for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 922 journals)
    - ANALYTICAL CHEMISTRY (56 journals)
    - CHEMISTRY (656 journals)
    - CRYSTALLOGRAPHY (21 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (43 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (656 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 14)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 31)
ACS Catalysis     Hybrid Journal   (Followers: 53)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 23)
ACS Combinatorial Science     Hybrid Journal   (Followers: 23)
ACS Macro Letters     Hybrid Journal   (Followers: 28)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 45)
ACS Nano     Hybrid Journal   (Followers: 331)
ACS Photonics     Hybrid Journal   (Followers: 15)
ACS Symposium Series     Full-text available via subscription   (Followers: 1)
ACS Synthetic Biology     Hybrid Journal   (Followers: 25)
Acta Chemica Iasi     Open Access   (Followers: 6)
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 8)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Adsorption Science & Technology     Open Access   (Followers: 7)
Advanced Functional Materials     Hybrid Journal   (Followers: 62)
Advanced Science Focus     Free   (Followers: 5)
Advances in Chemical Engineering and Science     Open Access   (Followers: 77)
Advances in Chemical Science     Open Access   (Followers: 21)
Advances in Chemistry     Open Access   (Followers: 27)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 20)
Advances in Drug Research     Full-text available via subscription   (Followers: 26)
Advances in Environmental Chemistry     Open Access   (Followers: 7)
Advances in Enzyme Research     Open Access   (Followers: 11)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 9)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 17)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 12)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 28)
Advances in Nanoparticles     Open Access   (Followers: 17)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 17)
Advances in Polymer Science     Hybrid Journal   (Followers: 45)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 19)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 4)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 8)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alchemy : Journal of Chemistry     Open Access   (Followers: 3)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 2)
Alotrop     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 69)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 22)
American Journal of Chemistry     Open Access   (Followers: 34)
American Journal of Plant Physiology     Open Access   (Followers: 13)
American Mineralogist     Hybrid Journal   (Followers: 15)
Anadolu University Journal of Science and Technology A : Applied Sciences and Engineering     Open Access  
Analyst     Full-text available via subscription   (Followers: 37)
Angewandte Chemie     Hybrid Journal   (Followers: 189)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 277)
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 4)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 9)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 15)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 2)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 26)
Applied Surface Science     Hybrid Journal   (Followers: 34)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 3)
Asian Journal of Chemistry and Pharmaceutical Sciences     Open Access   (Followers: 2)
Atomization and Sprays     Full-text available via subscription   (Followers: 4)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 4)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 11)
Biochemistry     Hybrid Journal   (Followers: 385)
Biochemistry Insights     Open Access   (Followers: 7)
Biochemistry Research International     Open Access   (Followers: 7)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 11)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 24)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 6)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 144)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 95)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 20)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 25)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 12)
Canadian Mineralogist     Full-text available via subscription   (Followers: 7)
Carbohydrate Research     Hybrid Journal   (Followers: 25)
Carbon     Hybrid Journal   (Followers: 71)
Catalysis for Sustainable Energy     Open Access   (Followers: 10)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 10)
Catalysis Science and Technology     Hybrid Journal   (Followers: 10)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 14)
Cellulose     Hybrid Journal   (Followers: 13)
Cereal Chemistry     Full-text available via subscription   (Followers: 5)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 2)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 23)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 75)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 28)
Chemical Physics Letters : X     Open Access  
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 222)
Chemical Science     Open Access   (Followers: 30)
Chemical Technology     Open Access   (Followers: 36)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 57)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 21)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry     Open Access  
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Biology     Full-text available via subscription   (Followers: 34)
Chemistry & Industry     Full-text available via subscription   (Followers: 8)
Chemistry - A European Journal     Hybrid Journal   (Followers: 186)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 16)
Chemistry and Materials Research     Open Access   (Followers: 21)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 46)
Chemistry of Heterocyclic Compounds     Hybrid Journal   (Followers: 4)
Chemistry of Materials     Hybrid Journal   (Followers: 281)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 10)
Chemistry World     Full-text available via subscription   (Followers: 21)
Chemistry-Didactics-Ecology-Metrology     Open Access   (Followers: 1)
