for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 849 journals)
    - ANALYTICAL CHEMISTRY (50 journals)
    - CHEMISTRY (598 journals)
    - CRYSTALLOGRAPHY (22 journals)
    - ELECTROCHEMISTRY (25 journals)
    - INORGANIC CHEMISTRY (42 journals)
    - ORGANIC CHEMISTRY (45 journals)
    - PHYSICAL CHEMISTRY (67 journals)

CHEMISTRY (598 journals)                  1 2 3 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 8)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 26)
ACS Catalysis     Full-text available via subscription   (Followers: 32)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 17)
ACS Combinatorial Science     Full-text available via subscription   (Followers: 23)
ACS Macro Letters     Full-text available via subscription   (Followers: 23)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 39)
ACS Nano     Full-text available via subscription   (Followers: 227)
ACS Photonics     Full-text available via subscription   (Followers: 11)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 21)
Acta Chemica Iasi     Open Access   (Followers: 2)
Acta Chimica Sinica     Full-text available via subscription   (Followers: 1)
Acta Chimica Slovaca     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 5)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 7)
Adsorption Science & Technology     Full-text available via subscription   (Followers: 5)
Advanced Functional Materials     Hybrid Journal   (Followers: 50)
Advanced Science Focus     Free   (Followers: 3)
Advances in Chemical Engineering and Science     Open Access   (Followers: 53)
Advances in Chemical Science     Open Access   (Followers: 13)
Advances in Chemistry     Open Access   (Followers: 14)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 18)
Advances in Drug Research     Full-text available via subscription   (Followers: 22)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 8)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 15)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 19)
Advances in Nanoparticles     Open Access   (Followers: 14)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 15)
Advances in Polymer Science     Hybrid Journal   (Followers: 41)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 19)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 5)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 2)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 7)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 3)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 14)
American Journal of Chemistry     Open Access   (Followers: 26)
American Journal of Plant Physiology     Open Access   (Followers: 13)
American Mineralogist     Hybrid Journal   (Followers: 13)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 158)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 208)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 1)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 3)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 8)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Hybrid Journal  
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7)
Applied Spectroscopy     Full-text available via subscription   (Followers: 23)
Applied Surface Science     Hybrid Journal   (Followers: 28)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 2)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Atomization and Sprays     Full-text available via subscription   (Followers: 3)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 2)
Avances en Quimica     Open Access   (Followers: 1)
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemistry     Full-text available via subscription   (Followers: 283)
Biochemistry Insights     Open Access   (Followers: 5)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 9)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 1)
Biomacromolecules     Full-text available via subscription   (Followers: 19)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 4)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 108)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 93)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 2)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 10)
Canadian Mineralogist     Full-text available via subscription   (Followers: 3)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 67)
Catalysis for Sustainable Energy     Open Access   (Followers: 6)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 7)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 12)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 70)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 23)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Full-text available via subscription   (Followers: 19)
Chemical Reviews     Full-text available via subscription   (Followers: 170)
Chemical Science     Open Access   (Followers: 21)
Chemical Technology     Open Access   (Followers: 16)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemical Week     Full-text available via subscription   (Followers: 8)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 55)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 25)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 6)
Chemistry & Biology     Full-text available via subscription   (Followers: 30)
Chemistry & Industry     Hybrid Journal   (Followers: 5)
Chemistry - A European Journal     Hybrid Journal   (Followers: 144)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 15)
Chemistry and Materials Research     Open Access   (Followers: 18)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Hybrid Journal   (Followers: 2)
Chemistry Letters     Full-text available via subscription   (Followers: 45)
Chemistry of Materials     Full-text available via subscription   (Followers: 226)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry World     Full-text available via subscription   (Followers: 22)
Chemistry-Didactics-Ecology-Metrology     Open Access  
ChemistryOpen     Open Access   (Followers: 2)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 2)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 9)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 10)
Chromatographia     Hybrid Journal   (Followers: 24)
Chromatography Research International     Open Access   (Followers: 7)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Cogent Chemistry     Open Access  
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 10)
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 8)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 3)
Combustion Science and Technology     Hybrid Journal   (Followers: 18)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 2)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 9)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 2)
Copernican Letters     Open Access  
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 5)
Crystal Structure Theory and Applications     Open Access   (Followers: 3)
CrystEngComm     Full-text available via subscription   (Followers: 11)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Metabolomics     Hybrid Journal   (Followers: 5)
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Research in Chemistry     Open Access   (Followers: 8)
Current Science     Open Access   (Followers: 56)
Dalton Transactions     Full-text available via subscription   (Followers: 20)
Detection     Open Access   (Followers: 2)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Dislocations in Solids     Full-text available via subscription  
Doklady Chemistry     Hybrid Journal  
Drying Technology: An International Journal     Hybrid Journal   (Followers: 4)
Eclética Química     Open Access   (Followers: 1)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
Ecotoxicology and Environmental Contamination     Open Access  
Educación Química     Open Access   (Followers: 1)
Education for Chemical Engineers     Hybrid Journal   (Followers: 5)
EJNMMI Radiopharmacy and Chemistry     Open Access  
Elements     Full-text available via subscription   (Followers: 2)
Environmental Chemistry     Hybrid Journal   (Followers: 9)
Environmental Chemistry Letters     Hybrid Journal   (Followers: 4)
Environmental Science & Technology Letters     Full-text available via subscription   (Followers: 5)

        1 2 3 | Last

Journal Cover Advances in Colloid and Interface Science
  [SJR: 2.314]   [H-I: 130]   [18 followers]  Follow
   Full-text available via subscription Subscription journal
   ISSN (Print) 0001-8686
   Published by Elsevier Homepage  [3042 journals]
  • On the cohesion of fluids and their adhesion to solids: Young's equation
           at the atomic scale
    • Authors: J.-C. Fernandez-Toledano; T.D. Blake; P. Lambert; J. De Coninck
      Pages: 102 - 107
      Abstract: Publication date: July 2017
      Source:Advances in Colloid and Interface Science, Volume 245
      Author(s): J.-C. Fernandez-Toledano, T.D. Blake, P. Lambert, J. De Coninck
      Using large-scale molecular dynamics simulations, we model a 9.2nm liquid bridge between two solid plates having a regular hexagonal lattice and analyse the forces acting at the various interfaces for a range of liquid-solid interactions. Our objective is to study the mechanical equilibrium of the system, especially that at the three-phase contact line. We confirm previous MD studies that have shown that the internal pressure inside the liquid is given precisely by the Laplace contribution and that the solid exerts a global force at the contact line in agreement with Young's equation, validating it down to the nanometre scale, which we quantify. In addition, we confirm that the force exerted by the liquid on the solid has the expected normal component equal to γ lv sin θ 0, where γ lv is the surface tension of the liquid and θ 0 is the equilibrium contact angle measured on the scale of the meniscus. Recent thermodynamic arguments predict that the tangential force exerted by the liquid on the solid should be equal to the work of adhesion expressed as Wa 0 = γ lv (1+cos θ 0). However, we find that this is true only when any layering of the liquid molecules close to liquid-solid interface is negligible. The force significantly exceeds this value when strong layering is present.
      Graphical abstract image

