for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> CHEMISTRY (Total: 881 journals)
    - ANALYTICAL CHEMISTRY (54 journals)
    - CHEMISTRY (616 journals)
    - CRYSTALLOGRAPHY (21 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (43 journals)
    - ORGANIC CHEMISTRY (48 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (616 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 14)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 27)
ACS Catalysis     Hybrid Journal   (Followers: 44)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 22)
ACS Combinatorial Science     Hybrid Journal   (Followers: 23)
ACS Macro Letters     Hybrid Journal   (Followers: 26)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 41)
ACS Nano     Hybrid Journal   (Followers: 289)
ACS Photonics     Hybrid Journal   (Followers: 14)
ACS Symposium Series     Full-text available via subscription  
ACS Synthetic Biology     Hybrid Journal   (Followers: 24)
Acta Chemica Iasi     Open Access   (Followers: 5)
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 7)
Acta Scientifica Naturalis     Open Access   (Followers: 3)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 8)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Adsorption Science & Technology     Open Access   (Followers: 6)
Advanced Functional Materials     Hybrid Journal   (Followers: 59)
Advanced Science Focus     Free   (Followers: 5)
Advances in Chemical Engineering and Science     Open Access   (Followers: 68)
Advances in Chemical Science     Open Access   (Followers: 18)
Advances in Chemistry     Open Access   (Followers: 22)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 19)
Advances in Drug Research     Full-text available via subscription   (Followers: 24)
Advances in Environmental Chemistry     Open Access   (Followers: 7)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 9)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 16)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 12)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 25)
Advances in Nanoparticles     Open Access   (Followers: 15)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 17)
Advances in Polymer Science     Hybrid Journal   (Followers: 44)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 20)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 3)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 8)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 2)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 21)
American Journal of Chemistry     Open Access   (Followers: 31)
American Journal of Plant Physiology     Open Access   (Followers: 11)
American Mineralogist     Hybrid Journal   (Followers: 15)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 169)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 252)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 5)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 4)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 9)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 2)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 9)
Applied Spectroscopy     Full-text available via subscription   (Followers: 24)
Applied Surface Science     Hybrid Journal   (Followers: 32)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 2)
Atomization and Sprays     Full-text available via subscription   (Followers: 4)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 2)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemistry     Hybrid Journal   (Followers: 365)
Biochemistry Insights     Open Access   (Followers: 6)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 10)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 22)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 7)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 5)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 133)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 86)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 10)
Canadian Mineralogist     Full-text available via subscription   (Followers: 6)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 70)
Catalysis for Sustainable Energy     Open Access   (Followers: 8)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 7)
Catalysis Science and Technology     Free   (Followers: 8)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 10)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 22)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 74)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 26)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 194)
Chemical Science     Open Access   (Followers: 26)
Chemical Technology     Open Access   (Followers: 28)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 57)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 24)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Biology     Full-text available via subscription   (Followers: 32)
Chemistry & Industry     Hybrid Journal   (Followers: 7)
Chemistry - A European Journal     Hybrid Journal   (Followers: 157)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 16)
Chemistry and Materials Research     Open Access   (Followers: 21)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 44)
Chemistry of Materials     Hybrid Journal   (Followers: 263)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry World     Full-text available via subscription   (Followers: 20)
Chemistry-Didactics-Ecology-Metrology     Open Access   (Followers: 1)
ChemistryOpen     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 4)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 14)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 11)
Chromatographia     Hybrid Journal   (Followers: 24)
Chromatography     Open Access   (Followers: 2)
Chromatography Research International     Open Access   (Followers: 6)
Clay Minerals     Full-text available via subscription   (Followers: 10)
Cogent Chemistry     Open Access   (Followers: 2)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 11)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 6)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 4)
Combustion Science and Technology     Hybrid Journal   (Followers: 22)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Communications Chemistry     Open Access  
Composite Interfaces     Hybrid Journal   (Followers: 7)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 1)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 10)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 4)
Copernican Letters     Open Access   (Followers: 1)
Corrosion Series     Full-text available via subscription   (Followers: 6)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 6)
Croatica Chemica Acta     Open Access  
Crystal Structure Theory and Applications     Open Access   (Followers: 4)
CrystEngComm     Full-text available via subscription   (Followers: 13)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Chromatography     Hybrid Journal  
Current Green Chemistry     Hybrid Journal   (Followers: 1)
Current Metabolomics     Hybrid Journal   (Followers: 5)
Current Microwave Chemistry     Hybrid Journal  
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Opinion in Molecular Therapeutics     Full-text available via subscription   (Followers: 14)
Current Research in Chemistry     Open Access   (Followers: 9)
Current Science     Open Access   (Followers: 71)
Current Trends in Biotechnology and Chemical Research     Open Access   (Followers: 3)
Dalton Transactions     Full-text available via subscription   (Followers: 23)
Detection     Open Access   (Followers: 3)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Dislocations in Solids     Full-text available via subscription  