ChemistryOpen     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 11)
Chromatographia     Hybrid Journal   (Followers: 22)
Chromatography     Open Access   (Followers: 3)
Chromatography Research International     Open Access   (Followers: 5)
Clay Minerals     Hybrid Journal   (Followers: 10)
Cogent Chemistry     Open Access   (Followers: 2)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 11)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 7)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 4)
Combustion Science and Technology     Hybrid Journal   (Followers: 23)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Communications Chemistry     Open Access   (Followers: 2)
Composite Interfaces     Hybrid Journal   (Followers: 8)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 1)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Chemistry     Open Access   (Followers: 3)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 10)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 4)
Copernican Letters     Open Access   (Followers: 1)
Corrosion Series     Full-text available via subscription   (Followers: 7)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 8)
Croatica Chemica Acta     Open Access  
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
CrystEngComm     Full-text available via subscription   (Followers: 13)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Chromatography     Hybrid Journal  
Current Green Chemistry     Hybrid Journal   (Followers: 2)
Current Metabolomics     Hybrid Journal   (Followers: 6)
Current Microwave Chemistry     Hybrid Journal  
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Opinion in Molecular Therapeutics     Full-text available via subscription   (Followers: 14)
Current Research in Chemistry     Open Access   (Followers: 9)
Current Science     Open Access   (Followers: 77)

        1 2 3 4 | Last

Similar Journals
Journal Cover
Advances in Colloid and Interface Science
Journal Prestige (SJR): 1.977
Citation Impact (citeScore): 8
Number of Followers: 20  
  Full-text available via subscription Subscription journal
ISSN (Print) 0001-8686
Published by Elsevier Homepage  [3185 journals]
  • Ultrasound-assisted preparation of different nanocarriers loaded with food
           bioactive ingredients
    • Abstract: Publication date: Available online 12 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Roya Koshani, Seid Mahdi Jafari Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.Graphical abstractUnlabelled Image
  • Gelation of food protein-protein mixtures
    • Abstract: Publication date: Available online 11 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Taco Nicolai Gelation of proteins is one of the principal means to give desirable texture to food products. Gelation of individual proteins in aqueous solution has been investigated intensively in the past, but in most food products the system contains mixtures of different types of proteins. Therefore one needs to consider interaction between different proteins both before and during gelation. Most food proteins can be classified as globular proteins, but casein and gelatin are also important food proteins. In this review the focus is on gelation induced by heating or cooling, which is the most commonly used method. After briefly discussing general features of protein aggregation and gelation, the literature on gelation of mixtures of different types of globular proteins is reviewed as well as that of mixtures of globular proteins with gelatin or with casein. The effect on the gel stiffness and the microstructure of the gelled mixtures will be discussed in terms of different scenarios that can be envisaged: independent aggregation and gelation, co-aggregation and phase separation.Graphical abstractUnlabelled Image
  • The long-range attraction between hydrophobic macroscopic surfaces
    • Abstract: Publication date: Available online 8 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Patrick Kékicheff Direct measurements of the long-range strongly attractive force observed between macroscopic hydrophobic surfaces across aqueous solutions are reexamined in light of recent experiments and theoretical developments. The focus is on systems in the absence of submicroscopic bubbles (preexistent or induced) to avoid capillary bridging forces. Other possible interferences to the measurements are also eliminated. The force-distance profiles are obtained directly (no contributions from electrical double layer or hydrodynamics) between symmetric identical hydrophobic surfaces, overall charge-neutral, at the thermodynamic equilibrium and in a quenched state. Therefore in the well-defined geometry of crossed-cylinders, sphere-flat, or sphere-sphere, there is no additional interaction to be considered except the ever-present dispersion forces, negligible at large separations. For the three main categories of substrates rendered hydrophobic, namely surfaces obtained with surfactant monolayers physically adsorbed from solution to deposited ones, and substrates coated with a hydrophobizing agent bonded chemically onto the surface, the interaction energy scales as A exp (−2κD)/2κD at large separations, with measured decay lengths in accord with theoretical predictions, simply being half the Debye screening length, κ−1/2, at least in non vanishing electrolyte. Taken together with the prefactor A scaling as the ionic strength, the interaction energy is demonstrated to have an electrostatic origin in all the systems. Thanks to our recent SFAX coupling force measurements with x-ray solution scattering under controlled nano-confinement, the microstructuration of the adsorbed film emerges as an essential feature in the molecular mechanism for explaining the observed attraction of larger magnitude than dispersion forces. The adsorption of pairs of positive and negative ions on small islands along the interface, the fluctuation of the surface charge density around a zero mean-value with desorption into or adsorption from the electrolyte solution, the correlations in the local surface ion concentrations along the surfaces, the redistribution of counterions upon intersurface variation, all contribute and are tuned finely by the inhomogeneities and defects present in the hydrophobic layers. It appears that the magnitude of the interacting energy can be described by a single master curve encompassing all the systems.Graphical abstractUnlabelled Image