      PubDate: 2017-06-15T01:39:24Z
      DOI: 10.1016/j.cis.2017.03.006
      Issue No: Vol. 245 (2017)
  • Surface properties of magnetite in high temperature aqueous electrolyte
           solutions: A review
    • Authors: Sonja M. Vidojkovic; Marko P. Rakin
      Pages: 108 - 129
      Abstract: Publication date: July 2017
      Source:Advances in Colloid and Interface Science, Volume 245
      Author(s): Sonja M. Vidojkovic, Marko P. Rakin
      Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe3O4) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pHiep) and point of zero charge (pHpzc) values has been obtained. All obtained results showed that the surface of magnetite particles is negatively charged in typical high temperature thermal power plant water, which indicates the low probability of aggregation and deposition on plant metal surfaces. The results also gave strong evidence on decline of pHiep and pHpzc with temperature in the same manner as neutral pH of water. The thermodynamic parameters of magnetite surface protonation reactions were in good agreement with each other and obtained using one site/two pK and mainly one site/one pK model. All collected data provided evidences for interaction between particles, probability of deposition and eventual attachment to the steel surface at various pH and temperatures and can serve as a foundation for future surface studies aimed at optimizing plant performances and reducing of magnetite deposition. In future works it would be indispensable to provide the surface experimental data for extended temperature ranges, typical solution chemistries and metal surfaces of power plant structural components and thus obtain entire set of results useful in modeling the surface behavior and control of deposition process in power reactors and thermal plant circuits. Moreover, the acquired results will be applicable and greatly valuable to all other types of power plants, industrial facilities and technological processes using the high temperature water medium.
      Graphical abstract image

      PubDate: 2017-06-15T01:39:24Z
      DOI: 10.1016/j.cis.2016.08.008
      Issue No: Vol. 245 (2017)
  • Eli Ruckenstein – A Rare Researcher, Teacher, and Mentor par
    • Authors: Yun Hang Hu; Ramanathan Nagarajan; Paschalis Alexandridis
      Pages: 1 - 5
      Abstract: Publication date: June 2017
      Source:Advances in Colloid and Interface Science, Volume 244
      Author(s): Yun Hang Hu, Ramanathan Nagarajan, Paschalis Alexandridis