        1 2 3 4 | Last

Journal Cover
Advances in Colloid and Interface Science
Journal Prestige (SJR): 1.977
Citation Impact (citeScore): 8
Number of Followers: 19  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 0001-8686
Published by Elsevier Homepage  [3161 journals]
  • Recent progress in the engineering of multifunctional colloidal
           nanoparticles for enhanced photodynamic therapy and bioimaging
    • Abstract: Publication date: Available online 18 September 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Łukasz Lamch, Agata Pucek, Julita Kulbacka, Michał Chudy, Elżbieta Jastrzębska, Katarzyna Tokarska, Magdalena Bułka, Zbigniew Brzózka, Kazimiera A. WilkThis up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles – nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and − in the case of nanotheranostics − simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.Graphical abstractUnlabelled Image
       
  • Surface modified halloysite nanotubes: A flexible interface for
           biological, environmental and catalytic applications
    • Abstract: Publication date: Available online 4 September 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Maithri Tharmavaram, Gaurav Pandey, Deepak RawtaniHalloysite Nanotubes (HNTs) are clay minerals that possess unique chemical composition and a tubular structure due to which, they have recently emerged as a potential nanomaterial for umpteen applications. Over the years, the myriad applications of HNT have been realized through the surface modification of HNT, which involves the modification of nanotube's inner lumen and the outer surface with different functional compounds. The presence of aluminum and silica groups on the inner and outer surface of HNT enhance the interfacial relationship of the nanotube with different functional agents. Compounds such as alkalis, organosilanes, polymers, compounds of biological origin, surfactants and nanomaterials have been used for the modification of the inner lumen and the outer surface of HNT. The strategies change the constitution of HNT's surface either through micro-disintegration of the surface or by introducing additional functional groups on the surface, which further enhances their potential to be used as a flexible interface for different applications. In this review, the different surface modification strategies of the outer surface and the inner lumen that have been employed over the years have been discussed. The biological, environmental and catalytic applications of these surface modified HNTs with such versatile interface in the past two years have been elaborately discussed as well.Graphical abstractUnlabelled Image
       
  • Obituary-Tharwat Tadros
    • Abstract: Publication date: September 2018Source: Advances in Colloid and Interface Science, Volume 259Author(s):
       
  • Lipid nanocarriers for the loading of polyphenols – A comprehensive
           review
    • Abstract: Publication date: Available online 25 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): S. Pimentel-Moral, M.C. Teixeira, A.R. Fernandes, D. Arráez-Román, A. Martínez-Férez, A. Segura-Carretero, E.B. SoutoPolyphenols are secondary metabolites found in all vascular plants and constitute a large group of at least 10,000 unique compounds. Particular attention is currently being paid to polyphenols attributed to their beneficial effects in the protection and prevention of several diseases. While their use in food, pharmaceutical and cosmetic industries is largely documented, several environmental conditions (e.g. light, temperature or oxygen) may affect the physicochemical stability of polyphenols, compromising their bioactivity in vivo. To overcome these limitations, the loading of polyphenols into nanoparticles has been proposed aiming at both increasing their bioavailability and reducing eventual side effects. Lipid nanoparticles offer several advantages, namely their biodegradability and low toxicity, with the additional capacity to modify the release profile of loaded drugs.This paper is a review of the recent advances of lipid nanocarriers commonly used for the encapsulation of polyphenols, highlighting their added value to increase bioavailability and bioactivity of this group of compounds as well as their application in several diseases.Graphical abstractUnlabelled Image
       