  • Environmentally benign non-wettable textile treatments: A review of recent
    • Abstract: Publication date: Available online 6 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Muhammad Zahid, Giulia Mazzon, Athanassia Athanassiou, Ilker S. Bayer Among superhydrophobic materials, non-wettable textiles are probably the ones that come in contact or interact with the human body most frequently. Hence, textile treatments for water or oil repellency should be non-toxic, biocompatible, and comply with stringent health standards. Moreover, considering the volume of the worldwide textile industry, these treatments should be scalable, sustainable, and eco-friendly. Due to this awareness, more and more non-wettable textile treatments with eco-friendly processes and green or non-toxic chemicals are being adopted and reported. Although fluorinated alkylsilanes or fluorinated polymers with C8 chemistry (with ≥ 8 fluorinated carbon atoms) are the best performing materials to render textiles water or oil repellent, they pose substantial health and environmental problems and are being banned. For this reason, water/solvent-borne, C8-free vehicles for non-wettable treatment formulations are probably the only ones that can have commercialization prospects. Hence, researchers have come up with a variety of new, non-toxic, green formulations and materials to render fabrics liquid repellent that constitute the focus of this review paper. As such, this review article discusses and summarizes recent developments and techniques on various sustainable superhydrophobic treatments for textiles, with comparable performance and durability to formulations based on fluorinated C8 compounds. The current state-of-the-art technologies, potential commercialization prospects, and relevant limitations are discussed and summarized with examples. The review also attempts to indicate promising future strategies and new materials that can transform the process for non-wettable textiles into an all-sustainable technology.Graphical abstractUnlabelled Image
  • Impact of the chemical structure on amphiphilic properties of sugar-based
           surfactants: A literature overview
    • Abstract: Publication date: Available online 6 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Théophile Gaudin, Huiling Lu, Guillaume Fayet, Audrey Drelich, Patricia Rotureau, Gwladys Pourceau, Anne Wadouachi, Elizabeth Van Hecke, Alla Nesterenko, Isabelle Pezron In this review, structure-property trends are systematically analyzed for four amphiphilic properties of sugar-based surfactants: critical micelle concentration (CMC), its associated surface tension (γCMC), efficiency (pC20) and Krafft temperature (TK). First, the impact on amphiphilic properties of the alkyl chain size and the presence of branching and/or unsaturation is investigated. Then, various polar head parameters are explored, such as the degree of polymerization of the sugar unit (mono- or oligosaccharides), the chemical nature of the linker and the sugar configuration. Some systematic comparisons between ethoxylated surfactants and sugar-based surfactants are also carried out. While some structural trends with the impact of alkyl chain length or the polar head size are now well understood, this analysis points out that systematic studies of more specific effects of alkyl chain (e.g. branching, unsaturation, presence of rings, position on the polar head) and polar head (e.g. linker, anomeric configuration, internal stereochemistry, cyclic vs. acyclic sugar residues) were scarcer or not available to date. This work encourages the use of these structural trends in the perspective of developing new bio-based surfactants and their consideration in predictive models. It also highlights the need of further experimental tests to fill remaining gaps notably to explore some specific structural features (such as the introduction of rings in the alkyl chain or the position of the alkyl chain on the polar head) and towards applicative properties (like foaming capacity or wettability).Graphical abstractUnlabelled Image
  • How do proteins ‘response’ to common carbon nanomaterials'
    • Abstract: Publication date: Available online 5 June 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Xianfeng Wang, Yi Zhu, Ming Chen, Ming Yan, Guangming Zeng, Danlian Huang Carbon nanomaterials are widely produced and applied in biological and environmental fields because of their outstanding physical and chemical properties, which pose a threat to the safety of living organisms and the ecological environment. Therefore, understanding how carbon nanomaterials and their derivatives work on organisms is becoming important. In recent years, more and more researchers have explored the damage of carbon nanomaterials to organisms at the molecular level. This review pays special emphasis on how proteins response to the main carbon nanomaterials (fullerene, carbon nanotubes, graphene and their derivatives). In addition, how to use the interaction between carbon nanomaterials and proteins to do some beneficial things for human and the development of safe nanomaterials is simply discussed. Finally, some suggestions have been made to lay a theoretical foundation for future research.Graphical abstractUnlabelled Image
  • A review of bubble break-up
    • Abstract: Publication date: Available online 31 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Pengbo Chu, James Finch, Ghislain Bournival, Seher Ata, Christopher Hamlett, Robert J. Pugh The coalescence and break-up of bubbles are important steps in many industrial processes. To date, most of the literature has been focussed on the coalescence process which has been studied using high speed cinematographic techniques. However, bubble break-up is equally important and requires further research. This review essentially details the break-up process and initially summarises the different types of bubble deformation processes which lead to break-up. Break-up is considered in high and low turbulent (pseudo-static) conditions and the effect of fluctuations and shear forces on the break-up is reviewed. Different mechanisms of break-up are discussed including shearing-off, coalescence induced pitching and impact pinching following air entrapment. Also, the influence of bubble size, interfacial stability, and surfactant on break-up are reviewed and a summary of recent experimental techniques presented. Finally, the break-up process which occurs in micro-fluidics is summarised.Graphical abstractUnlabelled Image