      PubDate: 2017-06-29T03:08:17Z
      DOI: 10.1016/j.cis.2017.05.017
      Issue No: Vol. 244 (2017)
  • Viscous dynamics of drops and bubbles in Hele-Shaw cells: drainage, drag
           friction, coalescence, and bursting
    • Authors: Okumura
      Abstract: Publication date: Available online 22 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Ko Okumura
      In this review article, we discuss recent studies on drops and bubbles in Hele-Shaw cells, focusing on how scaling laws exhibit crossovers from the three-dimensional counterparts and focusing on topics in which viscosity plays an important role. By virtue of progresses in analytical theory and high-speed imaging, dynamics of drops and bubbles have actively been studied with the aid of scaling arguments. However, compared with three dimensional problems, studies on the corresponding problems in Hele-Shaw cells are still limited. This review demonstrates that the effect of confinement in the Hele-Shaw cell introduces new physics allowing different scaling regimes to appear. For this purpose, we discuss various examples that are potentially important for industrial applications handling drops and bubbles in confined spaces by showing agreement between experiments and scaling theories. As a result, this review provides a collection of problems in hydrodynamics that may be analytically solved or that may be worth studying numerically in the near future.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
  • Probing foam with neutrons
    • Authors: Alesya Mikhailovskaya; Li Zhang; Fabrice Cousin; François Boué; Pavel Yazhgur; François Muller; Cyprien Gay; Anniina Salonen
      Abstract: Publication date: Available online 22 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Alesya Mikhailovskaya, Li Zhang, Fabrice Cousin, François Boué, Pavel Yazhgur, François Muller, Cyprien Gay, Anniina Salonen
      Foams are multiscale materials that have an enormous number of uses. As the relevant structural length-scales span from a few nanometres up to millimetres a number of characterisation methods need to be combined to obtain the full material structure. In this review we explain how foams can be explored using Small Angle Neutron Scattering (SANS). We remind the reader of the basics of SANS and contrast variation before we describe the different types of experiments that have been carried out on foams emphasising the specific role of neutrons in learning about the systems. To date SANS has been used to measure different foam structural parameters, such as the film thickness and the bubble size. Several studies have also been carried out to elucidate the organisation of the stabilising objects in the bulk solution. Finally we show how SANS measurements can be used to measure foam composition. Some of the accessible information is unique to SANS experiments, but as the method is still not very widely used on foams the review is also aimed to act as an introduction on how to carry out such measurements on foams.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.024
  • Applicability of the Gibbs Adsorption Isotherm to the analysis of
           experimental surface-tension data for ionic and nonionic surfactants
    • Authors: L. Martínez-Balbuena; Araceli Arteaga-Jiménez; Ernesto Hernández-Zapata; César Márquez-Beltrán
      Abstract: Publication date: Available online 21 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): L. Martínez-Balbuena, Araceli Arteaga-Jiménez, Ernesto Hernández-Zapata, César Márquez-Beltrán
      The Gibbs Adsorption Isotherm equation is a two-dimensional analogous of the Gibbs-Duhem equation, and it is one of the cornerstones of interface science. It is also widely used to estimate the surface excess concentration (SEC) for surfactants and other compounds in aqueous solution, from surface tension measurements. However, in recent publications some authors have cast doubt on this method. In the present work, we review some of the best available surface tension experimental data, and compare estimations of the SEC, using the Gibbs isotherm method (GIM), to direct measurements reported in the literature. This is done for both nonionic and ionic surfactants, with and without added salt. Our review leads to the conclusion that the GIM has a very solid agreement with experiments, and that it does estimate accurately the SEC for surfactant concentrations smaller than the critical micellar concentration (CMC).
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.018
  • Recent advances in studying single bacteria and biofilm mechanics
    • Authors: Catherine Even; Christian Marlière; Jean-Marc Ghigo; Jean-Marc Allain; Alba Marcellan; Eric Raspaud
      Abstract: Publication date: Available online 21 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Catherine Even, Christian Marlière, Jean-Marc Ghigo, Jean-Marc Allain, Alba Marcellan, Eric Raspaud
      Bacterial biofilms correspond to surface-associated bacterial communities embedded in hydrogel-like matrix, in which high cell density, reduced diffusion and physico-chemical heterogeneity play a protective role and induce novel behaviors. In this review, we present recent advances on the understanding of how bacterial mechanical properties, from single cell to high-cell density community, determine biofilm tri-dimensional growth and eventual dispersion and we attempt to draw a parallel between these properties and the mechanical properties of other well-studied hydrogels and living systems.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.026
  • Surface tension- and buoyancy-driven flows across horizontally propagating
           chemical fronts
    • Authors: R. Tiani; A. De Wit; L. Rongy
      Abstract: Publication date: Available online 20 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): R. Tiani, A. De Wit, L. Rongy
      Chemical reactions can interplay with hydrodynamic flows to generate various complex phenomena. Because of their relevance in many research areas, chemically-induced hydrodynamic flows have attracted increasing attention in the last decades. In this context, we propose to give a review of the past and recent theoretical and experimental works which have considered the interaction of such flows with chemical fronts, i.e. reactive interfaces, formed between miscible solutions. We focus in particular on the influence of surface tension- (Marangoni) and buoyancy-driven flows on the dynamics of chemical fronts propagating horizontally in the gravity field.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.020
  • Thermo- and soluto-capillarity: Passive and active drops
    • Authors: Yuri S. Ryazantsev; Manuel G. Velarde; Ramón G. Rubio; Eduardo Guzmán; Francisco Ortega; Pilar López
      Abstract: Publication date: Available online 20 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Yuri S. Ryazantsev, Manuel G. Velarde, Ramón G. Rubio, Eduardo Guzmán, Francisco Ortega, Pilar López
      A survey is provided of a variety of problems where a passive or an active drop experiences directed motion consequence of the action of an external or internal agent or a combination of both. An active drop is capable of reacting by engendering autonomous, self-propelled motion in favor or against the agent. The phenomena involved offer diverse complexity but one way or another the drop motion finally rests on thermo- or soluto-capillarity hence on interfacial tension gradients. Accordingly, here a minimal mathematical framework underlying such drop motions is provided when direct external temperature or solute gradients, illumination, internal heat generation or surface chemical reaction are incorporated into the physico-chemical-hydrodynamics.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.025
  • Phase-separated surfactant monolayers: Exploiting immiscibility of
           fluorocarbons and hydrocarbons to pattern interfaces
    • Authors: Matthew F. Paige; Ala'a F. Eftaiha
      Abstract: Publication date: Available online 20 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Matthew F. Paige, Ala'a F. Eftaiha
      The mutual immiscibility of hydrogenated and fluorinated surfactants at interfaces frequently leads to phase-separation, which provides a useful and flexible method for patterning air-water and solid-air interfaces. In this article, we review recent advances in the use of hydrogenated-fluorinated surfactant mixtures to achieve interfacial patterning. For even relatively simple systems comprised of binary mixed monolayers of hydrogenated and perfluorinated fatty acids, a diverse range of film morphologies can be generated at the air-water interface and successfully transferred onto solid substrates. Systematic investigations reported over the past several years have allowed for correlation between the chemical structure of the film constituents with the gross film morphology and underlying crystalline structure of the films. Early thermodynamic models based on the interplay between dipole-dipole repulsion forces between charged headgroups balanced by line tension between phases that were formulated to describe phase-behavior in simple phospholipid monolayer systems, have proven highly useful to describe morphologies for the immiscible surfactant blends. Beyond simple binary fatty acid mixtures, highly-structured films have also been reported in mixed phospholipid systems, which have found important application in controlling the physical, compositional and performance properties of lung surfactant mixtures, as well as in semifluorinated alkane monolayers which form unique, hemimicellar structures at both liquid and solid interfaces. We also describe advances in using these approaches to pattern photopolymerizable, luminescent surfactants, which have found extensive use in colorimetric and fluorometric sensing devices. The long-term outlook for this field, with an emphasis on potential applications and future research directions are discussed.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.023
  • Magnetocapillary self-assemblies: locomotion and micromanipulation along a
           liquid interface
    • Authors: G. Grosjean; M. Hubert; N. Vandewalle
      Abstract: Publication date: Available online 20 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): G. Grosjean, M. Hubert, N. Vandewalle
      This paper presents an overview and discussion of magnetocapillary self-assemblies. New results are presented, in particular concerning the possible development of future applications. These self-organizing structures possess the notable ability to move along an interface when powered by an oscillatory, uniform magnetic field. The system is constructed as follows. Soft magnetic particles are placed on a liquid interface, and submitted to a magnetic induction field. An attractive force due to the curvature of the interface around the particles competes with an interaction between magnetic dipoles. Ordered structures can spontaneously emerge from these conditions. Furthermore, time-dependent magnetic fields can produce a wide range of dynamic behaviours, including non-time-reversible deformation sequences that produce translational motion at low Reynolds number. In other words, due to a spontaneous breaking of time-reversal symmetry, the assembly can turn into a surface microswimmer. Trajectories have been shown to be precisely controllable. As a consequence, this system offers a way to produce microrobots able to perform different tasks. This is illustrated in this paper by the capture, transport and release of a floating cargo, and the controlled mixing of fluids at low Reynolds number.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.019
  • Critical evaluation of dipolar, acid-base and charge interactions. II.
           Charge exchange within electrolytes and electron exchange with
    • Authors: Jarl B. Rosenholm
      Abstract: Publication date: Available online 19 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Jarl B. Rosenholm
      Electron displacements may be considered as a general measure of semiconductor activity as well as of dipolar, acid-base and charge interactions. Electron transfers during reduction and oxidation reactions between dissolved cations and anions correspond to an extreme Lewis acid-base electron displacement. Brϕnsted proton release (protolysis) represents an extremely weakened hydrogen bond. The most common electrostatic (Born, PCM) and chemical (pK a matching) models for electron and proton exchange between dissolved species are reviewed using aluminium species as examples. Dissolution of ions from solids (salts) may be considered as a reversed precipitation reaction. For partly covalent solids dissociation is dependent on electron or vacancy (hole) transfers to the solid which connects oxidation and reduction reactions to electron displacements in semiconductors. The electron exchange is characterized by Femi energy of semiconductors and of electrolytes. The standard reduction potential may thus be converted to Fermi energy of connected electrochemical cells. In disconnected particle suspensions (sols) the electron activity is a more appropriate parameter which may be converted both to standard reduction potential of ions and to Fermi energy of semiconductors. Dissolution of potential determining cations and anions and hydrolysis of surface sites determines the charging (electron transfer to/from surface) of solids. Both electrostatic (MUSIC) and chemical equilibrium constant models are available for Brϕnsted equilibrium of surface hydroxyls. Point of zero charge is a result of positive and negative charge matching and it represents the optimal condition for condensation of polynuclear species by olation and oxolation. The capability of partial charge (PCM) model to predict condensation is evaluated. Acidity (pH), composition and temperature dependence of aluminium species is illustrated by solubility limits of contributing species and by phase diagrams. Influence of ions on macroscopic suspension properties, such as wetting and electrophoretic mobility is evaluated with reference to point of zero charge and to isoelectric point. Restrictions to the use of zeta-potentials are related to the surface potential and particle size – Debye length ratios. Macroscopic settling (particle precipitation) and viscosity of suspensions (sols) are discussed with reference to Deryagin-Landau-Verwey-Overbeek (DLVO) model. The primary dependence on counterion valence is evaluated according to Schulz-Hardy approach. The secondary dependence on counterion hydration (Hofmeister or lyotropic effect) and ion association (Debye-Hückel limiting model) are discussed.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.010
  • Films of Bacteria at Interfaces
    • Authors: Liana Vaccari; Mehdi Molaei; Tagbo H.R. Niepa; Daeyeon Lee; Robert L. Leheny; Kathleen J. Stebe
      Abstract: Publication date: Available online 19 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Liana Vaccari, Mehdi Molaei, Tagbo H.R. Niepa, Daeyeon Lee, Robert L. Leheny, Kathleen J. Stebe
      Bacteria are often discussed as active colloids, self-propelled organisms whose collective motion can be studied in the context of non-equilibrium statistical mechanics. In such studies, the behavior of bacteria confined to interfaces or in the proximity of an interface plays an important role. For instance, many studies have probed collective behavior of bacteria in quasi two-dimensional systems such as soap films. Since fluid interfaces can adsorb surfactants and other materials, the stress and velocity boundary conditions at interfaces can alter bacteria motion; hydrodynamic studies of interfaces with differing boundary conditions are reviewed. Also, bacteria in bulk can become trapped at or near fluid interfaces, where they colonize and form structures comprising secretions like exopolysaccharides, surfactants, living and dead bacteria, thereby creating Films of Bacteria at Interfaces (FBI). The formation of FBI is discussed at air-water, oil-water, and water-water interfaces, with an emphasis on film mechanics, and with some allusion to genetic functions guiding bacteria to restructure fluid interfaces. At air-water interfaces, bacteria form pellicles or interfacial biofilms. Studies are reviewed that reveal that pellicle material properties differ for different strains of bacteria, and that pellicle physicochemistry can act as a feedback mechanism to regulate film formation. At oil-water interfaces, a range of FBI form, depending on bacteria strain. Some bacteria-laden interfaces age from an initial active film, with dynamics dominated by motile bacteria, through viscoelastic states, to form an elastic film. Others remain active with no evidence of elastic film formation even at significant interface ages. Finally, bacteria can adhere to and colonize ultra-low surface tension interfaces such as aqueous-aqueous systems common in food industries. Relevant literature is reviewed, and areas of interest for potential application are discussed, ranging from health to bioremediation.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.016
  • The enzymatic sphingomyelin to ceramide conversion increases the shear
           membrane viscosity at the air-water interface
    • Authors: Elisa R. Catapano; Paolo Natale; Francisco Monroy; Iván López-Montero
      Abstract: Publication date: Available online 19 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Elisa R. Catapano, Paolo Natale, Francisco Monroy, Iván López-Montero
      Whereas most of lipids have viscous properties and they do not have significant elastic features, ceramides behave as very rigid solid assemblies, displaying viscoelastic behaviour at physiological temperatures. The present review addresses the surface rheology of lipid binary mixtures made of sphingomyelin and ceramide. However, ceramide is formed by the enzymatic cleavage of sphingomyelin in cell plasma membranes. The consequences of the enzymatically-driven ceramide formation involve mechanical alterations of the embedding membrane. Here, an increase on surface shear viscosity was evidenced upon enzymatic incubation of sphingomyelin monolayers. The overall rheological data are discussed in terms of the current knowledge of the thermotropic behaviour of ceramide-containing model membranes.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.014
  • Dissipative dynamics of fluid lipid membranes enriched in cholesterol
    • Authors: Laura R. Arriaga; Ruddi Rodríguez-García; Lara H. Moleiro; Sylvain Prévost; Iván López-Montero; Thomas Hellweg; Francisco Monroy
      Abstract: Publication date: Available online 18 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Laura R. Arriaga, Ruddi Rodríguez-García, Lara H. Moleiro, Sylvain Prévost, Iván López-Montero, Thomas Hellweg, Francisco Monroy
      Cholesterol is an intriguing component of fluid lipid membranes: It makes them stiffer but also more fluid. Despite the enormous biological significance of this complex dynamical behavior, which blends aspects of membrane elasticity with viscous friction, their mechanical bases remain however poorly understood. Here, we show that the incorporation of physiologically relevant contents of cholesterol in model fluid membranes produces a fourfold increase in the membrane bending modulus. However, the increase in the compression rigidity that we measure is only twofold; this indicates that cholesterol increases coupling between the two membrane leaflets. In addition, we show that although cholesterol makes each membrane leaflet more fluid, it increases the friction between the membrane leaflets. This dissipative dynamics causes opposite but advantageous effects over different membrane motions: It allows the membrane to rearrange quickly in the lateral dimension, and to simultaneously dissipate out-of-plane stresses through friction between the two membrane leaflets. Moreover, our results provide a clear correlation between coupling and friction of membrane leaflets. Furthermore, we show that these rigid membranes are optimal to resist slow deformations with minimum energy dissipation; their optimized stability might be exploited to design soft technological microsystems with an encoded mechanics, vesicles or capsules for instance, useful beyond classical applications as model biophysical systems.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.007
  • Self-assembly, phase behaviour and structural behaviour as observed by
           scattering for classical and non-classical microemulsions
    • Authors: Michael Gradzielski; Sylvain Prévost; Thomas Zemb
      Abstract: Publication date: Available online 18 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Michael Gradzielski, Sylvain Prévost, Thomas Zemb
      In this review, we discuss the conditions for forming microemulsions, systems which are thermodynamically stable mixtures of oil and water made stable by the presence of an interfacial film containing surface active molecules. There are several types of microemulsions, depending largely on the stiffness of the amphiphilic monolayer that separates the oily and the aqueous micro-domain. We first discuss and compare the phase behaviour of these different types, starting from the classical microemulsion made from a flexible surfactant film but then also moving on to less classical situations: this occurs when the interfacial film is stiff or when microemulsions are formed in the absence of a classical surfactant. In the second part, we relate these different microemulsion types to the structural features as can be determined via different methodologies by small angle scattering (SAS). Using absolute scaling, general theorems as well as fitting under constraints or to pre-supposed shapes in real space or correlation functions in reciprocal space allows to classify all microemulsions into classical flexible, rigid or ultra-flexible microemulsions with either globular, connected cylinder of locally flat interfaces, with the corresponding conductivity and phase stability properties.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.022
  • Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk
           rheology on capillary and Rayleigh waves
    • Authors: Francisco Monroy
      Abstract: Publication date: Available online 18 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Francisco Monroy
      From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.006
  • Emulsion templated vesicles with symmetric or asymmetric membranes
    • Authors: Yuting Huang; Shin-Hyun Kim; Laura R. Arriaga
      Abstract: Publication date: Available online 17 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Yuting Huang, Shin-Hyun Kim, Laura R. Arriaga
      Emulsion droplets with well-controlled topologies are used as templates for forming vesicles with either symmetric or asymmetric membranes. This review summarizes the available technology to produce these templates, the strategies and critical parameters involved in the transformation of emulsion droplets into vesicles, and the properties of the generated vesicles, with a special focus on the composition and material distribution of the vesicle membrane. Here, we also address limitations in the field and point to future fundamental and applied research in the area.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.013
  • Structure, interfacial film properties, and thermal fluctuations of
           microemulsions as seen by scattering experiments
    • Authors: Julian Oberdisse; Thomas Hellweg
      Abstract: Publication date: Available online 16 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Julian Oberdisse, Thomas Hellweg
      The physics of microemulsions and in particular Dominique Langevin’s contributions to the understanding of microemulsion structure and bending properties using scattering techniques are reviewed. Among the many methods used by her and her co-workers, we particularly emphasize optical techniques and small angle neutron scattering (SANS), but also neutron spin echo spectroscopy (NSE). The review is then extended to more recent studies of properties of microemulsions close to surfaces, using reflectometry and grazing-incidence small angle neutron scattering (GISANS).