  • Modelling cavitation during drop impact on solid surfaces
    • Abstract: Publication date: Available online 25 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Nikolaos Kyriazis, Phoevos Koukouvinis, Manolis GavaisesThe impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.Graphical abstractUnlabelled Image
       
  • Recent and prominent examples of nano- and microarchitectures as
           hemoglobin-based oxygen carriers
    • Abstract: Publication date: Available online 24 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Michelle M.T. Jansman, Leticia Hosta-RigauBlood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine.However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.Graphical abstractUnlabelled Image
       
  • Binary colloidal crystals (BCCs): Interactions, fabrication, and
           applications
    • Abstract: Publication date: Available online 23 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Farhana Sharmin Diba, Andrew Boden, Helmut Thissen, Mrinal Bhave, Peter Kingshott, Peng-Yuan WangThe organization of matter into hierarchical structures is a fundamental characteristic of functional materials and living organisms. Binary colloidal crystal (BCC) systems present a diversified range of nanotopographic structures where large and small colloidal particles simultaneously self-assemble into either 2D monolayer or 3D hierarchical crystal lattices. More importantly, understanding how BCCs form opens up the possibility to fabricate more complex systems such as ternary or quaternary colloidal crystals. Monolayer BCCs can also offer the possibility to achieve surface micro- and nano-topographies with heterogeneous chemistries, which can be challenging to achieve with other traditional fabrication tools. A number of fabrication methods have been reported that enable generation of BCC structures offering high accuracy in growth with controllable stoichiometries; however, it is still a challenge to make uniform BCC structures over large surface areas. Therefore, fully understand the mechanism of binary colloidal self-assembly is crucial and new/combinational methods are needed. In this review, we summarize the recent advances in BCC fabrication using particles made of different materials, shapes, and dispersion medium. Depending on the potential application, the degree of order and efficiency of crystal formation has to be determined in order to induce variability in the intended lattice structures. The mechanisms involved in the formation of highly ordered lattice structures from binary colloidal suspensions and applications are discussed. The generation of BCCs can be controlled by manipulation of their extensive phase behavior, which facilitates a wide range potential applications in the fields of both material and biointerfacial sciences including photonics, biosensors, chromatography, antifouling surfaces, biomedical devices, and cell culture tools.Graphical abstractUnlabelled Image
       
  • Mechanisms, performance optimization and new developments in
           demulsification processes for oil and gas applications
    • Abstract: Publication date: Available online 17 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Zlata Grenoble, Siwar TrabelsiThe present review discusses new developments and optimization of demulsification processes in oil and gas applications, and highlights the critical parameters. Discussed are the primary mechanisms of demulsification, as well as the strategies for developing optimum demulsifiers. Demulsification mechanisms are presented in the context of emulsion stability principles which are equally applicable to the destabilization of crude oil-water emulsions.The present paper is a concise overview of the various surfactant classes and their structure-activity relationship. It correlates demulsification optimization with surfactant properties and their applications. These classes include, but are not limited to pluronic block co-polymers, as well as amine- and siloxane based nonionic surfactants. The emphasis is on providing some strategies for achieving optimum crude oil-water separation efficiency by tuning the demulsifier to the intended application and crude oil properties.A brief overview of unconventional analytical techniques, which reach beyond the standard demulsifier evaluation methods, i.e., Near Infrared Spectroscopy (NIR), and in particular, low resolution NMR relaxometry, highlights their role in monitoring demulsification processes.Graphical abstractUnlabelled Image
       
