillates and a vertical liquid jet erupts; this jet then breaks into a droplet(s). Here, we present a novel approach for monitoring the air bubble bursting frequency at the air-water interface by the piezoelectric-pressure-acoustic technique. The piezoelectric-acoustic technique monitors the lamella's rupture time, the frequency of the oscillation of the collapsing air bubble, and the frequency of the oscillation at the free air/water interface. The aqueous lamella rupture thickness was probed by reflected light interferometry, and the air bubble burst at the air/water interface was monitored with the high-speed photo imaging technique. The data obtained by the three techniques provided essential information for the stages of the air bubble collapse dynamics at the free interface without the presence of a surfactant. The simple model proposed by Rayleigh, Minnaert, and Lighthill (RML) for the oscillation resonance of a single air bubble was applied to calculate the air bubble collapsing frequency. The floating air bubble bursting frequency with an equatorial radius of 0.33 ± 0.05 cm was well predicted using the air bubble resonance frequency model, and was estimated as 1.0 ± 0.3 kHz. The velocity of the ruptured aqueous lamella covering the air bubble was estimated as 1 m/s. This research presents a comprehensive understanding of the phenomenon of the bare air bubble collapse at the free interface.Graphic abstractAcoustic spectrum of the bursting of a floating bubble at an air/water interface with a contact size of 0.30±0.05 cm depicted by PEPAT in mV vs. time and shown in high speed photos.Unlabelled Image
  • Supramolecular design and applications of polyphenol-based architecture: A
    • Abstract: Publication date: Available online 13 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Hongshan Liang, Zhou Bin, Di Wu, Jing Li, Bin Li Polyphenol-based materials are of wide-spread interest because of the unique properties of the polyphenol itself. Tannic acid, contains high level of galloyl groups, could be coordinated to a range of metal ions to generate robust mental ion-TA films on substrate or even forming hollow capsules. These films or capsules can be used in the field of sensing, separation and catalysis, most importantly in drug/nutraceutical delivery, allowing for the high loading efficiency, high mechanical and thermal stability, pH-responsive disassembly and fluorescence behavior. Additionally, such coating could also provide protection of the sensitive molecules and cells. With the numerous carbonyl and phenolic functional groups, TA has also been demonstrated to form strong hydrogen bonded multilayers with various non-ionic polymers. The properties of the hydrogen-bonded system were highly influenced by the chemical structure of the polymers, which will change the behavior of pH-, temperature- or ionic strength-responsive release of the loading molecules. Additionally, the ionization of galloyl phenol group was attributed to the interaction between TA and other ionic polymers by electrostatic interaction. The electrostatic interaction/hydrogen bonding derived TA/polymer complexes could deposit on glass slides, microcores or even forming hollow capsules, promising in their applicability to nutraceutical encapsulation, delivery and depot. Notably, polyphenols self-polymerizing could also deposit coatings on different substrates without any exogenous additives, while the comprehensive undertanding about the self-polymerizing mechenism remains unclear. This review provides a promising prospect for utilizing polyphenol-based materials to design versatile architecture in different system, used in the field of chemistry and materials science.Graphical abstractUnlabelled Image
  • A review of polymer nanohybrids for oil recovery
    • Abstract: Publication date: Available online 10 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Laura M. Corredor, Maen M. Husein, Brij B. Maini As oil fields go into their final stage of production, new technologies are necessary to sustain production and increase the recovery of the hydrocarbon. Chemical injection is an enhanced recovery technique, which focuses on increasing the effectiveness of waterfloods. However, the use of chemical flooding has been hampered by its relatively high cost and the adsorption of the injected chemicals onto the reservoir rocks. In recent years, nanofluids have been launched as an overall less expensive and more efficient alternative to other chemical agents. Nanoparticle inclusion is also proposed to mitigate polymer flooding performance limitations under harsh reservoir conditions. This review presents a comprehensive discussion of the most recent developments of polymer nanohybrids for oil recovery. First, the preparation methods of polymer nanohybrids are summarized and explained. Then, an explanation of the different mechanisms leading to improved oil recovery are highlighted. Finally, the current challenges and opportunities for future development and application of polymer nanohybrids for chemical flooding are identified.Graphical abstractUnlabelled Image
  • Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic
           performance: A review of strategy, synthesis, and applications
    • Abstract: Publication date: Available online 8 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Biao Song, Zhuotong Zeng, Guangming Zeng, Jilai Gong, Rong Xiao, Shujing Ye, Ming Chen, Cui Lai, Piao Xu, Xiang Tang The utilization of solar energy with photocatalytic technology has been considered a good solution to alleviate environmental pollution and energy shortage. Constructing 2D/2D heterostructure photocatalysts with layered double hydroxide (LDH) and graphitic carbon nitride (g-C3N4) is an effective approach to attain high performance in solar photocatalysis. This paper provides a review of recent studies about 2D/2D LDH/g-C3N4 heterostructure photocatalysts. Main strategies for constructing the desired 2D/2D heterojunction are summarized. The planar structure of LDH and g-C3N4 offers a shorter transfer distance for charge carriers and reduces electron-hole recombination in the bulk phase. The face-to-face contact between the two materials can promote the charge transfer across the heterostructure interface, thus improving the electron-hole separation efficiency. The performance and mechanisms of LDH/g-C3N4 photocatalysts in hydrogen production, CO2 reduction, and organic pollutant degradation are analyzed and discussed. Incorporating reduced graphene oxide or Ag nanoparticles into LDH/g-C3N4 heterojunction and fabricating calcined LDH/g-C3N4 composites are effective strategies to further facilitate charge transfer at the interface of LDH and g-C3N4 and improve the absorption capacity for visible light. This review is expected to provide basic insights into the design of 2D/2D LDH/g-C3N4 heterojunctions and their applications in solar photocatalysis.Graphical abstractUnlabelled Image
  • Plant-based gold nanoparticles; a comprehensive review of the decade-long
           research on synthesis, mechanistic aspects and diverse applications
    • Abstract: Publication date: Available online 8 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Tariq Khan, Nazif Ullah, Mubarak Ali Khan, Zia-ur-Rehman Mashwani, Akhtar Nadhman The worldwide focus on research in the field of green nanotechnology has resulted in the environmentally and biologically safe applications of a diversity of nanomaterials. Nanotechnology, in general, implies the production of nanoparticles having different but regular shapes, sizes, and properties. A lot of studies have been conducted on the synthesis of metal nanoparticles through biological, chemical, and physical methods. Owing to its safety, both environmental and in vivo, as well as the ease of synthesis, biogenic routes especially the plant-based synthesis of metal nanoparticles has been preferred as the best strategy. Among the metal nanoparticles, gold nanoparticles are recognized as the most potent, biocompatible and environment-friendly. A decade of research work has attempted the production of gold nanoparticles mediated by different parts of various plants. Further, these nanoparticles have been engineered through modification in the sizes and shapes for attaining enhanced activity and optimal performance in many different applications including biomedical, antimicrobial, diagnostics and environmental applications. This article reviews the fabrication strategies for gold nanoparticles via plant-based routes and highlights the diversity of the applications of these materials in bio-nanotechnology. The review article also highlights the recent developments in the synthesis and optical properties of gold nanoparticles.Graphical abstractUnlabelled Image
  • Biochemical aspects of lipase immobilization at polysaccharides for
    • Abstract: Publication date: Available online 8 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Sergei Yu. Zaitsev, Anastasia A. Savina, Ilia S. Zaitsev The design of immobilized enzyme preparations is an important and relevant area of modern sciences and technologies. Immobilization of enzymes from animal sources (component I) on natural carriers (component II) increases the system stability by protecting the active site of the enzyme from deactivation; facilitates the separation and accelerates the recovery of the enzyme. This makes reuse possible and provides a significant reduction in operating costs. Hydrolytic enzymes (such as lipases) and polysaccharides (such as chitosan) are the most promising of such pairs of components. The main attention here is devoted to the discussion on lipase immobilization on polysaccharide (mainly - chitin and chitosan). Based on the analysis of the available literature, the most adequate method is the immobilization of lipase from porcine pancreas (LPP) on polysaccharide