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.011
  • Toward the development of biomimetic injectable and macroporous
           biohydrogels for regenerative medicine
    • Authors: Killian Flegeau; Richard Pace; Hélène Gautier; Gildas Rethore; Jerome Guicheux; Catherine Le Visage; Pierre Weiss
      Abstract: Publication date: Available online 16 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Killian Flegeau, Richard Pace, Hélène Gautier, Gildas Rethore, Jerome Guicheux, Catherine Le Visage, Pierre Weiss
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.012
  • Permeability modes in fluctuating lipid membranes with DNA-translocating
    • Authors: L.H. Moleiro; M. Mell; R. Bocanegra; I. López-Montero; P. Fouquet; Th. Hellweg; J.L. Carrascosa; F. Monroy
      Abstract: Publication date: Available online 16 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): L.H. Moleiro, M. Mell, R. Bocanegra, I. López-Montero, P. Fouquet, Th. Hellweg, J.L. Carrascosa, F. Monroy
      Membrane pores can significantly alter not only the permeation dynamics of biological membranes but also their elasticity. Large membrane pores able to transport macromolecular contents represent an interesting model to test theoretical predictions that assign active-like (non-equilibrium) behavior to the permeability contributions to the enhanced membrane fluctuations existing in permeable membranes [Maneville et al. Phys. Rev. Lett. 82, 4356 (1999)]. Such high-amplitude active contributions arise from the forced transport of solvent and solutes through the open pores, which becomes even dominant at large permeability. In this paper, we present a detailed experimental analysis of the active shape fluctuations that appear in highly permeable lipid vesicles with large macromolecular pores inserted in the lipid membrane, which are a consequence of transport permeability events occurred in an osmotic gradient. The experimental results are found in quantitative agreement with theory, showing a remarkable dependence with the density of membrane pores and giving account of mechanical compliances and permeability rates that are compatible with the large size of the membrane pore considered. The presence of individual permeation events has been detected in the fluctuation time-series, from which a stochastic distribution of the permeation events compatible with a shot-noise has been deduced. The non-equilibrium character of the membrane fluctuations in a permeation field, even if the membrane pores are mere passive transporters, is clearly demonstrated. Finally, a bio-nano-technology outlook of the proposed synthetic concept is given on the context of prospective uses as active membrane DNA-pores exploitable in gen-delivery applications based on lipid vesicles.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.009
  • Different approaches to study protein films at air/water interface
    • Abstract: Publication date: Available online 15 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): María José Gálvez-Ruiz
      In this review classical studies on insoluble liquid monolayers formed by proteins are examined and compared. It has been focused the attention on the information that it is possible to obtain from the π-a isotherms recorded by compression of the monolayers. In recent decades new techniques have developed, mainly microscopy, that provide valuable information on the behavior and structure of fluid films. However, frequently the data are difficult to interpret and require a previous thermodynamic study of them on the basis of the surface tension (or surface pressure) as a function of the molecular area measurement. The main aim of this paper is to underline that surface balance type of Langmuir is a powerful technique since it enables to obtain information at molecular level from a macroscopic analysis. Notably, this information is revealed very interesting when it comes to studying protein films. From this point of view it has been reviewed the study methods and results for four proteins.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
  • Bubble-bubble interactions in a 2D foam, close to the wet limit
    • Authors: D. Weaire; R. Höhler; S. Hutzler
      Abstract: Publication date: Available online 13 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): D. Weaire, R. Höhler, S. Hutzler
      Following the general approach of Morse and Witten for the deformation of a bubble in contact with neighbouring bubbles, we develop a model for contacting bubbles in two dimensions which can be solved analytically. The force-displacement relations are derived by elementary methods; unlike the case of 3d, no logarithmic factors arise in two dimensions. We also discuss the case of a uniform compression of a symmetric foam structure; the (osmotic) compressibility depends on the number of contacts, as was shown in earlier work by Lacasse et al. Our model, which is based on first principles, without any free parameters, may be extended to simulate 2d foams.