  • Recent advances in polymerizations in dispersed media
    • Abstract: Publication date: Available online 9 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Ratchapol Jenjob, Farzad Seidi, Daniel CrespyAdvances in chemistry heterophase polymerizations reflect new developments in polymer chemistry. Although some few polymerization reactions cannot be performed in dispersed media, new polymerization reactions can still benefit from advantages of heterophase reactions, which are fast kinetics due to high local concentration of reagents and advantageous heat exchange. We describe here advances in heterophase polymerizations, with a focus on miniemulsion polymerization, which are mainly driven by academic interest for biomedicine and energy science. Click-reactions in dispersion are particularly interesting because they are bioorthogonals. Synthesis of highly crosslinked polymer colloids, especially with conjugated polymers, has found applications in gas storage, catalysis, and production of energy. Finally, we show how spatial segregation in heterophase polymerization can help to obtain polymer materials with unique structures.Graphical abstractUnlabelled Image
       
  • Engineering intelligent particle-lipid composites that control
           lipase-mediated digestion
    • Abstract: Publication date: Available online 6 August 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Paul Joyce, Hanna Gustafsson, Clive A. PrestidgeNanostructured particle-lipid composites have emerged as state-of-the-art carrier systems for poorly water-soluble bioactive molecules due to their ability to control and enhance the lipase-mediated hydrolysis of encapsulated triglycerides, leading to a subsequent improvement in the solubilisation and absorption of encapsulated species. The first generation of particle-lipid composites (i.e. silica-lipid hybrid (SLH) microparticles) were designed and fabricated by spray drying a silica nanoparticle-stabilised Pickering emulsion, to create a novel three-dimensional architecture, whereby lipid droplets were encapsulated within a porous matrix support. The development of SLH microparticles has acted as a solid foundation for the synthesis of several next generation particle-lipid composites, including polymer-lipid hybrid (PLH) and clay-lipid hybrid systems (CLH), which present lipase with unique lipid microenvironments for optimised lipolysis. This review details the methods utilised to engineer lipid hybrid particles and the strategic investigations that have been performed to determine the influence of key material characteristics on digestion enzyme activity. In doing so, this provides insight into manipulating the mechanism of lipase action through the intelligent design of lipid-based biomaterials for their use in drug delivery formulations and novel functional foods.Graphical abstractUnlabelled Image
       
  • Flexible electrochromic materials based on CNT/PDA hybrids
    • Abstract: Publication date: Available online 24 July 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Reinack Varghese Hansen, Jinglei Yang, Lianxi ZhengMaterials that change color in response to external stimuli can cater to diverse applications from sensing to art. If made flexible, stretchable and weavable, they may even be directly integrated with advanced technologies such as smart textiles. A new class of engineered composite based on polydiacetylene (PDA) functionalized carbon nanotubes (CNT) shows tremendous potential in this regard. While the inherent multi stimuli chromatic response of the polymer (blue to red) is retained, the underlying conducting CNTs invoke electrochromism in PDA. Further, the fiber form factor of dry-spun CNT yarns facilitate direct weaving of large scale electrochromic fabrics, where current flow and thus color change can be accurately controlled. This review summarizes the fundamental aspects of CNT yarns and PDAs, focusing especially on their interaction chemistry which results in the scientifically and commercially appealing electrochromic transition in these hybrids.Graphical abstractUnlabelled Image
       
  • Developments in support materials for immobilization of oxidoreductases: A
           comprehensive review
    • Abstract: Publication date: Available online 24 July 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Jakub Zdarta, Anne S. Meyer, Teofil Jesionowski, Manuel PineloBioremediation, a biologically mediated transformation or degradation of persistent chemicals into nonhazardous or less-hazardous substances, has been recognized as a key strategy to control levels of pollutants in water and soils. The use of enzymes, notably oxidoreductases such as laccases, tyrosinase, various oxygenases, aromatic dioxygenases, and different peroxidases (all of EC class 1) is receiving significant research attention in this regard. It should be stated that immobilization is emphasized as a powerful tool for enhancement of enzyme activity and stability as well as for protection of the enzyme proteins against negative effects of harsh reaction conditions. As proper selection of support materials for immobilization and their performance is overlooked when it comes to comparing performance of immobilized enzyme in academic studies, this review summarizes the current state of knowledge regarding the materials used for enzyme immobilization of these oxidoreductase enzymes for environmental applications. In the presented study, thorough physicochemical characteristics of the support materials was presented. Moreover, various types of reactions and notably operational modes of enzymatic processes for biodegradation of harmful pollutants are summarized, and future trends in use of immobilized oxidoreductases for environmental applications are discussed. Our goal is to provide an improved foundation on which new technological advancements can be made to achieve efficient enzyme-assisted bioremediation.Graphical abstractUnlabelled Image
       