particles (such as chitin or chitosan) pre-treated with ultrasound (to increase the particle surface area) and glutaraldehyde (for particle activation) that shows reasonably high LPP activity and stability. In order to increase further the activity of the lipase, some authors proposed to incorporate a spacer in the form of 1,3-diaminopropane (or 1,3-diaminobutane) prior to activation of the surface of the chitosan particles. In particular cases, the use of chitin (instead of chitosan) may be an alternative solution for biotechnological applications.Recently the idea of constructing “supramolecular enzyme systems” realized in the so-called “coimmobilized multienzymatic systems” strategy. The most fascinating example is the combined assay of a mixture of native LPP, glycerol kinase (from Cellulomonas) and glycerol-3-phosphate oxidase (from Aerococcus viridans) linked by glutaraldehyde to chitosan (as shell for inorganic nanoparticle core). This material was placed on a Pt-electrode as biosensor and was successfully applied for amperometric determination of the triglyceride level in the serum of healthy and diseased person. Thus, the whole innovative research-production sequence is described by Aggarwal V. and Pundir C.S.: from simple components to advanced material and further biomedical application.Thus, the following approach of lipase immobilization appears the most promising for future applications: a few types of lipases or the combination of LPP with some other enzymes immobilized simultaneously on multifunctional carriers (as nanohybrids of inorganic core and polysaccharide shell).Graphical abstractUnlabelled Image
  • Adsorptive removal and photocatalytic degradation of organic pollutants
           using metal oxides and their composites: A comprehensive review
    • Abstract: Publication date: Available online 8 August 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Rashi Gusain, Kanika Gupta, Pratiksha Joshi, Om P. Khatri Metal oxide nanomaterials and their composites are comprehensively reviewed for water remediation. The controlled morphological and textural features, variable surface chemistry, high surface area, specific crystalline nature, and abundant availability make the nanostructured metal oxides and their composites highly selective materials for efficient removal of organic pollutants based on adsorption and photocatalytic degradation. A wide range of metal oxides like iron oxides, magnesium oxide, titanium oxides, zinc oxides, tungsten oxides, copper oxides, metal oxides composites, and graphene-metal oxides composites having variable structural, crystalline and morphological features are reviewed emphasizing the recent development, challenges, and opportunities for adsorptive removal and photocatalytic degradation of organic pollutants viz. dyes, pesticides, phenolic compounds, and so on. It also covers the deep discussion on the photocatalytic mechanism of metal oxides and their composites along with the properties relevant to photocatalysis. High photodegradation efficiency, economically-viable approaches for the preparation of photocatalytic materials, and controlled band-gap engineering make metal oxides highly efficient photocatalysts for degradation of organic pollutants. The review would be an excellent resource for researchers who are currently focusing on metal oxides-based materials for water remediation as well as for those who are interested in adsorptive and photocatalytic applications of metal oxides and their composites.Graphical abstractUnlabelled Image
  • Surface anchoring of nematic liquid crystal on swollen polymer brush
           studied by surface forces measurement
    • Abstract: Publication date: Available online 31 July 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Takuya Yanagimachi, Xiao Li, Paul F. Nealey, Kazue Kurihara Surface anchoring plays a fundamental role in controlling the molecular alignment of a bulk liquid crystal (LC). It has been previously shown that the pretilt angle of a nematic liquid crystal (NLC) can be controlled by changing the grafting density of a liquid crystalline polymer, poly(6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate) (PMMAZO). In this study, the thickness of the swollen PMMAZO brush was measured by employing the surface forces apparatus (SFA). NLC 4-cyano-4′-pentylbiphenyl (5CB) and toluene were used as the solvents. It was shown that both 5CB and toluene were good solvents for PMMAZO. The repulsive force in 5CB appeared at D0 = 98.2 ± 4.6 nm for high grafting density (HD) surfaces, and at 32.1 ± 4.5 nm for the low grafting density (LD) surfaces. These results indicated that the PMMAZO molecules extended nearly perpendicular to the HD surfaces, while they laid on the substrate for the LD surfaces. The interaction between 5CB and the mesogenic group of PMMAZO was stronger than that for toluene. These results could support the expected surface anchoring mechanism of 5CB by the PMMAZO brush.Graphical abstractUnlabelled Image