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.004
  • From drop-shape analysis to stress-fitting elastometry
    • Authors: Mathias Nagel; Theo A. Tervoort; Jan Vermant
      Abstract: Publication date: Available online 13 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Mathias Nagel, Theo A. Tervoort, Jan Vermant
      Drop-shape analysis using pendant or sessile drops is a well-established experimental technique for measuring the interfacial or surface tension, and changes thereof. The method relies on deforming a drop by either gravity or buoyancy and fitting the Young–Laplace equation to the drop shape. Alternatively one can prescribe the shape and measure the pressure inside the drop or bubble using pressure tensiometry. However, when an interface with a complex microstructure is present, extra and anisotropic interfacial stresses may develop due to lateral interactions between the surface-active moieties, leading to deviations of the drop shape or even a wrinkling of the interface. To extract surface-material properties of these complex interfaces using drop-shape analysis or pressure tensiometry, the Young–Laplace law needs to be generalized in order to account for the extra and anisotropic stresses at the interface. In the present work, we review the different approaches that have been proposed to date to extract the surface tension as the thermodynamic state variable, as well as other rheological material properties such as the compression and the shear modulus. To evaluate the intrinsic performance of the methods, computer generated drops are subjected to step-area changes and then subjected to analysis using the different methods. Shape-fitting methods, now combined with an adequate constitutive method, do however perform rather poorly in determining the elastic stresses, especially at small area strains. An additional measurement o f the pressure or capillary-pressure tensiometry is required to improve the sensitivity. However, pressure-based methods still require the knowledge of the undeformed reference state, which may be difficult to achieve in practice. Moreover, it is not straightforward to judge from what point onwards one needs to go beyond the Young–Laplace equation. To overcome these limitations, a method based on stress fitting, which uses a local force balance method, is introduced here. One aspect of this new method is the use of the Chebyshev transform to numerically describe the contour shape of the drop interface. For all methods we present a detailed error analysis to evaluate if, and with what precision, surface material parameters can be extracted. Depending on the desired information, different ideal experimental conditions and most suitable methods are discussed, in addition to having a criterion to investigate if extra and anisotropic stresses matter.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.008
  • Polymers and Surfactants at Fluid Interfaces Studied with Specular Neutron
    • Authors: Larissa Braun; Martin Uhlig; Regine von Klitzing; Richard A. Campbell
      Abstract: Publication date: Available online 12 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Larissa Braun, Martin Uhlig, Regine von Klitzing, Richard A. Campbell
      This review addresses the advances made with specular neutron reflectometry in studies of aqueous mixtures of polymers and surfactants at fluid interfaces during the last decade. The increase in neutron flux due to improvements in instrumentation has led to routine measurements at the air/water interface that are both faster and involve samples with low isotopic contrast. One can now resolve the surface excess of a single deuterated component in one second and the composition of a mixture on the minute time scale, and information about adsorption processes and dynamic rheology can also be accessed. Research areas addressed include the types of formed equilibrium surface structures, the link to the foam film stability and the range of non-equilibrium effects that dominate the behavior of oppositely charged polyelectrolyte/surfactant mixtures, macroscopic film formation in like-charged polymer/surfactant mixtures, and the properties of mixtures of bio-polymers with surfactants and phospholipids.
      Graphical abstract image

      PubDate: 2017-07-23T04:22:51Z
      DOI: 10.1016/j.cis.2017.07.005
  • Dynamics of Network Fluids
    • Authors: C.S. Dias; N.A.M. Araújo; M.M. Telo da Gama
      Abstract: Publication date: Available online 6 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): C.S. Dias, N.A.M. Araújo, M.M. Telo da Gama
      Network fluids are structured fluids consisting of chains and branches. They are characterized by unusual physical properties, such as, exotic bulk phase diagrams, interfacial roughening and wetting transitions, and equilibrium and nonequilibrium gels. Here, we provide an overview of a selection of their equilibrium and dynamical properties. Recent research efforts towards bridging equilibrium and non-equilibrium studies are discussed, as well as several open questions.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.07.001
  • Formation of protein/surfactant adsorption layer as studied by dilational
           surface rheology
    • Authors: Boris A. Noskov; Michael M. Krycki
      Abstract: Publication date: Available online 6 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Boris A. Noskov, Michael M. Krycki
      The review discusses the mechanism of formation of protein/surfactant adsorption layers at the liquid – gas interface. The complexes of globular proteins usually preserve their compact structure a low surfactant concentrations. Therefore a simple kinetic model of the adsorption of charged compact nanoparticles is discussed first and compared with experimental data. The increase of surfactant concentrations results in various conformational transitions in the surface layer. One can obtain information on the changes of the adsorption layer structure using the dilational surface rheology. The kinetic dependencies of the dynamic surface elasticity are strongly different for the adsorption of unfolded macromolecules and compact globules, and have local maxima in the former case corresponding to different steps of the adsorption. These distinctions allow tracing the changes of the tertiary structure of protein/surfactant complexes in the surface layer. The adsorption from mixed solutions of ionic surfactants with β-casein, β-lactoglobulin, bovine serum albumin and myoglobin is discussed with some details.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.07.003
  • Advances and challenges in the rheology of concentrated emulsions and
    • Authors: Ha Seong Kim; Thomas G. Mason
      Abstract: Publication date: Available online 5 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Ha Seong Kim, Thomas G. Mason
      We review advances made in the rheology of concentrated emulsions and nanoemulsions, which can serve as model soft materials that have highly tunable viscoelastic properties near the jamming point. Droplet interfacial and positional structures are shown to influence emulsion rheological properties such as viscoelasticity, yielding, and flow behavior via presentation of recent experimentation and theoretical models. We emphasize studies of emulsions composed of monodisperse droplets since these have led to breakthroughs in fundamental understanding. In addition, we summarize experiments which demonstrate that emulsions can have material memory and rheological properties that depend on the applied flow history, since these can affect droplet interfacial and positional structures. We also cover the rheology of attractive emulsions, which can still have a dominant elasticity at droplet volume fractions far below jamming.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.07.002
  • A comparison between liquid drops and solid particles in partial wetting
    • Authors: Antonio Stocco; Maurizio Nobili
      Abstract: Publication date: Available online 1 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Antonio Stocco, Maurizio Nobili
      In this critical review we compare two geometries in partial wetting: a liquid drop on a planar substrate and a spherical particle at a planar liquid interface. We show that this comparison is far from being trivial even if the same physical interactions are at play in both geometries. Similarities and differences in terms of free energies and frictions will be discussed. Contact angle hysteresis, the impact of surface roughness and line pinning on wetting will be described and compared to selected experimental findings.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.06.014
  • Impact of albumin based approaches in nanomedicine: Imaging, targeting and
           drug delivery
    • Authors: Bharat Bhushan; Vitaly Khanadeev; Boris Khlebtsov; Nikolai Khlebtsov; P. Gopinath
      Abstract: Publication date: Available online 1 July 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Bharat Bhushan, Vitaly Khanadeev, Boris Khlebtsov, Nikolai Khlebtsov, P. Gopinath
      A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.06.012
  • Relationship between processing history and functionality recovery after
           rehydration of dried cellulose-based suspensions: A critical review
    • Authors: Isabelle Déléris; Joël Wallecan
      Abstract: Publication date: Available online 30 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Isabelle Déléris, Joël Wallecan
      Cellulose-based suspensions have raised more and more attention due to their broad range of properties that can be used in paper industry and material science but also in medicine, nanotechnology and food science. Their final functionality is largely dependent on their processing history and notably the structural modifications that occur during drying and rehydration. The purpose of this work is to make a state-of-the-art contribution to the mechanisms involved in the process-structure-function relationships of cellulose-based hydrogels. The different assumptions that exist in the literature are reviewed taking the key role of the initial sample characteristics as well as the processing conditions into consideration. The decrease in swelling ability after drying is clearly due to an overall shrinkage of the structure of the material. At microscale, pore closure and cellulosic fibril aggregation are mentioned as the main reasons. The origins of such irreversible structural modifications take place at molecular level and is mainly explained by the establishment of a new balance of interactions between all components. Nevertheless, the respective contribution of each interaction are still under investigation.
      Graphical abstract image