  • Mesoscopic characterization of amphiphilic monoglycerol monolayers
    • Abstract: Publication date: Available online 22 July 2018Source: Advances in Colloid and Interface ScienceAuthor(s): D. VollhardtThe introduction of the highly-sensitive imaging technique Brewster angle microscopy (BAM) has given rise to new knowledges about the mesoscopic topology and ordering of condensed phase domains formed in the two-phase coexistence region of Langmuir monolayers. Besides fatty acids, monoalkanoylglycerols are the most studied amphiphiles at the air−water interface. In this review, the mesoscopic characterization of amphiphilic monoglycerol monolayers is surveyed to demonstrate the striking effect of the position of the glycerol backbone at which the polar head group is substituted. Systematic mesoscopic studies of amphiphilic monoglycerol monolayers offer an outstanding possibility to highlight the dramatic effect of chemical structure variations at the position of the glycerol backbone and the substituted polar groups on the basis of the mesoscopic characterization. Small changes in the polarity by slight variation in the head group structure can dramatic affect shape and organization of the condensed phase domains. According to the importance of the 1-substituted monoglycerols, the effect of the chemical structure of the substituted polar group is highlighted with 4 selected examples. Further main topics discussed are chiral discrimination, kinetics of non-equilibrium structures, electrostatic interactions and a new geometric concept for explaining the topology of condensed phase domains.Graphical abstractUnlabelled Image
       
  • Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis
           and applications in energy, sensors and environment
    • Abstract: Publication date: Available online 19 July 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Manpreet Kaur, Manmeet Kaur, Virender K. SharmaDoping of nitrogen is a promising strategy to modulate chemical, electronic, and structural functionalities of graphene (G)and graphene quantum dots (GQDs) for their outstanding properties in energy and environmental applications.This paper reviews various synthesis approaches of nitrogen-doped graphene (N-G) and nitrogen-doped graphene quantum dots (N-GQDs).;Thermal, ultrasonic, solvothermal, hydrothermal, and electron-beam methods have been applied to synthesize N-G and N-GQDs.These nitrogen-doped carbon materials are characterized to obtain their structural configurations in order to achieve better performance in their applications compared to only either graphene or graphene quantum dots.Both N-G and N-GQDs may be converted into functional materials by integrating with other compounds such as metal oxides/nitrides, polymers, and semiconductors.These functional materials demonstrate superior performance over N-G and N-GQDs materials.Examples of applications of N-G and N-GQDs include supercapacitors, batteries, sensors, fuel cells, solar cells, and photocatalyst.Graphical abstractUnlabelled Image
       
  • Orientation phase transitions of undissociated n-decanoic acid at the
           air/solution interface revealed by surface pressure and electric potential
           