  • Electrokinetic phenomena in a dilute suspension of spherical solid
           colloidal particles with a hydrodynamically slipping surface in an aqueous
           electrolyte solution
    • Abstract: Publication date: Available online 31 July 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Hiroyuki Ohshima A review is given on the theory of the electrokinetics in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface moving in an aqueous liquid medium containing electrolytes. For a solid particle with a slip surface, the Navier boundary condition is employed instead of the usual no-slip boundary condition on the particle surface. The effect of the hydrodynamic slip is characterized by the slipping length. The limiting case of zero slipping length corresponds to a hydrophilic surface. As the hydrophobicity of the particle surface increase, the slipping length increases. The limiting case of infinitely large slipping length corresponds to a completely hydrophobic surface. General formulas and approximate expressions of the electrophoretic mobility, the electrical conductivity, the sedimentation velocity and potential, and the diffusion constant are presented. The magnitudes of the electrophoretic mobility and the sedimentation potential, in particular, are found to increase with increasing slipping length. It is also shown that a spherical solid colloidal particle with a slip surface is hydrodynamically similar to a liquid drop.Graphical abstractUnlabelled Image
  • Surface nanobubbles: Theory, simulation, and experiment. A review
    • Abstract: Publication date: Available online 26 July 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Panagiotis E. Theodorakis, Zhizhao Che Surface nanobubbles (NBs) are stable gaseous phases in liquids that form at the interface with solid substrates. They have been particularly intriguing for their high stability that contradicts theoretical expectations and their potential relevance for many technological applications. Here, we present the current state of the art in this research area by discussing and contrasting main results obtained from theory, simulation and experiment, and presenting their limitations. We also provide future perspectives anticipating that this review will stimulate further studies in the research area of surface NBs.Graphical abstractUnlabelled Image
  • Composites of nanofibrillated cellulose with clay minerals: A review
    • Abstract: Publication date: Available online 23 July 2019Source: Advances in Colloid and Interface ScienceAuthor(s): L. Alves, E. Ferraz, J.A.F. Gamelas Biopolymers-based composites are, in general, environmentally friendly materials, which can be obtained from renewable sources. Some of them can also present promising properties to be used in food packaging and electronic devices, being thus logical substitutes to petroleum-based polymers, specifically plastics. Cellulose nanofibrils (CNF) obtained by chemical/enzymatic pre-treatments followed by a mechanical treatment appear as a new suitable biomaterial. However, CNF are still quite expensive materials, due to the required chemicals/equipment/energy involved, and additionally, they present some limitations such as high hydrophilicity/high water vapour permeability. The combination of CNF with clay minerals, such as montmorillonite or kaolinite, as widely available geo-resources, represents an excellent way to reduce the amount of CNF used, enabling the production of valuable materials and reducing costs; and, at the same time it is possible to improve the characteristics of the formed materials, such as mechanical, gas barrier and fire retardancy properties, if appropriate conditions of preparation are used. Nevertheless, to obtain hybrid CNF/clay composites with superior properties it is necessary to ensure a good dispersion of the inorganic material in the CNF suspension and a good compatibility among the inorganic and organic components. To fulfil this goal, several strategies can be considered, including physical treatments of the suspensions, CNF and clay surface chemical modifications, and the use of a coupling agent. In this review article, the state-of-the-art on a new emerging generation of composites (films, foams or coatings) based on nanofibrillated cellulose and nanoclay, with focus on strategies for their preparation and most relevant achievements is critically reviewed, bearing in mind their potential application as substitutes for common plastics. A third component has been eventually added to these organic-inorganic hybrids, e.g., chitosan, carboxymethylcellulose, borate or epoxy resin, to enhance specific characteristics of the material. Some general background on the production of different types of CNF and their main properties is previously provided.Graphical abstractUnlabelled Image
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-