      PubDate: 2017-07-09T03:55:41Z
      DOI: 10.1016/j.cis.2017.06.013
  • Micro and nanobubble technologies as a new horizon for water-treatment
           techniques: A review
    • Authors: Tatek Temesgen; Thi Thuy Bui; Mooyoung Han; Tschung-il Kim; Hyunju Park
      Abstract: Publication date: Available online 27 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Tatek Temesgen, Thi Thuy Bui, Mooyoung Han, Tschung-il Kim, Hyunju Park
      This review article organizes the studies conducted on the areas of microbubbles and nanobubbles with a special emphasis on water treatment. The basic definitions of bubble types and their size ranges are also presented based on the explanations of different researchers. The characterization parameters with state-of-the-art measuring and analysis techniques of microbubble and nanobubble technologies are summarized. Some major applications of these technologies in water-treatment processes are reviewed and briefly discussed. Based on the reviews, various potential areas for research and bubble application gaps in water and wastewater treatment technologies are identified for further study. The article is prepared in such a way that it provides a step-by-step acquaintance to the subject matter with the objective of focusing on the application of microbubbles and nanobubbles in water-treatment technology.
      Graphical abstract image

      PubDate: 2017-06-29T03:08:17Z
      DOI: 10.1016/j.cis.2017.06.011
  • Emerging nanotechnology based strategies for diagnosis and therapeutics of
           urinary tract infections: A review
    • Authors: M.S. Kumar; A.P. Das
      Abstract: Publication date: Available online 26 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): M.S. Kumar, A.P. Das
      At present, various diagnostic and therapeutic approaches are available for urinary tract infections. But, still the quest for development of more rapid, accurate and reliable approach is an unending process. The pathogens, especially uropathogens are adapting to new environments and antibiotics day by day rapidly. Therefore, urinary tract infections are evolving as hectic and difficult to eradicate, increasing the economic burden to the society. The technological advances should be able to compete the adaptability characteristics of microorganisms to combat their growth in new environments and thereby preventing their infections. Nanotechnology is at present an extensively developing area of immense scientific interest since it has diverse potential applications in biomedical field. Nanotechnology may be combined with cellular therapy approaches to overcome the limitations caused by conventional therapeutics. Nanoantibiotics and drug delivery using nanotechnology are currently growing areas of research in biomedical field. Recently, various categories of antibacterial nanoparticles and nanocarriers for drug delivery have shown their potential in the treatment of infectious diseases. Nanoparticles, compared to conventional antibiotics, are more beneficial in terms of decreasing toxicity, prevailing over resistance and lessening costs. Nanoparticles present long term therapeutic effects since they are retained in body for relatively longer periods. This review focuses on recent advances in the field of nanotechnology, principally emphasizing diagnostics and therapeutics of urinary tract infections.
      Graphical abstract image

      PubDate: 2017-06-29T03:08:17Z
      DOI: 10.1016/j.cis.2017.06.010
  • Surfactant films in lyotropic lamellar (and related) phases: Fluctuations
           and interactions
    • Authors: Nallet
      Abstract: Publication date: Available online 24 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Frédéric Nallet
      The analogy between soap films thinning under border capillary suction and lamellar stacks of surfactant bilayers dehydrated by osmotic stress is explored, in particular in the highly dehydrated limit where the soap film becomes a Newton black film. The nature of short-range repulsive interactions between surfactant-covered interfaces and acting across water channels in both cases will be discussed.
      Graphical abstract image

      PubDate: 2017-06-29T03:08:17Z
  • ifc (ed board)
    • Abstract: Publication date: June 2017
      Source:Advances in Colloid and Interface Science, Volume 244

      PubDate: 2017-06-29T03:08:17Z
  • special contents
    • Abstract: Publication date: June 2017
      Source:Advances in Colloid and Interface Science, Volume 244

      PubDate: 2017-06-29T03:08:17Z
  • Critical evaluation of dipolar, acid-base and charge interactions I.
           Electron displacement within and between molecules, liquids and
    • Authors: Jarl B. Rosenholm
      Abstract: Publication date: Available online 21 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Jarl B. Rosenholm
      Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic “electrostatic” (E) and “covalent” (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated.
      Graphical abstract image

      PubDate: 2017-06-21T11:00:39Z
      DOI: 10.1016/j.cis.2017.06.004
  • Electrokinetic transport in liquid foams
    • Authors: Oriane Bonhomme; Baptiste Blanc; Laurent Joly; Christophe Ybert; Anne-Laure Biance
      Abstract: Publication date: Available online 17 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Oriane Bonhomme, Baptiste Blanc, Laurent Joly, Christophe Ybert, Anne-Laure Biance
      Investigating electrokinetic transport in a liquid foam is at the confluence of two well developed research areas. On one hand, the study of electrokinetic flows (i.e. surface-driven flows generated close to a charged interface) is fairly well understood in regards the solid/liquid interface. On the other hand, the flow of liquid in a 3D deformable network, i.e a foam, under a volume force such as gravity has been thorougly studied over the past decade. The overlaping zone of these two frameworks is of great interest for both communities as it gives rise to challenging new questions such as: what is the importance of the nature of the charged interface, created by mobile and soluble surfactants in the case of foam, on electrokinetic transport? How does a foam behave when submitted to a surface-driven flow? Can we compensate a volume-driven flow, i.e. gravity, by a surface-driven flow, i.e. electroosmosis? In this review, we will explore these questions on three different scales: a surfactant laden interface, a foam film and a macroscopic foam.
      Graphical abstract image