    • Abstract: Publication date: Available online 23 June 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Wanda Barzyk, Klaus Lunkenheimer, Andrzej PomianowskiThe surface pressure (Π) and electric surface potential (ΔV) vs. concentration (c) isotherms of n-decanoic acid (DA) in 1 × 10−3 mol/dm3 HCl were measured at the air/solution interface - the Π with a du Noüy ring, the ΔV with the vibrating plate (named also the dynamic condenser) method. The DA solutions fulfilled criterion of surface-chemical purity. The complementary Π-c and ΔV-c isotherms were jointly evaluated to obtain dependence of quotient of the effective dipole moment to the interface's permittivity, μ⊥/εs, as a function of chosen adsorption ordinates such as the bulk concentration, c, partial molar area, A, and surface molar fraction of DA, XDAs. The crucial point for the analysis is knowledge of the surface excess (Γ) dependence on concentration (c). Since, experimental determination of a Γ-c course is problematic, so far, we used Γ-c courses calculated basing on different adsorption models (Gibbsian, the classical Frumkin’ model and the Lunkenheimer’ and Hirte’ two state approach). Despite, the Γ-c courses determined basing on the different adsorption models differ significantly, the μ⊥/εs dependences on different adsorption's ordinates (c, A or XDAs) revealed consistently three local μ⊥/εs maxima of their height increasing with the adsorption coverage. The μ⊥/εs change was recalculated into inclination angle (αincl) of the total dipole moment vector (μ→) to the interface, assuming εs = 1. The μ⊥/εs which reflects polarization orientation is an order parameter used by us for analysis of 2D phase transitions in the monolayer. The three μ⊥/εs local maxima are ascribed by us to three 2D mono-phases, one transferring into the next one of the higher order in the sequence: liquid expanded (L1) → the liquid condensed tilted (L2) → the liquid condensed untilted (L2′). One inflection point appearing in the Π-A isotherm within the region between the μ⊥/εs maxima 2 and 3 indicates that transition of the L2 into the L2’ 2D phase is of the first order. Decrease of the μ⊥/εs above the maximum 3 indicates transition into two phase regime by nucleation of aggregates (possibly in form of lamellas) within the L2′ phase.Graphical abstractChange of the effective dipole moment, μ⊥/εs, versus the bulk concentraqtion, c, of undissociated n-decanoic acid at the air/solution interface, at 25oC, indicates three 2D phase transitions between the monophases reflected in the local maxima of μ⊥/εs vs. c, namely: liquid expanded → liquid condensed tilted → liquid condensed untilted.Within the higher concn. region, the liquid condensed untilted coexists with 2D aggregates.Unlabelled Image
       
  • Evaluation of particle charging in non-aqueous suspensions
    • Abstract: Publication date: Available online 19 June 2018Source: Advances in Colloid and Interface ScienceAuthor(s): Jarl B. RosenholmFactors influencing the sign and size of effective surface (zeta) potential in suspensions of very low dielectric constants are evaluated. For non-aqueous suspensions it was found that Gutmann's donor number (DN = negative Lewis type molar acid-base adduct formation enthalpy) was successfully related to zeta potential changes, similarily as pH is optimal for aqueous suspensions. Negative molar proton dissociation enthalpy (Brϕnsted type HD number), negative hydrogen bond enthalpy (HB number), logarithmic hydrogen bond equilibrium constant (molar Gibbs free energy), standard reduction potential of solvated protons (Eo(HL+/H2)), electrolytic dissociation potential of water (Eo(H2O/H2, O2)) and electron exchange Fermi potentials could equally well be related to zeta potential changes. All these properties were linearly dependent on each other. Correlations to products of Gutmann's DN and AN numbers and other relevant properties such as polar, hydrogen bond and acid-base contributions to solubility parameters and surface tensions were found to be less successful particularly when very polar liquids were encountered. Commonly used DLVO models for repulsive interaction energy between particles in aqueous electrolyte suspensions have been simplified when dealing with low-polar, non-polar and apolar suspensions. When evaluating factors contributing to attractive and repulsive interaction energies, it is found that in order for the models to be relevant the extension of diffuse charging has to be much larger than the distance to repulsive barrier ensuring suspension stability. At this limit and at high surface potentials, the repulsive energy grows exceptionally large being in the range of lattice energy of each solid. The models fail when surface potential is low and the extension of diffuse charging is much smaller than the distance to repulsive barrier. Then interaction energies are reasonable. The investigated Au, SiO2, Glass, TiO2, Al2O3, CaCO3, MgO suspensions fall between these limits. The attractive energy is small but significant as compared to repulsive energy. All energies were larger than the estimated lower limit for stable suspensions.Graphical abstractUnlabelled Image
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.80.219.236
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-