  • Long-range forces and charge inversions in model charged colloidal
           dispersions at finite concentration
    • Abstract: Publication date: Available online 29 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Enrique González-Tovar, Marcelo Lozada-Cassou In charged-colloidal dispersion systems the interest is in finding their stability conditions, phase transitions, and transport properties, either in bulk or confinement, among other physicochemical quantities, for which the knowledge of the dispersions' molecular structure and the associated macroion-macroion forces is crucial. To investigate these phenomena simple models have been proposed. Most of the theoretical and simulation studies on charged particles suspensions are at infinite dilution conditions. Hence, these studies have been focused on the electrolyte structure around one or two isolated central particle(s), where phenomena as charge reversal, charge inversion and surface charge amplification have been shown to be relevant. However, experimental studies at finite volume fraction exhibit interesting phenomenology which imply very long-range correlations. A simple, yet useful, model is the colloidal primitive model, in which the colloidal dispersion is modeled as a mixture of size (and charge) asymmetrical hard spheres, at finite volume fraction. In this paper we review recent integral equations solutions for this model, where very long-range attractive-repulsive forces, as well as new long-range, giant charge inversions are reported. The calculated macroions radial distribution functions, charge distributions, and macroion-macroion forces are qualitatively consistent with existing experimental results, and Monte Carlo and molecular dynamics simulations.Graphical abstractUnlabelled Image
  • Controlling the lifetime of antibubbles
    • Abstract: Publication date: Available online 25 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Youen Vitry, Stéphane Dorbolo, Jan Vermant, Benoit Scheid An antibubble is a liquid droplet wrapped by a thin layer of gas, inside a bulk liquid usually of the same composition. The lifetime of an antibubble is governed by the drainage of the gas between the two liquid-gas interfaces populated by surfactants. Depending on the relative magnitude of surface viscosity and elastic moduli, which directly depend on or are determined by the nature of surfactants, the lifetime of an antibubble may vary a lot, from few seconds to few minutes. While such a difference can be predicted with models that include the role of interfacial properties, they were not observed experimentally in previous studies, due to important sources of dispersion. In this review, the main sources of dispersion are identified, such as (i) the initial amount of gas embedded in the antibubble, (ii) the level of saturation of gas in the bulk liquid, (iii) the presence of dust particles (
  • Polysaccharides at fluid interfaces of food systems
    • Abstract: Publication date: Available online 25 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Vassilis Kontogiorgos Fabrication of next generation polysaccharides with interfacial properties is driven by the need to create high performance surfactants that operate at extreme environments, as for example in complex food formulations or in the gastrointestinal tract. The present review examines the behaviour of polysaccharides at fluid food interfaces focusing on their performance in the absence of any other intentionally added interfacially active components. Relevant theoretical principles of colloidal stabilisation using concepts that have been developed for synthetic polymers at interfaces are firstly introduced. The role of protein that in most cases is present in polysaccharide preparations either as contaminant or as integral part of the structure is also discussed. Critical assessment of the literature reveals that although protein may contribute to emulsion formation mostly as an anchor for polysaccharides to attach, it is not the determinant factor for the long-term emulsion stability, irrespectively of polysaccharide structure. Interfacial performance of key polysaccharides is also assessed revealing shared characteristics in their modes of adsorption. Conformation of polysaccharides, as affected by the composition of the aqueous solvent needs to be closely controlled, as it seems to be the underlying fundamental cause of stabilisation events and appears to be more important than the constituent polysaccharide sugar-monomers. Finally, polysaccharide adsorption is better understood by regarding them as copolymers, as this approach may assist to better control their properties with the aim to create the next generation biosurfactants.Graphical abstractUnlabelled Image
  • Recent progress and perspectives of gas sensors based on vertically
           oriented ZnO nanomaterials
    • Abstract: Publication date: Available online 22 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Rafiq Ahmad, Sanjit Manohar Majhi, Xixiang Zhang, Timothy M. Swager, Khaled N. Salama Vertically oriented zinc oxide (ZnO) nanomaterials, such as nanorods (NRs), nanowires (NWs), nanotubes (NTs), nanoneedles (NNs), and nanosheets (NSs), are highly ordered architectures that provide remarkable properties for sensors. Furthermore, these nanostructures have fascinating features, including high surface-area-to-volume ratios, high charge carrier concentrations, and many surface-active sites. These features make vertically oriented ZnO nanomaterials exciting candidates for gas sensor fabrication. The development of efficient methods for the production of vertically oriented nanomaterial electrode surfaces has resulted in improved stability, high reproducibility, and gas sensing performance. Moving beyond conventional fabrication processes that include binders and nanomaterial deposition steps has been crucial, as the materials from these processes suffer from poor stability, low reproducibility, and marginal sensing performance. In this feature article, we comprehensively describe vertically oriented ZnO nanomaterials for gas sensing applications. The uses of such nanomaterials for gas sensor fabrication are discussed in the context of ease of growth, stability on an electrode surface, growth reproducibility, and enhancements in device efficiency as a result of their unique and advantageous features. In addition, we summarize applications of gas sensors for a variety of toxic and volatile organic compound (VOC) gases, and we discuss future directions of the vertically oriented ZnO nanomaterials.Graphical abstractUnlabelled Image