      PubDate: 2017-06-21T11:00:39Z
      DOI: 10.1016/j.cis.2017.06.005
  • Synthesis of some transition metal (M: 25Mn, 27Co, 28Ni, 29Cu, 30Zn, 47Ag,
           48Cd) sulfide nanostructures by hydrothermal method
    • Authors: Hamid Emadi; Masoud Salavati-Niasari; Azam Sobhani
      Abstract: Publication date: Available online 16 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Hamid Emadi, Masoud Salavati-Niasari, Azam Sobhani
      The design of nanostructures with favored shape, particle size and structure is one of the most important fields of nanoscience. To reach this target hydrothermal method is one of the most applicable methods which allow us to obtain favored structures by changing some parameters. This review focuses on synthesis of some transition metal sulfides by hydrothermal method because of technological importance of this group of material. The common sulfides of Mn, Co, Ni, Cu, Zn, Ag and Cd are introduced and a mechanism proposed for their synthesis. The effects of temperature and time reaction, surfactant, reactants concentration, metal and sulfur sources and etc. on the morphology, particle size and some properties of the products are investigated. SEM and TEM images show the morphology and size of the as-synthesized samples. Chemical composition of the samples is characterized by XRD, EDS and etc. The magnetic, optical and thermoelectric properties of the metal sulfides are investigated.
      Graphical abstract image

      PubDate: 2017-06-21T11:00:39Z
      DOI: 10.1016/j.cis.2017.06.007
  • An interferometric technique to study capillary waves
    • Authors: Laura Cantu'; Antonio Raudino; Mario Corti
      Abstract: Publication date: Available online 15 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Laura Cantu', Antonio Raudino, Mario Corti
      We describe a new interferometric technique to study gas-liquid and liquid-liquid interfaces. Bubbles and drops are subjected to an alternating electric field which excites capillary oscillations at the interface, if charged. Bubble or drop deformation is detected by the change of the internal optical path of a laser beam crossing perpendicular to the oscillation axis. Due to the closed geometry, a discrete spectrum of stationary oscillation frequencies (normal modes) is excited. The interferometric nature of the measurement and the resonant nature of the oscillation modes concur in allowing for high sensitivity, in the sub-nanometric region. We present a detailed description of the experimental setup and examples of applications of the technique to the study of both gas-liquid and liquid-liquid interfaces, either naked or with adsorbed surfactant monolayers, for bubbles and drops with diameter~1mm. In particular, the resonance frequencies and the width of the resonance peaks depend on the surface tension and the viscous dampening, respectively. We show that, by this new technique, properties of the interface can be accessed with confidence at the sub-nanometer scale, and surface phenomena, like the monolayer phase transition or the peculiarities of adsorption/desorption processes, can be unraveled in concentration regimes which are too low for existing methods.
      Graphical abstract image

      PubDate: 2017-06-21T11:00:39Z
      DOI: 10.1016/j.cis.2017.06.006
  • ifc (ed board)
    • Abstract: Publication date: July 2017
      Source:Advances in Colloid and Interface Science, Volume 245

      PubDate: 2017-06-15T01:39:24Z
  • Sensors and bioassays powered by upconverting materials
    • Authors: Diego Mendez-Gonzalez; Enrique Lopez-Cabarcos; Jorge Rubio-Retama; Marco Laurenti
      Abstract: Publication date: Available online 10 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Diego Mendez-Gonzalez, Enrique Lopez-Cabarcos, Jorge Rubio-Retama, Marco Laurenti
      In recent years, considerable efforts have been done to better understand the peculiar emission properties of upconverting materials due to their widespread applications in different and important technological fields such as upconversion-based photoactivated cancer therapies, photoactivated drug-delivery, magnetic resonance imaging contrast agents, bioimaging. However, one of the most promising applications of upconverting materials concerns the field of sensing, due to their unique emission properties. In fact, the minimal autofluorescence, blinking, photo-bleaching, and high photostability makes them an excellent alternative to organic dyes or quantum dots. This article reviews the state-of-the-art, design, and sensing strategies of upconversion-based sensing platforms, with special attention to upconverting nanoparticles, as well as how the incorporation of these materials into pre-existing diagnostic tests and bioassays have improved their capabilities for the detection of different kinds of analytes.
      Graphical abstract image

      PubDate: 2017-06-11T01:37:08Z
      DOI: 10.1016/j.cis.2017.06.003
  • Continuum-based models and concepts for the transport of nanoparticles in
           saturated porous media: A state-of-the-science review
    • Authors: Peyman Babakhani; Jonathan Bridge; Ruey-an Doong; Tanapon Phenrat
      Abstract: Publication date: Available online 7 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Peyman Babakhani, Jonathan Bridge, Ruey-an Doong, Tanapon Phenrat
      Environmental applications of NP increasingly result in widespread NP distribution within porous media where they are subject to various concurrent transport mechanisms including irreversible deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically conducted at small scale, and theoretical mechanistic modeling of particle transport in porous media faces challenges when considering the simultaneous effects of transport mechanisms. Continuum modeling approaches, in contrast, are scalable across various scales ranging from column experiments to aquifer. They have also been able to successfully describe the simultaneous occurrence of various transport mechanisms of NP in porous media such as blocking/straining or agglomeration/deposition/detachment. However, the diversity of model equations developed by different authors and the lack of effective approaches for their validation present obstacles to the successful robust application of these models for describing or predicting NP transport phenomena. This review aims to describe consistently all the important NP transport mechanisms along with their representative mathematical continuum models as found in the current scientific literature. Detailed characterizations of each transport phenomenon in regards to their manifestation in the column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile (RCP), are presented to facilitate future interpretations of BTCs and RCPs. The review highlights two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great importance in controlling the fate and transport of NP in the subsurface media yet have been widely neglected in many existing modeling studies. A critical limitation of the continuum modeling approach is the number of parameters used upon application to larger scales and when a series of transport mechanisms are involved. We investigate the use of simplifying assumptions, such as the equilibrium assumption, in modeling the attachment/detachment mechanisms within a continuum modelling framework. While acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic (process) basis, we found that its use as a description of dynamic deposition behavior in a continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, we show that in two dimensional (2-D) continuum models the modeling efficiency based on the Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant reduction in model performance. This is because fewer parameters are needed for the equilibrium model compared to the kinetic model. Two major transport regimes are identified in the transport of NP within porous media. The first regime is characterized by higher particle-surface attachment affinity than particle-particle attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, and physical retention. The second regime is characterized by the domination of particle-particle attachment tendency over particle-surface affinity. In this regime although physicochemical filtration as well as straining may still be operative, ripening is predominant together with agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and transport is necessary since certain combinations of concurrent transport phenomena leading to large migration distances are possible in either case.
      Graphical abstract image

      PubDate: 2017-06-11T01:37:08Z
      DOI: 10.1016/j.cis.2017.06.002
  • The interaction of antimicrobial peptides with membranes
    • Authors: Oksana G. Travkova; Helmuth Moehwald; Gerald Brezesinski
      Abstract: Publication date: Available online 5 June 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Oksana G. Travkova, Helmuth Moehwald, Gerald Brezesinski
      The interaction of antimicrobial peptides (AMPs) with biological membranes is in the focus of research since several years, and the most important features and modes of action of AMPs are described in this review. Different model systems can be used to understand such interactions on a molecular level. As a special example, we use 2D and 3D model membranes to investigate the interaction of the natural cyclic (Ar-1) and the synthetic linear molecule arenicin with selected amphiphiles and phospholipids. A panoply of sophisticated methods has been used to analyze these interactions on a molecular level. As a general trend, one observes that cationic antimicrobial peptides do not interact with cationic amphiphiles due to electrostatic repulsion, whereas with non-ionic amphiphiles, the peptide interacts only with aggregated systems and not with monomers. The interaction is weak (hydrophobic interaction) and requires an aggregated state with a large surface (cylindrical micelles). Anionic amphiphiles (as monomers or micelles) exhibit strong electrostatic interactions with the AMPs leading to changes in the peptide conformation. Both types of peptides interact strongly with anionic phospholipid monolayers with a preference for fluid layers. The interaction with a zwitterionic layer is almost absent for the linear derivative but measurable for the cyclic arenicin Ar-1. This is in accordance with biological experiments showing that Ar-1 forms well defined stable pores in phospholipid and lipopolysaccharide (LPS) membranes (cytotoxicity). The synthetic linear arenicin, which is less cytotoxic, does not affect the mammalian lipids to such an extent. The interaction of arenicin with bacterial membrane lipids is dominated by hydrogen bonding together with electrostatic and hydrophobic interactions.
      Graphical abstract image