  • A practical review on the measurement tools for cellular adhesion force
    • Abstract: Publication date: Available online 11 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Rita Ungai-Salánki, Beatrix Peter, Tamás Gerecsei, Norbert Orgovan, Robert Horvath, Bálint Szabó Cell–cell and cell–matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.Graphical abstractUnlabelled Image
  • Gum-based nanocarriers for the protection and delivery of food bioactive
    • Abstract: Publication date: Available online 10 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Afsaneh Taheri, Seid Mahdi Jafari Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems. New preparation techniques and sources of non-traditional gums are still being examined for commercialization in the food nanotechnology area as low-cost and reproducible sources. In this study, different nanostructures of gums and their preparation methods have been discussed along with a review of gum nanostructure applications for various food bioactive ingredients.Graphical abstractUnlabelled Image
  • To what extent do polymeric stabilizers affect nanoparticles
    • Abstract: Publication date: Available online 10 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Metwally Madkour, Ali Bumajdad, Fakhreia Al-Sagheer Colloidal synthesis of nanoparticles using polymeric stabilizers as a template of a structure directing agent provided a plethora of opportunities in fabricating nanoparticles (NPs) with controlled size, shape, composition and structural characteristics. To understand the complete potency of polymeric stabilizers during the synthesis of nanoparticles, the relationship between polymer characteristics such as structure, molecular weight and concentration and nanoparticles characteristics is discussed in depth. This review portrays the use of polymers to attain nanostructured materials via covalent and non-covalent approaches. The effect provided by polymer are quite potent means that directs the formation of nanomaterials into desired forms that are otherwise hard to achieve. These polymers can also serve as surfaces modifier as well as the growth regulator during the synthesis of nanomaterials. We especially spotlight on the approaches for tuning the characteristic properties of nanoparticles via cautious choice of the polymer system with special focus to stimuli-responsive polymers. This review mainly focusses on answering the main challenging question; what is the ideal polymeric stabilizer system to obtain specific morphology, size and phase structure of nanoparticles? Such vital information will enable rational design of nanoparticles to meet specific needs for different applications.Graphical abstractUnlabelled Image
  • Food protein amyloid fibrils: Origin, structure, formation,
           characterization, applications and health implications
    • Abstract: Publication date: Available online 10 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Yiping Cao, Raffaele Mezzenga Amyloid fibrils have traditionally been considered only as pathological aggregates in human neurodegenerative diseases, but it is increasingly becoming clear that the propensity to form amyloid fibrils is a generic property for all proteins, including food proteins. Differently from the pathological amyloid fibrils, those derived from food proteins can be used as advanced materials in biomedicine, tissue engineering, environmental science, nanotechnology, material science as well as in food science, owing to a combination of highly desirable feature such as extreme aspect ratios, outstanding stiffness and a broad availability of functional groups on their surfaces. In food science, protein fibrillization is progressively recognized as an appealing strategy to broaden and improve food protein functionality. This review article discusses the various classes of reported food protein amyloid fibrils and their formation conditions. It furthermore considers amyloid fibrils in a broad context, from their structural characterization to their forming mechanisms and ensued physical properties, emphasizing their applications in food-related fields. Finally, the biological fate and the potential toxicity mechanisms of food amyloid fibrils are discussed, and an experimental protocol for their health safety validation is proposed in the concluding part of the review.Graphical abstractUnlabelled Image
  • Bridging the gap between two different scaling laws for structuring of
           liquids under geometrical confinement
    • Abstract: Publication date: Available online 10 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Michael Ludwig, Marcus U. Witt, Regine V. Klitzing Structural forces are a phenomena obtained in liquids of one-component (e.g. for organic solvents) and two-components (colloidal dispersions), alike. So far, those two systems were discussed separately, using two different scaling laws. In this review article, an attempt is made to bridge the gap between both scaling laws by defining the scaling limit for two-component systems. Colloidal probe atomic force microscopy (CP-AFM) is used to measure structural forces in suspensions of silica nanoparticles (NP) of three different sizes. In these two-component systems (solid NPs suspended in water), oscillatory behaviour can be obtained in the force vs. separation profiles. The wavelength λ is larger than the actual particle diameter d and rather depends on the particles' volume fraction ϕ following the inverse cubic root law λ∝ϕ−13. It is shown that the real particle diameter d can be determined by a gedankenexperiment by extrapolating the fitted wavelength λ from the structural force measurements at a specific particle concentration to a particle volume fraction ϕ of 52 % - the packing factor for simple cubic packing - using the well-known inverse cubic root scaling law. This extrapolation can be interpreted as a transition from a two-component system towards a one-component-like problem. In this case, particles are in contact and the wavelength λ is equal to the particle diameter d, λ = d as for one-component systems. The determined diameters d of the different silica nanoparticles agree well with independent measurements using transmission electron microscopy (TEM), validating the used approach. The proposed method can be extended to numerous dispersions of spherical nano-sized objects, for which structural forces can be measured.Graphical abstractUnlabelled Image
  • Formation and assembly of amphiphilic Janus nanoparticles promoted by
           polymer interactions
    • Abstract: Publication date: Available online 9 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Ana Maria Percebom, Lais Helena Moreira Costa Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.Graphical abstractUnlabelled Image
  • Electrophoretic deposition of photocatalytic materials
    • Abstract: Publication date: Available online 7 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Sergio Obregón, Gabriela Amor, Alejandro Vázquez Powdered photocatalytic materials have been successfully applied for the degradation of organic and inorganic pollutants as well as for hydrogen production and CO2 photo-reduction. However, the development of strategies for the preparation of photoactive coatings is a hot topic since it is a promising step for its use in photocatalytic reactors on an industrial scale. Electrophoretic deposition is a versatile technique capable to produce coatings of nanoparticles at a relative low cost and with an excellent quality and control of the deposited material. This work summarizes the fundamental aspects of the electrophoretic deposition process, as well as the latest contributions in the deposition of several photocatalytic materials including TiO2 and other UV-photocatalysts like ZnO, ZnS, SrTiO3 and PbMoO4 in addition to visible-light-driven photocatalysts such as Bi2O3, CdS, CdSe, g-C3N4, among others. Furthermore, the morphological features of the coatings along with the repercussion in the photocatalytic performance are issues discussed in the present review, based on the effect of the multiple parameters of the electrophoretic process such as the applied voltage, the deposition time, the inter-electrode distance, the concentration of the particles, the solvents and additives.Graphical abstractUnlabelled Image
  • Derivatization approaches and applications of pullulan
    • Abstract: Publication date: Available online 5 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Sanjay Tiwari, Rahul Patil, Sunil K. Dubey, Pratap Bahadur Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.Graphical abstractUnlabelled Image
  • Van der Waals forces in free and wetting liquid films
    • Abstract: Publication date: Available online 5 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Kirill A. Emelyanenko, Alexandre M. Emelyanenko, Ludmila B. Boinovich Van der Waals interactions induced by fluctuations of electromagnetic field bear universal nature and act between individual atoms, condensed particles or bodies of any type. Continuously growing interest to theoretical understanding as well as to precise evaluation of van der Waals forces is caused by their fundamental role in many physical, chemical, and biological processes. In this paper, we scrutinize progress in the studies of van der Waals forces, related to recent active development of Coupled Dipole Method (CDM) for the analysis of the behavior and properties of nanosized systems. The application of CDM for the analysis of thin liquid films allowed achieving substantial progress in understanding the behavior of free and wetting films. It was shown that both the macroscopic properties, such as excess free energy and Hamaker constants and the local microscopic parameters, such as polarizabilities, can be successfully calculated based only on properties of individual molecules. The impact of lateral film confinement on the specific excess free energy and the film stability was elucidated, and effect of spatial constraints on the spectrum of vibrational states for liquid film and the underlying substrate was analyzed. It was shown that van der Waals interactions between molecules represent the universal mechanism for dynamic structuring and formation of boundary layers and that the CDM allows self-consistently calculating the properties of these layers in both solid and liquid phases.Graphical abstractUnlabelled Image
  • Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and
           the applications in drug delivery and protein recognition
    • Abstract: Publication date: Available online 3 May 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Jing Wang, Xin Ding, Xia Guo Calixarene is the third generation of supra-molecular compounds after crown ether and cyclodextrin. Amphiphilic calixarene can be obtained by modulation with both hydrophilic group and hydrophobic alkyl chain. Compared with conventional surfactant, amphiphilic calixarene has much lower critical micelle concentration and is much easier to self-assemble into different morphological aggregates. Calixarene-based supra-amphiphile can be designed via noncovalent bonds due to the capability of calixarene to recognize surfactant; the binding of a surfactant with calixarene can decrease the critical micelle concentration of surfactant by several times. The calixarene-surfactant complex can self-aggregate to form spherical micelles, vesicles, and spherical nanoparticles, and the aggregation behavior can be controlled by the structures and the molar ratio of surfactant to calixarene and environmental factors. Calixarene-based amphiphile and supra-amphiphile show low cytotoxicity. They can load drugs and assemble into nanocapsules with drugs. The structure of the calixarene-drug complex can respond to external stimuli, rendering the sustained release of the drug and suggesting its potential application as a drug delivery system. Recently, calixarene has also been found to selectively bind proteins, suggesting its prospect in disease diagnosis and intervention treatment in clinics. This review elaborates on the research progress in the self-assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications of the calixarenes in drug delivery and protein recognition. The prospectives for the studies are also provided in this review.Graphical abstractUnlabelled Image