      PubDate: 2017-06-06T01:18:51Z
      DOI: 10.1016/j.cis.2017.06.001
  • Multicomponent nanocrystals with anti-Stokes luminescence as contrast
           agents for modern imaging techniques
    • Authors: A.N. Generalova; B.N. Chichkov; E.V. Khaydukov
      Abstract: Publication date: Available online 4 May 2017
      Source:Advances in Colloid and Interface Science
      Author(s): A.N. Generalova, B.N. Chichkov, E.V. Khaydukov
      Lanthanide-doped upconversion nanoparticles (UCNPs) have recently attracted great attention in theranostics due to their exceptional optical and physicochemical properties, which enable the design of a novel UCNP-based nanoplatform for luminescent imaging, temperature mapping, sensing, and therapy. In addition, UCNPs are considered to be ideal building blocks for development of multimodal probes for cells and whole body imaging, exploiting simple variation of host matrix, dopant ions, and surface chemistry. Modalities responsible for magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) are embedded in a single UC nanocrystal, providing integrating effect over any modality alone in terms of the efficiency and sensitivity for clinical innovative diagnosis through multimodal bioimaging. In particular, we demonstrate applications of UCNPs as a new nanoplatform for optical and multimodal cancer imaging in vitro and in vivo and extend discussions to delivery of UCNP-based therapeutic agents for photodynamic and photothermal cancer treatments.
      Graphical abstract image

      PubDate: 2017-05-07T01:00:57Z
      DOI: 10.1016/j.cis.2017.05.006
  • Probing the threshold of membrane damage and cytotoxicity effects induced
           by silica nanoparticles in Escherichia coli bacteria
    • Authors: Marion Mathelié-Guinlet; Laure Béven; Fabien Moroté; Daniel Moynet; Christine Grauby-Heywang; Ibtissem Gammoudi; Marie-Hélène Delville; Touria Cohen-Bouhacina
      Abstract: Publication date: Available online 28 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Marion Mathelié-Guinlet, Laure Béven, Fabien Moroté, Daniel Moynet, Christine Grauby-Heywang, Ibtissem Gammoudi, Marie-Hélène Delville, Touria Cohen-Bouhacina
      The engineering of nanomaterials, because of their specific properties, is increasingly being developed for commercial purposes over the past decades, to enhance diagnosis, cosmetics properties as well as sensing efficiency. However, the understanding of their fate and thus their interactions at the cellular level with bio-organisms remains elusive. Here, we investigate the size- and charge-dependence of the damages induced by silica nanoparticles (SiO2-NPs) on Gram-negative Escherichia coli bacteria. We show and quantify the existence of a NPs size threshold discriminating toxic and inert SiO2-NPs with a critical particle diameter (Φc) in the range 50nm–80nm. This particular threshold is identified at both the micrometer scale via viability tests through Colony Forming Units (CFU) counting, and the nanometer scale via atomic force microscopy (AFM). At this nanometer scale, AFM emphasizes the interaction between the cell membrane and SiO2-NPs from both topographic and mechanical points of view. For SiO2-NPs with Φ>Φc no change in E. coli morphology nor its outer membrane (OM) organization is observed unless the NPs are positively charged in which case reorganization and disruption of the OM are detected. Conversely, when Φ<Φc, E. coli exhibit unusual spherical shapes, partial collapse, even lysis, and OM reorganization.
      Graphical abstract image

      PubDate: 2017-05-01T02:08:02Z
      DOI: 10.1016/j.cis.2017.04.012
  • Applications of artificial neural networks for adsorption removal of dyes
           from aqueous solution: A review
    • Authors: Abdol Mohammad Ghaedi; Azam Vafaei
      Abstract: Publication date: Available online 26 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Abdol Mohammad Ghaedi, Azam Vafaei
      Artificial neural networks (ANNs) have been widely applied for the prediction of dye adsorption during the last decade. In this paper, the applications of ANN methods, namely multilayer feedforward neural networks (MLFNN), support vector machine (SVM), and adaptive neuro fuzzy inference system (ANFIS) for adsorption of dyes are reviewed. The reported researches on adsorption of dyes are classified into four major categories, such as (i) MLFNN, (ii) ANFIS, (iii) SVM and (iv) hybrid with genetic algorithm (GA) and particle swarm optimization (PSO). Most of these papers are discussed. The further research needs in this field are suggested. These ANNs models are obtaining popularity as approaches, which can be successfully employed for the adsorption of dyes with acceptable accuracy.
      Graphical abstract image

      PubDate: 2017-05-01T02:08:02Z
      DOI: 10.1016/j.cis.2017.04.015
  • Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides
           through liquid-phase exfoliation
    • Authors: Ekaterina D. Grayfer; Mariia N. Kozlova; Vladimir E. Fedorov
      Abstract: Publication date: Available online 25 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Ekaterina D. Grayfer, Mariia N. Kozlova, Vladimir E. Fedorov
      This review focuses on the exfoliation of transition metal dichalcogenides MQ2 (TMD, M=Mo, W etc., Q=S, Se) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS2, MoSe2, WS2 and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS2 and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS2 with solvents evidences that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS2 layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ2 into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ2 nanosheets, a special and different approach, consisting in the functionalization of MQ2 surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS3, VS4, Mo2S3 etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS2 and its related materials.
      Graphical abstract image

      PubDate: 2017-05-01T02:08:02Z
      DOI: 10.1016/j.cis.2017.04.014
  • Layered double hydroxides as the next generation inorganic anion
           exchangers: Synthetic methods versus applicability
    • Authors: Natalia Chubar; Robert Gilmour; Vasyl Gerda; Matej Mičušík; Maria Omastova; Katja Heister; Pascal Man; Jacques Fraissard; Vladimir Zaitsev
      Abstract: Publication date: Available online 25 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Natalia Chubar, Robert Gilmour, Vasyl Gerda, Matej Mičušík, Maria Omastova, Katja Heister, Pascal Man, Jacques Fraissard, Vladimir Zaitsev
      This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of “classical” anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method―structure/surface/interlayer―removal―suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.

      PubDate: 2017-05-01T02:08:02Z
      DOI: 10.1016/j.cis.2017.04.013
  • Milk fat globules and associated membranes: Colloidal properties and
           processing effects
    • Authors: Annamari Jukkola; Orlando J. Rojas
      Abstract: Publication date: Available online 21 April 2017
      Source:Advances in Colloid and Interface Science
      Author(s): Annamari Jukkola, Orlando J. Rojas
      The composition and physical-chemical properties of the milk fat globule membrane (MFGM) is a subject that has gained increased interest in the field of food colloids, mainly because the nutritional and technological value of the MFGM. In fact, related changes in integrity and structure during milk processing pose a huge challenge as far as efforts directed to isolate the components of the fat globule membrane. MFGM characteristics and potential utilization are areas of contention. Thus, the effects of processing and the colloidal interactions that exist with other milk constituents need to be better understood in order to exploit milk fat and MFGM, their functionality as colloids as well as those of their components. These are the main subjects of this review, which also reports on the results of recent inquiries into MFGM structure and colloidal behavior.
      Graphical abstract image

      PubDate: 2017-04-24T05:21:54Z
      DOI: 10.1016/j.cis.2017.04.010
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016