  • Emulsion and miniemulsion techniques in preparation of polymer
           nanoparticles with versatile characteristics
    • Abstract: Publication date: Available online 30 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Ali Gharieh, Sepideh Khoee, Ali Reza Mahdavian In recent years, polymer nanoparticles (PNPs) have found their ways into numerous applications extending from electronics to photonics, conducting materials to sensors and medicine to biotechnology. Physical properties and surface morphology of PNPs are the most important parameters that significantly affect on their exploitations and can be controlled through the synthesis process. Emulsion and miniemulsion techniques are among the most efficient and wide-spread methods for preparation of PNPs. The objective of this review is to present and highlight the recent developments in the advanced PNPs with specific properties that are produced through emulsion and miniemulsion processes.Graphical abstractUnlabelled Image
  • Polymer/nanodiamond composites - a comprehensive review from synthesis and
           fabrication to properties and applications
    • Abstract: Publication date: Available online 27 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Pooria Karami, Samaneh Salkhi Khasraghi, Mohammadjafar Hashemi, Sima Rabiei, Akbar Shojaei Nanodiamond (ND) is an allotrope of carbon nanomaterials which exhibits many outstanding physical, mechanical, thermal, optical and biocompatibility characteristics. Meanwhile, ND particles possess unique spherical shape containing diamond-like structure at the core with graphitic carbon outer shell which intuitively contains many oxygen-containing functional groups at the outer surface. Such superior properties and unique structural morphology of NDs are essentially attractive to develop polymer composites with multifunctional properties. However, despite a long history from the discovery of NDs, which is dated back to the1960s, this nanoparticle has been less explored in the field of polymer (nano)composites compared with other carbon nanomaterials, e.g. carbon nanotube (CNT) and graphene. However, open literature indicates that research works in the field of polymer/ND (PND) composites have gained great momentum in the past half a decade. The present article provides a comprehensive review on recent achievements in ND based polymer composites. This review covers a very broad aspect from the synthesis, purification and functionalization of NDs to dispersion, preparation and fabrication of polymer/ND (PND) composites with a look in their recent applications for both structural and functional basis. Therefore, the review would be useful to pave the way for researchers to take some advancing steps in this respect.Graphical abstractUnlabelled Image
  • Fouling and wetting in the membrane distillation driven wastewater
           reclamation process – A review
    • Abstract: Publication date: Available online 27 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Mahbuboor Rahman Choudhury, Nawrin Anwar, David Jassby, Md. Saifur Rahaman Fouling and wetting of membranes are significant concerns that can impede widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Whereas membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. We also discussed energy consumption and economic aspects of MD for wastewater recovery. Throughout the review, we engage in discussions highlighting research needs for furthering the development of MD: notably the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies), and the application of MD in long-term pilot-scale studies using real wastewater.Graphical abstractUnlabelled Image
  • The importance of being amorphous: Calcium and magnesium phosphates in the
           human body
    • Abstract: Publication date: Available online 27 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Rita Gelli, Francesca Ridi, Piero Baglioni This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which pure ACP, or in combination with Mg2+, can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.Graphical abstractUnlabelled Image
  • Surface topographies of biomimetic superamphiphobic materials: design
           criteria, fabrication and performance
    • Abstract: Publication date: Available online 27 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Xuelian Gou, Zhiguang Guo Superamphiphobicity is a wetting phenomenon that not only water but also oils or organic solvents with low surface tension exhibit large contact angles above 150° along with low contact angle hysteresis on solid surface. It is well known that both chemical constituent and surface roughness have impacts on the wettability of solid surface. Herein, several fundamental wetting states and design criteria for re-entrant structures are introduced first. Then, various chemical modification materials endowing solid substrates low surface energy are summarized subsequently. Furthermore, roughening processes conferring hierarchical or re-entrant topographic structures on surfaces are classified based on different types of topographies abstracted from the natural oil-repellent creatures (mushroom-like structures) as well as bio-inspired superamphiphobic surfaces (i.e., randomly distributed nanostructures, regularly patterned microstructures and other complex hierarchical structures). Significantly, the impalement pressure and formulated rules of various re-entrant profiles are recommended in detail. At the same time, fabrication, outstanding performances such as mechanical durability, chemical stability are also mentioned according to different types of morphologies. Beyond that, current fabrication obstacles and future prospects are proposed simultaneously in the end.Graphical abstractUnlabelled Image
  • Icephobic surfaces: Definition and figures of merit
    • Abstract: Publication date: Available online 27 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Peyman Irajizad, Sina Nazifi, Hadi Ghasemi Icephobic surfaces have a critical footprint on human daily lives ranging from aviation systems and infrastructures to energy systems, but creation of these surfaces for low-temperature applications remains elusive. Non-wetting, liquid-infused and hydrated surfaces have inspired routes for development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength and subsequent ice accretion, low mechanical durability, and high production cost have restricted their practical applications. In this review, we provide a comprehensive definition for icephobicity through thermodynamics, heat transfer and mechanics of ice/water-material interface and elucidate physic-based routes through which nano-scale could help to achieve exceptional icephobic surfaces. Based on conservation laws, mathematical models are developed that accurately predict ice growth rate on various substrates and wind conditions. Through physics of fracture at ice-icephobic material interface, we cast a standard method for ice adhesion measurement that has the potential to eliminate discrepancies between reported ice adhesion from different laboratories. To assure long-time performance of icephobic surfaces, durability metrics need to be defined. We provide standard methods to examine mechanical, chemical, and environmental durability of icephobic surfaces. In the developed comprehensive framework on icephobicity in this review, performance of state-of-the-art icephobic surfaces are compared and main deficiencies in this field are highlighted.Graphical abstractUnlabelled Image
  • Multilayers formed by polyelectrolyte-surfactant and related mixtures at
           the air-water interface
    • Abstract: Publication date: Available online 19 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Peixun Li, Jeffery Penfold, Robert K. Thomas, Hui Xu The structure and occurrence of multilayered adsorption at the air-water interface of surfactants in combination with other oppositely charged species is reviewed. The main species that trigger multilayer formation are multiply charged metal, oligo- and polyions. The structures vary from the attachment of one or two more or less complete surfactant bilayers to the initial surfactant monolayer at the air-water interface to the attachment of a greater number of bilayers with a more defective structure. The majority of the wide range of observations of such structures have been made using neutron reflectometry. The possible mechanisms for the attraction of surfactant bilayers to an air-water interface are discussed and particular attention is given to the question of whether these structures are true equilibrium structures.Graphical abstractUnlabelled Image
  • Moses effect: physics and applications
    • Abstract: Publication date: Available online 17 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Edward Bormashenko Deformation of the surface of a diamagnetic liquid by a magnetic field is called the “Moses Effect”. Magnetic fields of ca 0.5 T give rise to near surface dips with a depth of dozens of microns. The physics and applications of direct and inverse Moses effects are reviewed, including trapping and self-assembly of particles. Experimental techniques enabling visualization of the effects are surveyed. The impact of a magnetic field on micro- and macroscopic properties of liquids is addressed. The influence of surface tension on the shape of the near-surface dip formed in a diamagnetic liquid by magnetic field is reported. Floating of diamagnetic bodies driven by the Moses effect is treated. The “magnetic memory of water” in relation to the Moses Effect is discussed. The dynamics of self-healing of near-surface dips due to the Moses Effect is considered.Graphical abstractUnlabelled Image
  • Rotator phases in alkane systems: In bulk, surface layers and
    • Abstract: Publication date: Available online 5 April 2019Source: Advances in Colloid and Interface ScienceAuthor(s): Diana Cholakova, Nikolai Denkov Medium- and long-chain alkanes and their mixtures possess a remarkable physical property – they form intermediate structured phases between their isotropic liquid phase and their fully ordered crystal phase. These intermediate phases are called “rotator phases” or “plastic phases” (soft solids) because the incorporated alkane molecules possess a long-range positional order while preserving certain mobility to rotate, which results in complex visco-plastic rheological behaviour. The current article presents a brief overview of our current understanding of the main phenomena involved in the formation of rotator phases from single alkanes and their mixtures. In bulk, five rotator phases with different structures were identified and studied in detail. Along with the thermodynamically stable rotator phases, metastable and transient (short living) rotator phases were observed. Bulk rotator phases provided important information about several interfacial phenomena of high scientific interest, such as the energy of crystal nucleation, entropy and enthalpy of alkane freezing, interfacial energy between a crystal and its melt, etc. In alkane mixtures, the region of existence of rotator phases increases significantly, reflecting the disturbed packing of different molecules. All these phenomena are very important in the context of alkane applications as lubricants, in cosmetics, as phase-change materials for energy storage, etc. Significant expansion of the domain of rotator phases was observed also in confinements – in the pores of solid materials impregnated with alkanes, in polymeric microcapsules containing alkanes, and in micrometer sized emulsion droplets. The rotator phases were invoked to explain the mechanisms of two recently discovered phenomena in cooled alkane-in-water emulsions – the spontaneous “self-shaping” and the spontaneous “self-bursting” (fragmentation) of emulsion drops. The so-called “α-phases” formed by fatty acids and alcohols, and the “gel phase” formed in phospholipid and soap systems exhibit structural characteristics similar to those in the alkane rotator phases. The subtle connections between all these diverse systems are outlined, providing a unified outlook of the main phenomena related to the formation of such soft solid materials. The occurrence of alkane rotator phases in natural materials and in several technological applications is also reviewed to illustrate the general importance of these unique materials and the related phenomena.Graphical abstractUnlabelled Image
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-